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SUMMARY 

Amphibian metamorphosis is a post-embryonic process that systematically 
transforms different tissues in a tadpole. This transformation requires extensive 
remodelling of almost every tissue in the animal. Thyroid hormone plays a 
causative role in this complex process by inducing a cascade of gene regulation. 
One of the more dramatic effects of thyroid hormone (triiodothyronine T 3) is to 
induce a complete regression of tadpole tail in culture in a simple chemically 
defined medium. 

The technique of differential display proposed by Liang and Pardee in 1992, has 
been applied in an attempt to isolate and then characterise responsive genes 
induced by thyroid hormone triiodothyronine (T3). 

Library screens using the PCR fragment xL52 as a probe allowed the isolation of 
-2.5kb clone termed xth-2. Sequence analysis and database searches at the 
amino acid level revealed that this clone (xth-2) showed approximately 91 % 
identity to some of the members of a recently discovered family of tissue-specific 
transmembrane proteins called Hem proteins. Temporal expression of xth-2 
using RT-PCR technique revealed that this gene is developmentally regulated. 

Whole mount in situ hybridisation used for detecting the location of this mRNA 
in Xenopus laevis embryos at different developmental stages indicated that xth-2 
protein was highly expressed in the brain and the pattern of expression has been 
extended along the central nervous system (CNS) and the caudal region (tail 
bud). 

Expression of xth-2 protein in Xenopus embryos, did not show any significant 
effect on the phenotypic features of the embryos examined. 

The Nap1 protein, a member of Hem family proteins has recently been found to 
associate with the SH3 domain of Nck protein, and is thought to play an 
important role in signalling transduction. We could therefore, speculate that 
protein xth-2 will have the same function as does the Nap1 on the basis of their 
sequence similarity, tissue distribution and also the expression pattern. 

xviii 



CHAPTER! 

INTRODUCTION 

1.1. General 

In 1912, J.F. Gudematsch of Germany performed a landmark experiment. He fed 

young tadpoles with different horse tissues and observed their effect on tadpole 

morphology. Interestingly, he found that the thyroid gland could speed up the 

transformation of tadpoles to frogs. This unique observation sparked a series of 

studies that made amphibian metamorphosis one of the oldest and best studied 

hormone-regulated developmental processes (see Appendix A for the 

developmental series of Xenopus (Nieuwkoop and Faber, 1956) 

It has long been shown that metamorphosis systematically transforms most, if not 

all, tissues and organs in a tadpole (Dodd and Dodd, 1976; Gilbert and Frieden, 

1981). However, different organs undergo vastly different changes. Two of the 

extreme transformations include limb development and tail resorption. In the first 

example, cells predetermined to become a limb undergo rapid proliferation and 

subsequent differentiation to form the new structure. In contrast, the tail, a tadpole­

specific organ comprising some of the same cell types (i.e., the connective tissue, 

muscle and epidermis) as the developing limb, completely degenerates during 

metamorphosis. Most other organs, however, are present in both the tadpole and 

the frog. To serve their function in a postlarvae frog, which has a different diet and 
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living habitat, several organs undergo drastic remodelling in a process that involves 

degeneration of specific larval cells, probably through apoptosis (programmed cell 

death) (Ishizuya-Oka and Shimozawa, 1992) and selective proliferation and 

differentiation of adult cells. For example, the liver is remodelled to produce an 

adult organ with a very different gene specific program. Thus, the activities of the 

urea-cycle enzymes in the liver are elevated in the frog compared to those in the 

tadpole as the animal changes from ammonotelism to ureotelism. 

These early studies also provided considerable insights into the regulation of the 

developmental process by the thyroid gland. A few years after the first observation 

by Gudernatsch in 1912, Allen (1916) demonstrated that the thyroid gland is 

essential during natural frog metamorphosis because thyroidectomy prevented 

metamorphosis and consequently produced giant tadpoles. In addition, Kendal 

(1915) showed that the active ingredient in the thyroid gland is thyroid hormone 

TH (Kendall 1915). These studies led to the subsequent isolation and structural 

determination of the biologically active forms of the hormone, T 3 (3,5,3'­

triiodothyronine) and T4 (3,5,3',5'-thyroxin) (see Figure 1). 

2 



FIG 1. Chemical structures of the thyroid honnones thyroxine and 
triiodothyronine. The two molecules differ by only one iodine 
atom, a difference noted in the abbreviations T 3 and T 4. 
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Blocking the production of these honnones in the tadpoles by thyroidectomy or by 

using specific inhibitors of TH synthesis prevents metamorphosis, whereas adding 

pure TH to the rearing water of the tadpoles can initiate precocious transitions 

(Dodd and Dodd, 1976; Gilbert and Frieden, 1981). Although T4 can induce 

metamorphosis, it is less active than T 3 and is generally believed to be converted to 

T3 in order to function. Thus, these experiments unequivocally demonstrated the 

causative role of TH in frog metamorphosis. 

Metamorphosis in amphibia and insects is a dramatic example of a late 

developmental switch, resulting in the reprogramming of morphological and 

biochemical characteristics of virtually every postembryonic and larval tissue 

(Gilbert and Frieden, 1981). Although all the major biochemical events also occur 

in mammalian embryonic or foetal development, little effort is currently devoted to 

studying the molecular mechanisms underlying metamorphosis, compared with 

work on gene expression during early embryonic development. 

Two important features of metamorphosis render it an exceptionally attractive 

developmental process for understanding phenotypic switching. First, the process 

is under obligatory honnonal control, usually one honnone exerts juvenilising 

action by preventing or delaying development and the other initiates and sustains 

further development. Examples of these two honnone pairs are juvenile honnone 

and ecdysone in insects, and prolactin and thyroid honnone in amphibia (White and 
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Nicoll, 1981; Beckingham Smith and Tata, 1976; Tata, 1984). This dependence of 

metamorphosis on honnones offers a simple, effective tool to experimentally 

manipulate . developmental changes in opposing directions. Second, the same 

honnonal signal initiates morphogenesis to generate new tissues, such as limbs or 

wings, restructuring some existing tissues to acquire new functions, such as the 

central nervous system and the hepatopancreas, while initiating cell death or 

apoptosis in others, such as in amphibian tail and gills or insect salivary glands. 

Three groups of honnonal signals, released from specialised endocrine cells 

following environmental cues transmitted by the brain, detennine the onset, rate 

and completion of metamorphosis. The hypothalmic peptides, thyroid releasing 

honnone (TRH) and corticotropin releasing factor (CRF) stimulate the pituitary to 

produce thyroid stimulating honnone (TSH) which, in tum, activates the thyroid 

gland of the tadpole. The activated thyroid gland secretes the thyroid honnones, L­

thyroxine (T4) and triiodo-L-thyronine (T3), whose action is obligatory for the onset 

and completion of metamorphosis up to the adult stage. The pituitary also secretes 

the peptide honnone prolactin (PRL), which can prevent metamorphosis (White 

and Nicoll, 1981) an action essential for detennining the timing of initiation of the 

programme for further development of the growing but not as yet fully 

differentiated tissues. 

5 



The simple exposure to T 3 can precociously induce metamorphosis in pre-

metamorphic amphibian larvae, as well as in isolated larval tissues, and can induce 

the same adult gene products or processes as during nonnal development. The 

same honnone initiates a different developmental programme depending on the 

tissue, such as, for example, extensive morphogenesis, in limbs, the induction of 

hydro lases and other cell death detenninants leading to the loss of whole organs, 

such as the tail and gills and functional reorganisation of the brain and gut, while 

producing more subtle changes as in the epidennis and eyes (see Table 1). All 

these thyroid honnone-dependent developmental changes can be blocked by raising 

the concentration of prolactin, thus extending the simple experimental 

manipulation of precociously inducing metamorphosis with T3 to operationally 

"freezing" the process of postembryonic development of the early tadpole at any 

given stage. 

Table 1. Diversity of biochemical responses during thyroid hormone-induced amphibian 
(anuran) metamorphosis (modified from rata, 1996). 

Brain 

Liver 

Eye 

Skin 

Limb bud, lung 

Tail, gills 

Pancreas, intestine 

Immune system 

Cell division, apoptosis and new protein synthesis 

Induction of urea cycle enzymes and albumin,; Larval ..... adult 
haemoglobin gene switching 

Visual pigment transformation (porphyropsin ..... rhodopsin); /3-
crystallin induction 

Induction of collagen 63kDa (adult) keratin and magainin genes 

Cell proliferation and differentiation, chondrogenesis 

Programmed cell death; induction and activation of lytic enzymes 
(collagenase, nucleases, phosphatases); lysosome proliferation 

Reprogramming of phenotype acquisition of new digestive functions 

Altered immune system and appearance of new immunocompetent 
components 
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Hormonal induction of metamorphic processes and their inhibition by prolactin are 

direct and not systemic actions of the hormones, as they can be reproduced in organ 

culture. The ease with which many of the hormonal effects can be reproduced in 

tissue culture has considerably facilitated the study of developmentally 

programmed morphogenesis, cell death and specific gene expression, thus allowing 

a more detailed analysis of the mechanisms underlying postembryonic development 

(Tata, 1966; Yoshizato, 1989; Tata et al., 1991). For example, it could be shown in 

organ cultures of Xenopus tails and limb buds that the addition of T3 induces cell 

death and complete tissue regression and development, respectively (Tata et al., 

1991). In these experiments, prolactin prevented both regression of the tails and 

growth of limbs (i.e. the action of prolactin is to prevent both morphogenesis and 

cell death induced by thyroid hormones). Organ culture experiments have also 

made it possible to demonstrate that protein synthesis is required for programmed 

cell death. 

Metamorphosis of amphibia is mainly considered. It is natural that many biologists 

have long been attracted by amphibian metamorphosis because it includes many 

basic biological processes, including cell differentiation, endocrinology, cell death, 

cell growth, and histolysis. 

In the case of amphibia, all the tissues of tadpoles transform from the larval to the 

adult type during metamorphosis. The extent and the nature of the transformation 
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appear to be diverse and to depend on the particular organs; larva-specific, larva-to­

adult, and adult-specific. The larva-specific organs exist and function only in a 

larva (e.g., gill and tail). The larva-to-adult organs exist and function throughout 

the larval phase to the adulhood; however, their structures and functions in the 

larva are different from those in the adult. This organ type includes the liver, gut, 

and the body skin. An example of the third type organ is the forelimbs, which do 

not exist in a larva but appear during metamorphosis and continue to function 

through adult life (Y oshizato, 1989). 

1.2. Metamorphic transformation of larval organs and cell differentiation 

In general, organs contain two types of tissues (Le. epithelial and mesenchymal), 

the cells of which are called epithelial cells and mesenchymal cells, respectively. 

The cells of each type of tissues are thought to comprise two kinds of cell 

populations (1) undifferentiated and proliferative cells (germinative cells or stem 

cells), and (2) differentiated and nonproliferative cells (mature cells). Cells in an 

organ have their own life span and are engaged in a physiological turnover. When 

they come to the end of the span, they are lost from the tissue, the loss being 

compensated for by offspring of germinative cells. In this way the apparent cell 

number is kept relatively constant in a tissue (a state of dynamic equilibrium). In 

other words, a tissue, in general, contains specific populations of cells (germinative 

cells) that can enter the cycle of cell division to replace the mature cells that die 

(Yoshizato, 1989). 
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1.2.1 Larva-Specific-Organs 

All the cells in this type of organ are subjected to cell death and destined to be 

removed from the body during spontaneous metamorphosis. Before 

metamorphosis, larva-type germinative cells proliferate and produce progeny that 

goes on to differentiate into larval type mature cells. At metamorphosis, it can be 

expected that both germinative and mature cells undergo cell death, because these 

larva-specific organs have no counterpart in the adult body. It should be 

emphasised that there seem to be two types of cell death (a) the physiological death 

of mature cells at the end of their life span (b) a metamorphosis related death of 

cells (metamorphic cell death). The latter type of death occurs in cells that are still 

proliferation-competent and mayor may not be near physiological death. Even 

germinative cells could be subject to metamorphic cell death. Physiological cell 

death is considered to be thyroid hormone (TH)-independent, but metamorphic cell 

death appears to be thyroid hormone (TH)-dependent. 

1.2.2. Removal of a larva-specific organ: Tail 

Thyroid hormones play leading roles in these changes of larval cells. The larva­

specific organ may be the simplest type to study in considering the metamorphic 

changes at the cellular level, because this organ type appears to be removed during 

metamorphosis and therefore does not require the presence of progenitor 

germinative cells for adult life. 

9 



1.2.3. Overview of the tadpole tail 

The tail constitutes a large proportion of the tadpole's body almost two-thirds of 

total body length in the case of bullfrog tadpoles. Tadpole tail has been one of the 

most frequently studied organs in experimental work on amphibian metamorphosis, 

for several reasons. The tail is easily recognisable, as an organ that is visible to the 

naked eye, without surgical intrusion, it shows dramatic changes during natural 

metamorphosis and also in response to exogenously administered TH (i.e., induced 

metamorphosis). It is known that the tail is one of the organs most sensitive to 

stimulation by TH. In addition, the tail can be cultured with relative ease for more 

than a week in a simple salt solution; furthermore, under these conditions the tail 

undergoes responsive changes in response to TH at physiological concentrations. 

Many studies on histolysis of the tail during spontaneous and TH-induced 

metamorphosis have accumulated since the last century (Frieden and Just, 1970). 

The tail has a relatively simple architecture but does contain several tissues: nerve 

tissues, blood vessels, notochord, and muscle tissues (see Figure 2). Skeletal 

muscles are most voluminous. Highly hydrated gelatinous connective tissues 

surround the muscles and support the structure of the tailfin. The tail is covered by 

a thin epidermis. The cells proper to this organ therefore include epidermal cells, 

fibroblastic cells, macrophages, neurons, glial cells, endothelial cells and smooth 

muscle cells of blood vessels, chondrocytes, muscle cells. These are cells that 
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reside in the tail; the tail also contains cells that circulate through the entire body, 

red blood cells, leukocytes, and lymphocytes. 

At the final stage of metamorphosis the whole structure of the tail disappears, as do 

various types of cells just mentioned as well as substances of the extracellular 

matrices (ECM) (Y oshizato, 1989). 
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FIG 2. A schematic representation of the tadpole tail. DTF, dorsal 
tailfin; CT, connective tissue; NC, nerve cord; E, epidermis; M, 
muscle, N, notochord, VTF, ventral tailfin (from Yoshizato, 
1989). 
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1.3. Morphological descriptions of breakdown of the tail 

1.3.1. Overall features of tail regression 

The tail regression is one of the most conspicuous morphological changes during 

anuran metamorphosis. All the materials of the tail tissues are subject to 

destruction. Regression of the tadpole tail seems to include two different 

processes: condensation and histolysis. Several workers have reported that the 

predominant initial response of the tissue to the metamorphic stimulus is water 

loss, resulting in an apparent tissue regression by the condensation of cells and 

extracellular matrix (ECM). The breakdown of tail requires cell-cell interactions 

and biochemical (enzymatic) reactions. The condensation might facilitate these 

cellular and biochemical processes. Another component of tail regression is a 

histolysis of the tissue. The condensation and the histolysis progress concomitantly 

from the beginning to the completion of the tail breakdown, which might be the 

basis of a well-organised process of degeneration. The condensation of tail tissues 

during metamorphosis might help to explain the mechanism of tissue breakdown, 

but this has received little attention. The mechanism of condensation or 

contraction of tissues has been largely unknown. 

An experimental model in which fibroblasts are cultured three-dimensionally in a 

hydrated collagen lattice shows an extensive contraction of collagen fibrils 

resulting in a rearrangement of the fibrils. This cell-mediated condensation of the 

model is partly dependent on the presence of thyroid hormone TH (Yoshizato, 
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1989). These observations strongly suggest that tail dehydration during 

metamorphosis might also be induced by the action of TH. Thus condensation 

appears to be an important phenomenon in the mechanism of tissue regression. 

There have been many terms used to refer to tail regression in the literature: 

breakdown, dissolution, autolysis, histolysis, phagocytosis, heterolysis, 

degeneration, regression, contraction, absorption, atrophy, and necrosis. It was 

suggested that the terms atrophy, necrosis, and degeneration are not suitable to 

describe the tail breakdown, because this process is composed of developmentally 

programmed cell death and organised removal of the dead cells and ECM by 

phagocytosis and enzymatic degradation. Apoptosis might be a suitable term for 

the tissue destruction of metamorphosing tadpoles (Yoshizato, 1989). 

The metamorphic changes of tail epidermal cells were survyed electron­

microscopically using tadpoles of Rana japonica. The earliest change is noticed in 

the outermost cells, where vacuoles with acid phosphatase activity appear and the 

cell membranes are destroyed. These changes spread toward the inner layers as 

metamorphosis progresses. The next changes observed are ruptures of structures of 

desmosomes, and the pyknosis of nuclei. Lymphocytes, neutrophils, and especially 

macrophages become conspicuous. Macrophages are often observed to 

phagocytose the dead cells. The destruction of tail skin cells proceeds in two 

sequential steps: autolysis and heterolysis. The autolysis is the death of epidermal 
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cells, which progresses inward the apical layer. The heterolysis is the phagocytosis 

of the autolysed cells by macrophages. The first change in the cells is a 

condensation of chromatin on nuclear membranes, followed by breakdown of 

nuclei and condensation of cytoplasm. As a result many fragmented cell bodies 

with cell membranes are produced. Organelles in the cell body such as 

mitochondria appear to be intact. These changes are not specific to metamorphosis 

but are generally observed in the process of programmed cell death in vertebrate 

embryogenesis and physiological turnover of cells. The fragmented cell bodies are 

named apoptotic bodies. Apoptotic bodies are then phagocytosed by macrophages 

(heterolysis) (Yoshizato, 1989). The process of removal of tail epidermal cells is 

schematically summarised in Figure 3. 
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FIG 3. Metamorphic changes in tail epidennaJ cells. (Adapted 
from Yoshizato, 1989). 
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1.4. Competence and stage-dependent metamorphosis of individual tissues 

Natural metamorphosis takes place at precise developmental stages. This process 

however, can be precociously induced in premetamorphic tadpoles as early as stage 

41 for Xenopus laevis, only 3 days after fertilisation, by treatment with exogenous 

TH (Dodd and Dodd, 1976; Gilbert and Frieden, 1981; Tata, 1968). Younger 

tadpoles or embryos were found to be refractory to this TH addition. This 

observation suggests that the whole animal is only competent to respond to TH at 

specific developmental stages. 

This stage-dependent phenomenon is also observed to be true if one examines the 

metamorphic transitions of different tadpole organs during natural development; 

individual tissues undergo their unique metamorphic changes at distinct 

developmental stages. This is exemplified by the transformation of the hindlimb, 

tail and intestine in Xenopus laevis (see Figure 4). The earliest change to take place 

is hindlimb development (Nieuwkoop and Faber, 1956). The hindlimb bud begins 

to grow around stage 48 and the most dramatic morphological differentiation takes 

place around stage 53-56. Subsequently, the hindlimb undergoes mostly growth 

with few morphological changes. In contrast, tail resorption is one of the last 

changes to occur during metamorphosis (Nieuwkoop and Faber, 1956). While 

some changes in the tail, such as tail fin resorption, take place a little earlier (Dodd 

and Dodd, 1976), drastic tail resorption, as reflected by the reduction in tail length, 

begins around stage 62 and its completion marks the end of metamorphosis. The 
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intestine, on the other hand, begins its remodelling process around stage 58 when 

its connective tissue and muscle layers increase in thickness (McAvoy and Dixon, 

1977). This is followed by degeneration of the larval epithelium through 

programmed cell death (apoptosis) around stages 60-62 (McAvoy and Dixon, 1977; 

Ishizuya-Oka and Shimozawa, 1992).. Concurrently, secondary epithelial cells 

rapidly proliferate and differentiate toward the end of metamorphosis to form a 

much more complex frog organ (McAvoy and Dixon, 1977). 

The molecular mechanisms underlying such developmental stage-dependent 

phenomena are still unclear. It is generally believed that the effect of TH is 

mediated through thyroid hormone receptors (TRs) by regulating gene expression. 

Such an assumption has been substantiated by molecular studies on TRs and genes 

that are regulated by thyroid hormone during metamorphosis (Tata, 1993; Shi, 

1994). 
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FIG 4. Stage-dependent transformation of the hindlimb, intestine 
and tail of Xenopus laevis tadpoles. The developmental stages and 
ages of tadpoles are from Nieuwkoop and Faber (1956). Tadpole 
small intestine has a single epithelial fold, where connective tissue 
(C) is abundant, while a frog has a multiply folded intestinal 
epithelium (E), with elaborate connective tissue and muscle (M). 
Filled dots, proliferating adult intestinal epithelial cells, open 
circles, apoptotic primary intestinal epithelial cells, L, intestinal 
lumen (from Shi et aI., 1996). 
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1.5. Thyroid hormone receptors 

In 1986 Evans and Vennstrom independently cloned the first TH receptors 

(Weinberger et aI., 1986; Sap et al., 1986). These receptors were found to be 

transcription factors that can regulate gene transcription in response to TH (Tsai 

and O'Malley, 1994), supporting the earlier suggestion that TH controls 

metamorphosis by regulating gene expression in tadpoles (Dodd and Dodd, 1976; 

Gilbert and Frieden, 1981). Using the human TR cDNA as a probe, Brown's 

group cloned four TR genes in Xenopus laevis (Yaoita et al., 1990), one of which 

is identical to the previously cloned Xenopus TRa gene (Brooks et al., 1989). 

These genes are very similar to the TR genes in mammals and birds, and they 

belong to two families (a and (3), as in other species. Similar observations have 

since been made in Rana catesbeiana (Schneider and Galton, 1991; Helbing et 

al., 1992). 

TRs belong to the rapidly expanding super-family of nuclear receptors, which has 

over 150 members including receptors for glucocorticoids, androgens, retinoic 

acids, etc. (Tsai and O'Malley, 1994; Mangelsdorf et al., 1995). Members of this 

family share similar structural domains. Each of them has a DNA binding domain 

located in the amino terminal half and a hormone binding domain in the carboxyl 

terminal half. The DNA binding domains of different receptors share considerable 

similarity and are involved in the specific recognition of the corresponding 

hormone response elements, e.g. TRE (thyroid hormone response element) for 
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thyroid honnone receptors. All the other domains are, in contrast, unique to each 

receptor. 

While TRs can bind TREs weakly as monomers and homodimers, they bind to 

TREs with much higher affinities as heterodimers with RXRs, the receptors for 9-

cis retinoic acid (Tsai and O'Malley, 1994; Heyman et 01., 1992). More 

importantly, TR-RXR heterodimers can confer the specificity of gene regulation by 

TH in tissue culture cells, suggesting that they are in vivo partners of TRs (Tsai and 

O'Malley, 1994; Heyman et 01., 1992; Yen and Chin, 1994). Numerous studies, 

including in vitro DNA binding, cell culture transfection and functional studies in 

frog oocytes, have shown that TR-RXR heterodimers can bind to TREs even in the 

absence of TH (Tsai and O'Malley 1994; Zhang et ai., 1993; Yen et 01., 1994). 

However, such binding of a TRE present in a gene which is nonnally up-regulated 

by TH results in transcriptional repression. Upon TH binding to the heterodimers, 

the resulting liganded receptors become potent transcriptional activators (Tsai and 

O'Malley, 1994; Zhang et 01. 1993; Yen, et ai., 1994; Ranjan 1994). 

The exact mechanism of this activation by TH remains to be detennined. However, 

TH binding has been shown to cause confonnational changes in TRs (Bhat et 01., 

1993 ; Toney et ai., 1993). More recently by using an oocyte transcription system, 

it was demonstrated that unliganded TR-RXR heterodimers can constitutively bind 
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to a TRE in a chromatinised template and that chromatin assembly and unliganded 

TR-RXR heterodimer binding can repress transcription synergistically. Addition of 

TH leads to over 200-fold transcriptional activation, accompanied by chromatin 

disruption. Such chromatin disruption is dependent upon TH but can occur even 

when transcription is blocked with a-amanitin. It was suggested so far that one 

mechanism of transcriptional activation by TH is through the disruption of the 

repressive chromatin structure. 

As the mediators of the effects of TH, TRs and RXR are expected to be present 

during amphibian metamorphosis. Indeed, the mRNAs of both TRa and TR~ are 

expressed during amphibian metamorphosis (Schneider et al., 1991; Helbing et 

al., 1992; Yaoita et al., 1990; Kawahara et al., 1991). In Xenopus, the TRa genes 

are activated shortly after tadpole hatching and their expression is maintained at 

high levels in tadpoles throughout metamorphosis. Although TR~ genes have little 

expression in premetamorphic tadpoles, they are dramatically activated during 

metamorphosis. Similarly, it has been found that both RXRa and RXRy are also 

expressed in premetamorphic as well as metamorphosing tadpoles (Wong and Shi, 

1995). It is expected that the third member of Xenopus RXR genes, the RXR~ 

gene which was cloned recently (Marklew et af 1994), is also expressed during 

metamorphosis. 
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More interestingly, when the expression of these receptor genes was analysed in 

individual organs during Xenopus metamorphosis, a strong correlation was found 

between their mRNA levels and organ-specific transformation (Wang and Brown, 

1993; Yaoita et al. 1990; Wong and Shi, 1995; Shi et al. 1994). In general, TR and 

RXR genes are co-ordinately regulated during metamorphosis and their expression 

is high in a given organ when metamorphosis takes place and low before or after 

metamorphosis. Thus, the mRNA levels for these receptor genes (except for TRP 

genes) are high in the hindlimb around stages 54-56 when hindlimb 

morphogenesis, e.g. digit formation, takes place. Similarly, in the tail, the genes 

are expressed at low levels until stage 62 when they are upregulated, coinciding 

with the rapid tail resorption. In the animal intestine, the mRNAs of both TRa and 

RXRa genes are present at intermediate levels and those of TRP and RXRy genes 

are upregulated during tissue remodelling (Wong and Shi, 1995; Shi et al. 1994). It 

should be pointed out, however that some differences do exist in the expression 

profiles of these receptor genes (Wong and Shi, 1995). For example, TRP gene 

expression does not change as drastically as that of the TRa genes during hindlimb 

morphogenesis (stages 54-58), suggesting that TRa may playa more important role 

in this transition. In any case, these observations together suggest that TR-RXR 

heterodimers mediate the effects of TH during metamorphosis and that one 

mechanism for regulating stage-dependent tissue transformation is to modulate the 

levels of endogenous hormone receptors. The availability of these receptors may 

thus be required for the correct temporal regulation of changes in individual tissues. 
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So far there has been only one study reporting the distribution xTRa and preceptor 

proteins determined immunlogically with polyclonal antibodies in tissue extracts of 

Xenopus tadpoles (Eliceiri and Brown, 1994). According to these workers xTRa 

and p are maternally derived in early embryos before their transcripts are first 

detectable, and xTRa protein in the head and tail regions of the tadpole remains 

constant although its transcripts increase through metamorphosis. In contrast they 

found that both xTRP mRNA and protein increased in parallel with endogenous 

TH during metamorphosis. However, it is worth noting that with the rat isoform 

TRP2, there is no correspondence between TR mRNA and protein when the tissue 

distribution of mRNA and protein were analysed by in situ hybridisation and 

immunocytochemistry, respectively (Lechan et al., 1993). 

Fairclough and Tata (1997), made the first attempt to localise xTRa and P proteins 

in Xenopus tadpole tissues immunocytochemically with specific monoclonal 

antibodies (see Figure 5), during natural and T3-induced metamorphosis. 

24 



FIG 5. Antigens used for raising and characterising antibodies against xTR a and~ . A, full-length 
xTR a produced a~ a fusion protein (Machuca el aI. , 1995; Ulisse el aI., 1996). B, full-l ength xTR ~ 
produced as a fusion protem. C, synthetic 25-mer peptide representing a sequence in the hinoe 
region that is unique to xTR 13 (Yoita el aI. , 1990). AlB, N-termina l domain ; DBD, DNA bindi~o 
domain ; HR, hinge region ; LBD, ligand binding domain (from Fairclough and Tata, 1997). b 
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As xTRa protein was present at relatively high levels and since its concentration 

was not significantl y regulated during natural development and T3-induced 

metamorphosis, the authors focused their attention largely on xTR~ protein. This 

receptor isoform is present at very low concentration in the li ver and small 

intestinal epithelium at the limit of immunocytochemical detection in early tadpoles 

at stage 46 (see Table 2). The fact that Xenopus tadpoles at this stage exhibit a 

metamorphic response to exogenous T3 (Tata, 1968; Tata, 1996) indicates the 

presence of functional TR. By metamorphic stage 52, that is, just prior to the 

activation of the larva l thyroid gland, there is a low, but detectabl e level of TR~, 

mostly loca li sed in the nuclei, the li ver, the intestine and hind limb-bud. This 

amount increased substantially in these tissues upon the onset of metamorphosis 

initiated by endogenous TH at stage 55 . Exposure of stages 52 and 55 tadpoles to 

exogenous T3 for 5 days caused xTR~ , but not xTRa, levels to increase 

substantia ll y in all three tissues. Whereas this increase during onset of natural 

metamorphosis and artificial acceleration of the process in the li ver and intestine 
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did not exhibit any preferential localisation within the tissue, it was topologically 

highly restricted to dense pockets of cells in the developing hind limb. This pattern 

resembled the localisation and migration of chondrocyte-rich cells in organ culture 

of hind limb-buds treated with T 3 (Tata et al., 1991). Thus, these modulations of 

xTR~ protein in the liver, intestine and limb-bud are compatible with the 

developmental and hormonal regulation of accumulation of xTR~ transcripts 

(Baker and Tata, 1992; Yaoita and Brown, 1990). 

The present results by Fairclough and Tata are in partial agreement with those of 

Eliceiri and Brown (1994), who quantified xTRa and ~ proteins by 

immunoprecipitation from extracts of Xenopus tadpole tissues. Like these authors, 

Fairclough and Tata found that xTR~ protein levels in non-hormonally treated 

tadpoles were generally lower than those of xTRa and that these increased more 

than xTRa during natural metamorphosis. They also found that in the cerebral 

cortex the levels were higher than in other tissues, but, unlike Eliceiri and Brown 

(1994), Fairclough and Tata found that neither isoform was substantially increased 

in the brain during natural and T3-induced metamorphosis. Furthermore, their 

results show that xTRa levels are also enhanced, albeit to a lesser extent than those 

of the ~ isoform, during natural and T3-induced onset metamorphosis (see Table 2). 
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!abl~ 2. Summa~ of ~he data on the expression of xTRa and f3 proteins in the liver (Liv); small 
mtestme (SI); and. hmd Ilmb-b~d (L8) of Xenopus tadpoles at different developmental stages during 
nat~ral and thyroId hormone-mduced metamorphosis. +/-, low (limit of detection); +, low (but 
easily detectable) ; ++, moderate; +++, high ; ND, not determined (from Fairclough and Tata 
1997). ' 

Early tadpole (46) Liv a NO + 

~ + ND 

SI a + + 

~ +/- + 

Premetamorphic (52) Liv a ++ ++ 

~ + ++ 

SI a + ++ 

~ +/- ++ 

LB (l + ++ 

~ +/-

Onset of metamorphosis (55) Liv CL + ++ 

~ ++ +++ 

SI a + ++ 

~ + +++ 

LB a + ++ 

~ + +++ 

1.6. Regulation of cellular TH levels 

In addition to regulating the levels of hormone receptors another possible 

mechanism for determining the spatial and temporal aspects of metamorphosis 

would be the regulation of cellular TH levels in the animal. This could be achieved 

in several different ways. Firstly, is the actual production of TH in the thyroid 

gland. Secondly, the levels of cellular TH could be affected by cellular proteins 

that bind TH, called cytosolic thyroid hormone binding proteins (CTHBPs). The 
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metabolic conversion of T 4 to T 3 and or the inactivation of both hormones may be 

an important step in regulating the levels of functional TH. 

1.7. Circulating thyroid hormone 

Thyroid hormone is synthesised in the thyroid gland in two forms, 3,5,3',5'· 

tetraiodothyronine (T4-thyroxin) and its mono de iodinated form 3,5,3'. 

triiodothyronine (T3). In Xenopus laevis the gland first appears in the embryo as a 

median thickening of the pharyngeal epithelium at the time of tadpole hatching 

(stages 35/36) (Dodd and Dodd, 1976). This rudiment then develops into a 

functional larval thyroid gland around stage 53. A similar developmental process 

has been observed in other anurans (Dodd and Dodd, 1976). 

A systematic quantification of plasma TH levels during Xenopus laevis 

development was reported (Dodd and Dodd, 1976). They found detectable levels 

of T4 in the larval plasma as early as stage 54, shortly after the formation of the 

functional thyroid gland. The levels of plasma T 3 appear to be lagging slightly 

behind T 4 during development. These low levels of endogenous TH could 

apparently trigger the initiation of metamorphosis with the morphogenesis of the 

hindlimb, as one of the first visible changes, to take place around stages 53-56. 

Subsequently, the plasma concentrations of both thyroid hormones increase, 

reaching peak levels around stage 60, the climax of metamorphosis. Currently, the 

mechanisms underlying the developmental regulation of the plasma TH levels are 
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unknown. However, many factors appear to be involved, including those that 

influence the growth and maturation of the thyroid gland, and hormonal clues that 

regulate thyroid hormone synthesis and release from the gland (Dodd and Dodd, 

1976; Gilbert et al., 1996). Regardless of the regulation mechanisms, the high 

levels of TH during development correspond exactly to the period of 

metamorphosis, consistent with the causative role of TH during this tadpole-to frog 

transition. 

1.8. Cytosolic thyroid hormone binding proteins (CTHBPs) 

In order to regulate cellular gene expression, the circulating TH in the plasma has 

to be transported through yet undefined mechanisms into target cells in different 

tissues. Upon entering the cytoplasm, it is likely to encounter cytosolic TH binding 

proteins (CTHBPs). Several such cellular proteins have been characterised (Shi et 

al 1994; Cheng, 1991; Yamauchi and Tata, 1994). In general, CTHBPs are 

multifunctional proteins that serve one or more other roles (e.g. pyruvate kinase, 

myosin light chain kinase and disulfide isomerase) and bind TH with 10-100 fold 

weaker affinity than the nuclear TRs. 

The exact roles of these CTHBPs in TH signal transduction are still unclear. These 

proteins could participate in TH import from the extracellular medium, intracellular 

TH metabolism and transport to the nucleus, or serve as buffer to modulate 

intracellular free TH concentrations. This last function is strongly supported by 
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studies on the human pyruvate M2 kinase (Ashizawa and Cheng, 1992). As a 

monomer, it binds TH with affinity and specificity, while the homotetramer fonn 

functions as the M2 pyruvate kinase. Interestingly, over-expression of the 

monomer fonn of the protein leads to an inhibition ofTH-dependent transcriptional 

activation by TR in a tissue culture cell line. Based on this observation, Cheng and 

co-workers suggest the monomer fonn of M2 pyruvate kinase functions as a 

chelator of cellular TH, thus reducing cellular free TH concentration and inhibiting 

the effect ofTH (Ashizawa and Cheng, 1992). 

To further understand the exact roles of cellular thyroid honnone binding proteins, 

two CTHBPs have been identified in Xenopus laevis. The first one was isolated 

from frog liver due to its ability to bind TH (Yamauchi and Tata, 1994). Partial 

peptide sequencing showed that it is likely to be the frog homolog of mammalian 

and avian cytosolic aldehyde dehydrogenase. Currently, it is unknown whether it 

is expressed during metamorphosis and how it is regulated. The second frog 

CTHBP gene was cloned on the basis of its homology to the human M2 pyruvate 

kinase gene (Shi, 1994). The deduced amino acid sequence of the frog CTHBP is 

about 90% identical to the human protein, with all known important regions 

completely conserved. Thus, while the biochemical function of the protein has not 

been studied, it is likely to function both as a pyruvate kinase in the tetramer fonn 

and a CTHBP in the monomer fonn. 
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The potential role of the frog M2 pyruvate kinase, referred to as xCTHBP, during 

metamorphosis is suggested by the tissue-dependent developmental expression of 

its mRNA. Of the three Xenopus laevis organs analysed, the intestine has very low 

but relatively constant levels of xCTHBP mRNA during development (Shi et al., 

1994). In contrast, the xCTHBP expression in the tail and hindlimb is drastically 

altered during metamorphosis. Low levels ofxCTHBP mRNA are present in either 

the hindlimb during morphogenesis (stages 54-56) or tail during resorption (stages 

62-64). Interestingly, the xCTHBP mRNA levels increase drastically in the 

growing hindlimb and decrease precipitously in the resorbing tail. 

1.9. Deiodinases 

TH is synthesised initially as T4 or thyroxin in the thyroid gland (St. Germain, 

1994a). A fraction of the T4 in tum is converted in the thyroid gland into T3 by 5'­

deiodinases, the more potent form ofTH (Jorgensen, 1978; Weber, 1967). Both T3 

and T 4 are then secreted into the serum and carried to the target tissues. The 

hormones are presumably transported into the cells either via carrier proteins or 

through energy-driven transport processes (Robbins, 1992). Within the target 

cells, the levels of the hormones can be further modulated due to local metabolism. 

This includes the conversion of T 4 to T 3 to enhance the effect of TH and the 

inactivation of both forms through 5'-deiodination, conjugation, deamination and 

oxidative decarboxylation (St. Germain, 1994a). Among them, the best studied is 

deiodination. 
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Two families of deiodinases have been discovered (St. Germain 1994a). These are 

the 5' -and 5-deiodinases. At least two different 5' -deiodinases have been identified 

that have different enzymatic characteristics. These enzymes appear to have 

different tissue distributions in mammals, with the type I form high in the liver, 

kidney and thyroid, and the type II form high in the brain, pituitary and brown 

adipose tissue of adult rat (5t. Germain, 1994a). Thus, it seems likely that in 

developing animals, these activities are regulated in a tissue-specific manner. 

Unfortunately, the corresponding genes had not been cloned in amphibians, making 

it difficult to determine their expression during metamorphosis. 

In contrast to 5'-deiodinases, which convert T4 to the more active form T3, 5-

deiodinases convert T4 and T3 to rT3 (reverse T3) and T2, respectively (St. Germain, 

1994a). Since both rT3 and T2 have little affinity to TRs, the action of 5-

deiodinases inactivates TH, thus inhibiting the effect of TH. A 5-deiodinase gene 

was recently cloned from Xenopus laevis due to its upregulation in the tail by the 

TH treatment of premetamorphic tadpoles (St. Germain et at., 1994b). Its sequence 

shares considerable homology in several regions with the rat type I 5' -deiodinase. 

However, it functions primarily as a 5-deiodinase, with its 5'-deiodinase activity 

about 600-fold weaker (5t. Germain et at., 1994b). Interestingly, its expression 

during Xenopus metamorphosis is regulated in a tissue-specific manner (Wang and 

Brown, 1993; St. Germain et at., 1994b). It has little expression in the intestine 

and in the hindlimb, it is not expressed until about stage 60, when its mRNA level 
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is upregulated, paralleling the increase in limb size. In contrast, relatively high 

levels of its mRNA are present in the tail during premetamorphic stages. 

Immediately prior to rapid tail resorption (stages 58-61), the expression of the 5-

deiodinase gene is suddenly up-regulated several-fold. Its mRNA levels then return 

to the premetamorphic levels as tail resorption takes place after stage 61. Thus, as 

in the case of the xCTHBP, these expression profiles implicate a role for 5-

deiodinase during the metamorphosis of the tail and the limb. 

1.10. Molecular basis for competence and timing of tissue specific 

transformation 

The development of amphibians proceeds by a complex genetic program, which 

produces a larval form in the absence of a functional thyroid gland (Dodd and 

Dodd, 1976; Nieuwkoop and Faber, 1956). This phase of development is followed 

by metamorphosis, a process involving a complicated co-ordination of the 

transformations of individual tissues. The development of the functional thyroid 

gland seems to playa critical role in initiating this metamorphic process. This is 

because tadpoles prior to the formation of a functional thyroid gland at stage 53 in 

Xenopus (Dodd and Dodd, 1976) can undergo precocious metamorphosis when 

exposed to exogenous TH (Dodd and Dodd, 1976; Gilbert and Frieden, 1981; Tata, 

1968). suggesting that the only missing signal is the hormone itself. However, 

several levels of regulation are involved to ensure proper metamorphic transitions. 

Thus embryos and tadpoles younger than a critical stage (stage 41 for Xenopus) 
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(Tata, 1968) do not respond to exogenous TH. Furthermore, different tissues 

undergo transformations at very different developmental stages. Therefore, like the 

metamorphic process itself, the mechanisms underlying these regulations are 

expected to be very complex. 

At least two factors are critical in the signal transduction by thyroid hormone 

during metamorphosis. These are the levels of the receptors and the concentrations 

of intracellular free TH. As summarised above, the expression of the receptor 

genes and those genes that can influence cellular free TH concentrations are 

regulated in a tissue-specific and developmental stage-dependent manner. 

Assuming that in general the mRNA levels reflect the levels of the corresponding 

proteins, the observed regulation of these genes provides a molecular model for the 

competence of the tadpoles to respond to TH and tissue-specific developmental 

regulation of metamorphosis. Thus, in Xenopus laevis embryos and tadpoles before 

stage 40, neither the TRa nor the TRP, the only known TR genes in all animal 

species, are expressed. This results in a lack of functional TRlRXR heterodimers 

and is probably responsible for the inability of embryos or young tadpoles to 

respond to the exogenous TH. After stage 40, the expression of TRa and RXRa 

genes is up-regulated. This up-regulation results in the formation of TRlRXR 

heterodimers, thus making the tadpoles competent now to respond to exogenous 

TH. 
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Interestingly, the exogenous TH synthesis is not detectable until around stage 54. It 

is unclear why the animal needs to have functional TRlRXR heterodimers before 

the formation of a functional thyroid gland. However, based on the fact that 

unliganded TRlRXR heterodimers can bind to TREs in chromatin and suppress 

basal transcription of the TRE containing the target genes, one possible function of 

the early expression of TR and RXR genes is to repress any potential leaky 

expression of genes that participate in metamorphosis, thus preventing premature 

tissue transformation. In fact, such a possibility has been suggested as an 

explanation for the bimodal expression of the matrix metalloproteinase gene 

stromelysin-3 in Xenopus (Patterton et al., 1995). This gene is known to be 

regulated by TH directly at the trancriptional level (Wang and Brown, 1993; Shi 

and Brown, 1993). It has one period of expression during late embryogenesis and 

another during metamorphosis (Patterton et al., 1995). Its repression after 

embryogenesis coincides with the up-regulation of TRa. and RXRa. expression in 

the absence of TH. 

The regulation of receptor gene expreSSIOn m individual tissues during 

metamorphosis will also probably contribute to the timing of tissue-specific 

metamorphosis. In addition, the tissue-specific regulation of at least two types of 

genes, the CTHBP and 5' -deiodinase genes, could influence the metamorphic 

timing as well. That is, the expression of these genes could lead to tissue-specific 

regulation of the cellular free TH levels, even though all organs/tissues are exposed 
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to the same levels of circulating TH synthesised in the thyroid gland. Thus, the 

combination of the levels of TRlRXR heterodimers and available cellular TH could 

act as a causative factors determining the timing of the transformations of 

individual tissues. 

For example, in the hindlimb at stages 54-56, the xCTHBP and 5'-deiodinase genes 

are repressed. This should allow for the accumulation of relatively high levels of 

cellular free TH (see Table 3). The free TH could in tum interact with the very 

high levels of TRlRXR heterodimers to activate the limb morphogenic process. It 

should be pointed out that even though the plasma TH levels are low around stages 

54-56, about 1-2nM T4 and no detectable T3. the dissociation constant of TR-TH 

complexes is even lower, about O.lnM or less (Weinberger et a/., 1986). 

Table 3. Comparison of the expression of TRlRXR and the levels of the factors affecting cellular 
free TH with organ transfonnation. The up and down arrows indicate that the mRNA levels of the 
corresponding genes change from low to high or from high to low, respectively, during the indicated 
stages. The cellular free TH concentrations are estimated on the basis of the plasma TH 
concentrations and the relative levels ofCTHBP and S'-deiodinase, assuming that the mRNA levels 
reflect the protein levels (modified from Shi el a/., 1996). 

Stages 54-56 58-66 58-66 54-60 62-66 

Plasma TH Low High High Low-High High 

CTlIBPmRNA Low t Low-Moderate High J. 

S·-deiodinasc mRNA Low t Low t J. 

Free cellular TH Moderate Low High Low High 

TRlRXR mRNA Very High Low Moderate-High Low t 

A effect 
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Thus, it is possible to accumulate sufficient levels of cellular TH to bind to 

TRlRXR heterodimers, thus activating the limb morphogenic program. On the 

other hand, in the tail, the xCTHBP gene is expressed at very high levels up to 

approximately stage 62. Consequently, the cellular free TH levels could be 

limiting. Furthermore, when the plasma TH concentrations rises between stages 56 

and 62, the 5-deiodinase expression also increases. This could counteract any 

resulting increase in cellular TH by converting the cellular TH into inactive forms. 

Thus, despite the high levels of plasma TH during this period, the intracellular free 

TH is likely to be very low (see Table 3). This, coupled with the relatively low 

levels of TR and RXR expression, will efficiently suppress tail resorption. After 

stage 60, the TR and RXR genes are up-regulated and the xCTHBP and 5'­

deiodinase genes are down-regulated, thus allowing the activation of the tail 

resorption process. 

Finally, in the intestine, the xCTHBP and 5'-deiodinase have very little expression 

throughout metamorphosis. The controlling factors appear to be the levels of the 

receptors and the plasma TH. While the TRa and RXRa genes are expressed at 

relatively constant levels, the expression of TRP and RXRy genes and the plasma 

TH levels are up regulated between stages 58-66 (Wong and Shi, 1995) (see Table 

3). This period corresponds exactly to the period of intestinal remodelling. Thus, 

the tissue-specific temporal regulation of the receptor genes and intracellular free 

TH concentrations appear to be important molecular factors that help determine the 
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competence of premetamorphic tadpoles to respond to exogenous TH and the 

developmental regulation of tissue-specific metamorphosis. 

While the mechanism of TH action proposed above for metamorphosis is based 

largely on the studies in one frog species, it is likely to be applicable for biological 

functions of other hormones of the nuclear receptor superfamily. However, 

compared to the regulation of amphibian metamorphosis by thyroid hormone, 

considerably less is known about the developmental and organ-specific regulation 

of these other hormones and their receptors. Interestingly, at least two other cases 

exist where the regulation of the levels of the hormones and their receptors appear 

to be important. The first one is insect metamorphosis. Like amphibians, insects 

undergo a larva-to-adult transition in a hormone (ecdysone) controlled process 

(Gilbert and Frieden, 1981). Recent molecular investigations have provided 

evidence that a complex regulation of ecdysone titers and its receptor gene 

expression is required to effect the proper tissue transformations (Thummel, 1995). 

In the second case, the regulation of cellular retinoic acid concentrations by cellular 

retinoic acid binding proteins have been implicated to play a role during limb 

development an birds and mammals (Maden et ai., 1988). This is in part based on 

the fact that over-expression of a cellular retinoic acid binding protein decrease the 

retinoic acid-dependent gene activation in tissue culture cells (Boylan and Gudas, 

1991). In addition, the expression of cellular retinoic acid binding protein gene is 
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regulated in a gradient fashion opposite to that of retinoic acid during limb 

development, suggesting that the function of these proteins may be to sequester 

retinoic acid in regions where it is not required, or required only at low levels 

(Maden et al., 1988; Dolle' et al., 1989). 

1.11. Role of proteinases: Remodelling, :Metastasis, and Apoptosis 

For many years it has been proposed that proteolytic enzymes playa part in tail 

resorption and organ remodelling (Weber, 1969; Gross and Nagai, 1965). 

Collagenase enzymatic activity was demonstrated 30 years ago to be greatly 

increased during tail resorption (Gross and Nagai, 1965). The activation of 

lysosomal enzymes has been implicated as well (Weber, 1969). Four proteolytic 

enzymes have been identified as part of the tail program. Collagenase 3 and 

stromoelysin are members of a family of matrix metalloproteinases, while the third 

enzyme, F APu, is an integral membrane protein that is a member of a family of 

serine proteinases (Ogata and Ikehara, 1989). The expression of stromoelysin 3 has 

also been correlated with remodelling and apoptosis. The invasion of collagen 

basement lamella by mesenchymal cells during tail resorption is reminiscent of 

metastases (Brown et al., 1996). 

The fourth proteinase (encoded by gene D) appears to be the first eukaryotic 

example of a class of proteinases related to a bacterial cytoplasmic peptidase 

(pep E). If pepE is cytoplasmic as its structure suggests, then it resembles the 
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interleukin converting enzyme (ICE) that has been shown to be involved in 

apoptosis and also cleaves aspartate residues. There are no other obvious 

similarities between the two proteins. The prominence of proteinases whose genes 

are up-regulated in the resorption program raises the question of whether the 

digestion of the extracellular matrix by these enzymes is responsible for the death 

of tail cells as well as their resorption (Brown et at., 1996). 

Isolated tails in organ culture (Weber, 1969) and tail cells in primary culture have 

been shown to respond to TH by resorption and growth arrest, respectively, but 

there is also evidence that epidermis is required for tail resorption (Niki et at., 

1982). Therefore, the extent that tail resorption is cell autonomous remains 

question. The large number of delayed genes that encode secreted or membrane­

bound products emphasise the importance of events outside the cell or at its surface 

in the tail resorption program (Brown et at., 1996). 

1.12. Role of Prolactin in metamorphosis 

Prolactin (PRL) is a peptide hormone secreted by the pituitary gland (White and 

Nicoll 1981). Exogenously administered PRL has been known to block T3-induced 

metamorphosis in many species of amphibia in whole tadpoles; as well as in tail 

explants in culture (White and Nicoll, 1981; Ray and Dent, 1986). Its action can 

be compared with the anti metamorphic action of juvenile hormone in preventing 

ecdysteroid-dcpendent metamorphosis in insects (Gilbert and Frieden, 1981). 
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The addition of PRL to the T3-induced, cultured Xenopus tadpole tails blocked tail 

regressIOn. The regression of the cultured tails can be monitored simply by 

measuring the reduction in tail length. That this parameter is a good index of cell 

loss is shown by the parallel loss of DNA. Recently, widespread distribution of 

apoptotic cells has also been observed as judged by nuclear condensation and 

fragmentation, in Xenopus tadpole tails following T3 treatment. How PRL acts to 

inhibit T 3-induced metamorphosis is not known. Only recently has the PRL 

receptor been characterised and it appears that the action of the receptor-ligand 

complex is transmitted intracellularly via the activation of JAK2 or src family of 

tyrosine kinases. As a consequence, the action of PRL would follow the classical 

pathway of signal transduction leading to the phosphorylation-dephosphorylation of 

key regulatory proteins, including transcription factors. 

The interaction between PRL and T3 can be considered as an example of cross talk 

between hormonal signals. It has recently been shown that the Xenopus TR~ gene 

promoter contains thyroid hormone responsive elements whose activities can be 

regulated by Jiganded TR (Ranjan et aI., 1994; Machuca et aI., 1995). Meanwhile, 

this hormone is a useful tool, for experimentally exploring the various facets of 

programmed cell death (peD) in a dual hormonally regulated system. 

In addition, PRL would affect the autoinduction of Xenopus thyroid hormone 

receptors (xTR) while inhibiting the action of T 3 in whole Xenopus tadpoles and in 
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organ cultures of tails and limb buds (Tata et a/., 1991; Baker and Tata, 1992; 

Tata 1993; Rabelo et a/., 1994). There was a clear correlation between the 

prevention of T3-induced metamorphic process by PRL with the inhibition of 

auto induction of TRa and fJ mRNA, as judged by biochemical analysis and in situ 

hybridisation (see Table 4) 

Table 4. Relative accumulation ofTRa and 13 in early stages of Xenopus 
tadpoles following treatment with T3 and prolactin (from Tata, 1996). 

It should be noted that PRL alone did not significantly affect the basal level of TR 

transcripts but that it prevented their up-regulation by T3. This inhibition of TR 

auto induction, coupled to loss of metamorphic response to TH, indirectly suggests 

that TR autoinduction is an essential requirement for the hormonal initiation and 

maintenance of amphibian metamorphosis (Tata, 1996) 

1.13. Wider implications of thyroid hormonal regulation of amphibian 

metamorphosis 

The interplay between thyroid hormone and PRL is relevant to the question of 

cross-talk, between signals acting via receptors located in the plasma membrane 

with those in the nucleus. There is now increasing evidence that such signal 

transduction processes, such as protein phosphorylation, Ca2
+ and IP3 signalling G 
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protein-linked functions and jUnlfos oncogene complexes modulate nuclear 

receptor function. Many recent investigations particularly highlight the modulation 

by peptide hormones and growth factors of phosphorylation of nuclear receptors, a 

process considered important for their nuclear transport, dimerisation and ligand 

binding. It is interesting to note that Xenopus TR~ promoter has several SP 1 sites 

that are involved in regulation via the fosljun pathway. There is also increasing 

evidence showing cross-regulation of nuclear receptors by their respective ligands 

Tata, 1994). An important consequence of interactions among nuclear receptors 

and between them and extranuclear factors whose activities are controlled by 

extracellular signals, would be to provide a combinatorial mechanism for hormone­

specific positive and negative modulation of different gene that would not 

otherwise be effected via individual receptors. As cross-talk systems are better 

defined at the molecular level, it will become increasingly clear that complex 

intracellular networks of hormonal and non-hormonal signals facilitate a well-co­

ordinated and homeostatically controlled regulation of growth and development 

(Tata, 1996). 

How widely does the phenomenon of autoinduction of receptor occur? A survey of 

literature (Tata et a/., 1993; Tata, 1994) indicates its widespread manifestation 

during development regulated by ligands of various nuclear receptors (see Table 5). 

Besides the example of autoinduction of TR during metamorphosis, the up­

regulation of the oestrogen receptor by its own ligand during amphibian 
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vitellogenesis has also been well documented (Perlman et al., 1984). In embryonic 

mouse tissues, retinoic acid up-regulates all three isoforms of the retinoic acid 

receptor. More relevant to metamorphosis is the finding that ecdysteroid up-

regulates the expression of its own receptor transcripts in Drosophila cells. The 

phenomenon of autoinduction of nuclear hormone, therefore, now appear to be a 

general feature of hormone-dependent postembryonic growth and development 

(Tata, 1996). 

Table 5. Some examples of auto induction of nuclear receptors 
by developmental signals (from Tata, \996) 

Thyroid hormone TRa and ~ Xenopus Metamorphosis 

Ecdysone EcR (E7S) Drosophila Metamorphosis 

Retinoic acid RAR~ Mouse Morphogenesis 

Oestrogen ER Xenopus Vitellogenesis 

Androgen AR Rat Morphogenesis 

1.14. Mechanisms of hormone action 

Because they travel in the blood, hormones are able to reach virtually all tissues. 

Yet the body's response to a hormone is not all-inclusive but highly specific, 

involving only the target cells for that hormone. The ability to respond depends 

upon the presence on (or in) the target cells of specific receptors for those 

hormones. 
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The response of a target cell to a chemical messenger is only the final event in a 

sequence that begins when the messenger binds to specific receptors on the cell. 

Where in the target cells are the hormone receptors located? The receptors for 

steroid hormones and the thyroid hormones are proteins inside the target cells. 

Because these hormones are lipid-soluble, they readily cross the plasma membrane 

and combine with their specific receptors. In contrast, the receptors for the peptide 

hormones and catecholamines are proteins located on the plasma membranes of the 

target cells. However, many peptide hormones do in fact gain entry to the interior 

of cells by endocytosis of the plasma membrane hormone-receptor complex. It is 

likely that most of the hormone molecules internalised in this way simply undergo 

catabolism, but it is also possible that either they or the peptide fragments resulting 

from their catabolism exert additional effects upon the target cell. 

Hormones can alter not only their own receptors but the receptors for other 

hormones as well. If one hormone induces a loss of a second hormone's receptors, 

the result will be a reduction of the second hormone's effectiveness. On the other . 

hand, a hormone may induce an increase in the number of receptors for a second 

hormone. In this case the effectiveness of the second hormone is increased. This 

last phenomenon underlies the important hormone-hormone interaction known as 

permissiveness. 

45 



In general tenns, pennissiveness means that honnone A must be present for the full 

exertion of honnone B's effect. A low concentration of honnone A is usually all 

that is needed for this pennissive effect, which is due to A's positive effect on B's 

receptors. For example, epinephrine cause marked release of fatty acids from 

adipose tissue, but only in the presence of pennissive amounts of thyroid honnone, 

because thyroid honnone facilitates the synthesis of receptors for epinephrine in 

adipose tissue. 

The ability of one honnone to influence the receptors of a second honnone also 

underlies certain situations in which a response requires actions of honnones in a 

sequence. For instance, ovulation requires the action of two different honnones 

secreted by the anterior pituitary; the first honnone paves the way for the second 

honnone by increasing the number of the latter's receptors in the relevant ovarian 

cells. 

The common feature of the effects of steroid and thyroid honnones is an increased 

synthesis of specific proteins, enzymes, structural proteins and so on by their target 

cells. These honnones increase protein synthesis by stimulating the production of 

mRNA via the following sequence of events. First, a steroid or thyroid honnone 

enters a target cell and binds to specific receptors for it (Figure 6). The receptors 

for these honnones are synthesised in the cytoplasm but transported into the 

nucleus. In most cases, the honnone enters the nucleus and combines with the 
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receptor already there. However, in other cases, for example, cortisol, the hormone 

combines with the receptor still in the cytoplasm, and the entire complex is 

transported into the nucleus. In all cases, the receptor, activated by its binding of 

the hormone, interacts with segments of DNA specific for it to trigger transcription 

of those segments. That is, the activated receptor stimulates the synthesis of 

mRNA, which then enters the cytoplasm and serves as a template for synthesis of a 

specific proteins (Vander et al., 1990). 
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FIG 6. Mechanisms of honnone action: Steroid and thyroid 
honnones enter the target cell and bind to their specific receptors, 
usually in the nucleus. The honnone-receptor complex is then 
transported into the nucleus. The activated receptor interacts with 
specific segments of DNA and stimulates transcription of new 
mRNA, which directs the synthesis of the proteins that mediate the 
cell's response. For generality, accessory proteins that associate 
with the nuclear receptors have been omitted. 
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1.15. Programmed cell death: an important feature of amphibian 

metamorphosis 

Upon the onset of natural or induced metamorphosis, the amphibian tadpole shows 

rapid and substantial loss of cell numbers in many tissues until metamorphosis is 

completed. The substantial loss of mass and cell number is not restricted to tissues 

that undergo total regression, such as the tail and gills, but there is also extensive 

cell death in tissues that are restructured, such as the intestine, pancreas, skin and 

the central nervous system. With the establishment of the technique of TH-induced 

regression of isolated tadpole tails, it was possible to show that T3 simultaneously 

augmented the amount of several lytic enzymes and the protein and RNA 

synthesising activity of Xenopus tadpole tails in organ culture. Several laboratories 

observed that actinomycin D, puromycin and cycloheximide prevent T3 from 

inducing cultured Xenopus tails to regress (Tata, 1994). Actinomycin D produced a 

paradoxical situation in that an agent that would normally provoke cell death 

protected the tadpole tail programmed for total regression against the signal 

initiating cell loss. This phenomenon of the requirement of an active process of 

new RNA and protein synthesis to induce programmed cell death was also 

demonstrated in other postembryonic developmental systems (Saunders, 1966; 

Bowen and Lockshin, 1981; Tomei and Cope, 1991). 

More recently, by exploiting the technique of subtractive hybridisation, it has been 

possible to demonstrate that T3 rapidly and selectively activates or represses certain 
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genes in the Xenopus tadpole tail, although the nature of their products remains to 

be determined (Shi and Brown, 1993; Wang and Brown, 1993). However, the 

cloning of several cell death and anti-cell death genes, the identification of their 

products and their high degree of evolutionary conservation (Ellis et al., 1991; 

Tomei and Cope, 1991; Dexter et al., 1994) now offer possible candidates for 

"early" proteins involved in programmed cell death during metamorphosis. In a 

recent study, when the Xenopus homologue of mammalian bC/-2-like gene was 

cloned, its expression was found to be neither developmentally nor hormonally 

regulated before and during Xenopus metamorphosis (Cruz-Reyes and Tata, 1995). 

It should be pointed out that bC/-2-like genes are considered to be involved in cell 

survival or anti-cell death function (Ellis et ai., 1991; Dexter et ai., 1994). 
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1.16. Apoptosis 

Amphibian metamorphosis is an ideal model for studying vertebrate postembryonic 

development (Tata, 1993). Among its several advantages are the following: (i) 

Many of the biochemical changes are similar to those seen during the acquisition of 

the adult phenotype at late embryonic or foetal stages of development in mammals, 

e.g., genetic switches in liver proteins and haemoglobin, skin keratinisation, and 

visual pigmentation. (ii) The process is under obligatory hormonal control. (iii) 

The same hormonal signal activates different cell-type-specific genetic programmes 

in different tissues. (iv) Metamorphic changes can be reproduced in culture. (v) 

Metamorphosis is an excellent model for studying the molecular mechanisms 

underlying programmed cell death (peD) and apoptosis. 

Apoptosis or programmed cell death (PCD) (Duvall and Wyllie, 1986) is a 

fundamental feature of development by which unwanted cells are eliminated from 

tissues during embryogenesis e.g. the disappearance of the interdigital cells during 

the formation of the digits from the solid limb paddle and in metamorphosis during 

the resorption of the tadpole tail. Similar phenomena are observed in the immune 

system during the negative selection of auto-reactive T-cell clones (Shi et al., 1989; 

MacDonald and Lees, 1990) and attack by cytolytic T cells. 

Recent reports also demonstrated that mature CD4+ T cells undergo apoptosis 

during an immune response in vivo (Kawabe and Ochi, 1991), and following 
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simultaneous stimulation by antibodies of both CD4+ and the T-cell receptor 

(Newell et a/., 1990). 

1.16.1 Cell Morphology 

The cellular changes in apoptosis are numerous, but it is still not clear which of 

them are directly associated with death, and which are of greatest physiological 

importance. The plasma membrane in apoptosis becomes ruffled and blebbed, in a 

way more pronounced than is seen in necrosis. The cell may break up into 

apoptotic bodies, but these are sealed and maintain their osmotic gradients. There 

is no spilling of intracellular contents, and no provocation of inflammation. It is 

possible that the apoptotic cell strengthens its membranes against the risk of lysis 

by the activation of cross-linked enzymes such as trans glutaminase (F esus, 1991). 

The cell undergoing apoptosis shrinks remarkably, and shows an extremely 

condensed cytoplasm with normal appearing organelles (Wyllie, 1981). 

Biochemically, the cell quickly decreases its synthesis of RNA and proteins and 

degrades them (Cidlowski, 1982). The nucleus is the locus of much of the drama 

in apoptosis. In general the nucleus shrinks and its chromatin becomes very dense, 

collapsing into patches, then into crescents in tight apposition to the nuclear 

envelope, and finally (in many cells) into one or several spheres. This change is 

often accompanied by fragmentation of the DNA into a ladder of regular subunits, 
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the result of apparently random double stranded breaks In the linker regions 

between nucleosomal cores (Yuan and Horvitz, 1990). 

1.16.2. Functions of apoptosis 

Programmed cell death (PCD) serves many required functions during normal 

animal development (Bowen and Lockshin 1981). In many tissues, more cells are 

produced than are ultimately required by the organism, and the excess cells 

subsequently die by means of PCD. In some cases, the over-production of cells 

provide the organism with valuable developmental plasticity. For example, more 

spinal motor neurons are produced in the chicken embryo than are required to 

innervate potential targets. This excess ensures that adequate innervation is always 

available, independent of the size of the muscle encountered. In other situations, 

cells are removed because they present a threat to the developing organism. The 

best characterised example of this phenomenon is the death of immature T cells in 

the mouse thymus (Jenkinson et at., 1989). The T-cell receptor on many immature 

T cells can recognise self-antigens present within the mouse. Should these cells be 

allowed to survive and proliferate, an auto-immune disorder could ensue. The 

immune system avoids this potentially lethal situation by removing self-reactive T 

cells by a process known as negative selection (MacDonald and Lees, 1990; 

Kappler et at., 1987). Experimentally, the synchronised death of entire populations 

of immature T -cells can be induced with glucocorticoids (Wyllie, 1980). Much of 
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the data obtained during the study of apoptosis has been acquired with T -cells 

treated with the synthetic glucocorticoid dexamethasone. 

A second developmental strategy is to produce cells that differentiate and assume 

some required, but transient, function and are then removed when the life style of 

the organism changes. One well-characterised example is the death of the inter­

segmental muscles (ISM) during metamorphosis in moths. These embryonically 

derived muscles are used for various locomotory and defensive behaviours in the 

larva and pupa and in the eclosion (emergence) behaviour of the adult. The ISMs 

are not required for adult-specific behaviours and die during the 30hrs after 

eclosion. The trigger for this peD is a fall in the steroid molting hormone 20-

hydroxyecdysone late on the day preceding eclosion (Schwartz et al., 1993) . 

1.16.3. Pathways of apoptosis 

The programmed deaths of both mouse T cells and moth intersegmental muscles 

(ISMs) share two fundamental features. Both are initiated by specific physiological 

signals and both require de novo gene expression. However, once the cells begin to 

die, they do so in seemingly different ways. The T cells die by apoptosis, which is 

characterised by membrane blebbing, chromatin margination and the breakdown of 

chromosomal DNA into a ladder of regular subunits, the result of apparently 

random double stranded breaks in the linker regions between nucleosomal cores. 

None of these features are seen in the ISMs. Instead, these cells exhibit membrane 

S4 



wrinkling, nuclear pyknosis, and the retention of high-MW, genomic DNA 

(Shwartz et ai, 1993). 

Two possible explanations for these results are (i) apoptosis includes a variety of 

different steps, and the T cells and ISMs represent different ends of this spectrum. 

(ii) the ISMs do not undergo apoptosis but, rather, die by a different molecular 

mechanism. Were the ISMs dying by a nonapoptotic cell death program, they 

might not be the only cells to do so. Data from literature suggests that a number of 

other cells die in a manner inconsistent with apoptosis. In addition to the ISMs, 

there are reports of several other dying cells that fail to generate chromosomal 

DNA ladders during the death process. These cells include glucocorticoid-treated 

hippocampal neurons, nerve growth factor-deprived neuronal PC-I2 cells, trophic 

factor-deprived oligodendrocytes and metamorphosing insect salivary glands. 

There are some cases where cells might undergo apoptosis, but DNA fragments 

cannot be detected. The situation can arise when dying cells represent only a small 

percentage of total tissue mass. In such instances, an examination of the nuclear 

ultrastructure can facilitate characterisation of the cell death mechanism. As 

described above, DNA degradation correlates with the dispersion of chromatin 

along the nuclear envelop (Arends et al., 1990). Many dying neurons display an 

apoptotic morphology, which has been referred to as type I degeneration by 

neuroanatomists (Clarke, 1990). However, other studies have documented that 
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certain dying neurons do not exhibit chromatin margination and possess a nuclear 

morphology comparable to that seen in ISMs. This pattern has been referred to as 

type II degeneration or autophagy (Clarke, 1990). Further evidence that type I and 

II degenerations do, in fact, reflect distinct cell death programs is provided on 

studies of the ciliary ganglion. During nonnal PCD, these cells undergo type II 

(nonapoptotic) cell death, whereas denervation-induced death proceeds via type I 

(apoptotic) cell death. Therefore, the same cell can apparently activate two distinct 

cell death programs, depending on the triggering stimulus (Shwartz et ai., 1993). 

The pathways to activation of apoptosis will be different in different cells, but the 

mechanism of death itself may always be the same, that is a final common pathway 

(Cohen, 1993). 

In examining the data in the literature, apoptosis appears to be rare in invertebrates. 

In fact, the only demonstration of invertebrate cells generating DNA ladders are 

lepidopteran tissue culture cells infected with a specific baculovirus (Chern et ai., 

1991). 

The rapid breakdown of DNA seen in apoptosis ensures that even though a targeted 

cell does not immediately die, it is mitotically incapacitated. This feature would be 

invaluable for ensuring the efficient removal of dangerous mitotic cells, such as 

self-reactive T cells. In contrast, many other targeted cells appear to be postmitotic, 

and their inappropriate retention is relatively benign. Evidence for this comes from 
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nematodes, where mutations in the ced (cell death) genes can block the death of all 

the cells normally fated to die (Ellis et at., 1991; Ellis et at., 1986). Animals with 

these ced mutations are viable and appear to behave almost normally, despite a 

substantial increase in the number of neurons. 

1.16.4. Genetic regulation of apoptosis 

In several well-studied models of apoptosis, there is a requirement for new gene 

expression for both the morphological changes and death itself to occur (Cohen, 

1991). Individual genes have been associated with apoptosis in two ways: either 

they are expressed in cells undergoing apoptosis, or their modulation affects the 

process. Fas for instance, is a gene whose product is a membrane-spanning protein 

homologous to tumor necrosis factor and nerve growth factor receptors (!toh et at., 

1991; Oehm et at., 1992). In a cell which expresses Fas, either naturally or by 

transfection, cross-linking by antibody to Fas induces apoptosis. Fas is identical 

to the human cell surface molecule identified as APO-I. Mice bearing the tpr 

mutation are defective in Fas (Watanabe et at., 1992), and it is possible that their 

lymphoproliferation is more correctly lymphoaccumulation because cells die less 

readily than do their normal counterparts. The FasIAPO-I system provides an 

exciting model to study not only normal tissue turnover, but also the possibility of 

activating apoptosis as a therapeutic modality in many conditions including 

malignancies. 
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There are some genes whose expression increases in apoptotic cells, although their 

role in the process, if any, has yet to be determined. TRPM-2, whose protein 

product is known by many names including clusterin and SGP-2, is expressed in a 

number of tissues-primarily of the urogenital tract-during apoptosis (Buttyan et al., 

1989). It is not seen in tissues undergoing morphogenetic death in the embryo 

(Garden et al., 1991). This gene product may playa role in secretion and lipid 

transport, and could be involved in the response to damage. RP-2 and RP-8 are two 

of a family of genes whose messages increase in abundance after the induction of 

apoptosis in thymocytes (Owens et al., 1991). 

One of the most important advances in understanding of the regulation of apoptotic 

cell death in vertebrates has come from studies of the oncogene Bcl-2. Bcl-2 

oncogene is unique among cellular genes in its ability to block apoptotic deaths in 

multiple contexts. Over-expression of Bcl-2 in transgenic models leads to 

accumulation of cells due to evasion of normal cell death mechanisms (McDonnell 

et al., 1989). Induction of apoptosis by diverse stimuli such as radiation, 

hyperthermia, growth factor withdrawal, glucocorticoids, and multiple classes of 

chemotherapeutic agents is inhibited by Bcl-2 in in vitro models (Vaux et al., 

1988; Hockenbery et al., 1990). In addition, the endogenous pattern of Bcl-2 

expression is highly suggestive of a role in the regulation of cell survival in vivo 

(Hockenbery et al., 1991). 
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Despite the identification of genes necessary for cell death and the ability to 

regulate apoptosis by known genes, the essential biochemical events in apoptotic 

cell death remain largely unknown (Hockenbery et al., 1993). The data presented 

support the hypothesis that more than one pathway for mediating PCD may exist. 

Clearly apoptosis has been well characterised and shown to be a major mediator of 

PCD (Shwartz et al., 1993). 

Due to the significance of programmed cell death and the genes that associate with 

this phenomenon, I was keen to use the differential display technique in an attempt 

to identify and then characterise early genes that are TH-induced and considered 

important for initiating cell death in Xenopus laevis tadpole tails. The analysis of 

changes in gene expression associated with apoptosis is an important one. Until 

recently, there were only two alternative approaches. Firstly, subtractive 

hybridisation (Zimmerman et al., 1980) or differential hybridisation (St. John and 

Davis, 1979) used to identify genes which expressed in only one cell type of 

respective pairs of cells. These are mainly qualitative methods which do not allow 

quantitative measurements. In addition these methods are time consuming and not 

always satisfactory. Secondly nuclear run-on transcription is applied to analyse 

changes in the level of expression (Strauss et al., 1990). However, this method can 

only be applied to the detection of changes in the expression of known genes. 

Thus, it would be important to have a method which detects all mRNA species 

expressed in a particular cell. By comparing the patterns of expressed mRNA from 
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two cell types one should b,e able to detect both qualitative and quantitative 

changes. This kind of method would allow not only to identify new genes but also 

the diagnosis of any changes in gene expression involved in a particular cellular 

process. 

1.17. Comparison of Differential screening, Subtractive hybridisation and 

Differential display 

1.17.1. Differential screening 

The most commonly used technique to identify organ-specific messenger RNAs is 

the differential screening of cDNA libraries with cDNA probes of poly (At RNA 

from different tissues. Each tissue or environmental condition for which 

specifically expressed genes ~ave to be isolated, requires the construction of an 

independent cDNA library. This particular problem can be circumvented by direct 

differential screening of a genomic library as has been shown for Drosophila and 

yeast (St. John and Davis, 1979; Kramer and Andersen, 1980). 

To identify genes expressed in specific tissues, cDNA probes of different poly (At 

RNA preparations are used for hybridisation to the genomic sub-library. The 

intensity of the hybridisation signal reflects approximately the homologous mRNA 

in poly (A)+ RNA used for cDNA probe synthesis. 
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The differential hybridisation of a genomic library is a useful and efficient approach 

to isolate genes expressed in specific tissues and under controlled conditions. The 

procedure has the advantage of avoiding the construction of independent cDNA 

libraries for each tissue or environmental condition for which specifically expressed 

genes are to be isolated. It is only applicable to the isolation of genes encoding 

abundant and moderately abundant mRNA. The remaining 95% of all structural 

genes are expressed too weakly to give reproducible signal. 

1.17.2. Subtractive Hybridisation 

Differential screening is applicable In many biological situations where it is 

desirable to isolate cDNAs derived from mRNAs that are induced by a particular 

treatment. In order to increase the efficiency of the procedure, it is beneficial to be 

able to create a cDNA library that is enriched in the desired sequences. This can be 

achieved by subtractive hybridisation, the essense of which is to remove those 

cDNA sequences that are ubiquitous or not induced. 

Two early uses of subtractive library technology were the identification of genes 

that are activated at the gastrulation of Xenopus laevis (Sargent and Dawid, 1983) 

and cloning of the T-cell receptor (Hedrick et al., 1984). Since those original 

studies, there have been many applications and modifications of subtractive library 

methodology, more recently incorporating peR technology (Duguid et al., 1988; 

Wieland e/ al., 1990). 
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An example of this technique is the isolation of up-and down-regulated cDNA 

fragments induced by thyroid hormone during Xenopus laevis metamorphosis 

(Brown and Wang, 1991). Poly (At RNA was extracted from thyroid hormone 

treated (+) and untreated (-) stage 54 tadpoles. Oligo (dT) was used to prime the 

first strand of cDNA synthesis of poly (At RNA. Double-stranded cDNAs 

prepared from the two mRNA populations that are to be compared were cleaved 

with two four-base-pair-recognition restriction enzymes, and these cDNA 

fragments were ligated to linkers for PCR amplification. The amplified - and + 

cDNA fragments were the starting material for subtractive hybridisation. 

The PCR-amplified cDNA was digested with restriction enzyme EcoRl to cleave 

the linker so that residual driver DNA could not be amplified later. The driver 

DNA was mixed with photoprobe biotin. The photobiotinylation reaction was 

repeated once to increase the density of biotin molecules so that the biotinylated 

driver DNA (BD) could be removed more efficiently. 

Biotinylated driver and nonbiotinylated tracer DNAs were mixed. The DNA 

mixture was mixed with hybridisation buffer and boiled to ensure complete 

denaturation. The denatured cDNA samples were incubated in water bath for long 

hybridisation (LH). Streptavidin was mixed with the hybridised eDNA solution to 

form complexes with biotinylated DNA, and protein and protein-DNA complexes 

were removed by extraction with an equal volume ofCHCi) / phenol (1:1, voVvol). 

62 



The streptavidin binding and CHCh / phenol extraction steps were repeated until 

there was no visible protein-DNA complex at the interface between the organic 

phase and aqueous phases. Usually it took four or five repeated extractions with 

streptavidin to remove >99% of the biotinylated DNA. The subtracted tracer 

cDNA (+lcDNA or -lcDNA) was mixed with biotinylated EcoRI-treated driver 

DNA as before. This was resuspended in hybridisation buffer and incubated for 

short hybridisation (SH). Biotinylated DNA was removed as before, and the 

enriched tracer DNA was ethanol precipitated. The DNA (+2 cDNA or - cDNA) 

was amplified by PCR as before.. The PCR product of 2 cDNA was purified and 

treated with EcoRI and biotinylated for use as a driver for the next cycle subtractive 

enrichment. Long hybridisation used biotinylated 2 cDNA driver and 

nonbiotinylated 2 cDNA tracer. This was followed by a short hybridisation with 

1 eDNA driver, producing 4 cDNA. 

An essential aspect of this subtractive enrichment procedure is the use of both long 

and short subtractive hybridisation steps to remove common DNA fragments. 

Long hybridisation is needed to suppress the highly complex rare common cDNAs 

that comprise 50-60% of the total cDNA mixture. However, long hybridisation 

does not efficiently reduce the abundant common cDNAs and can actually suppress 

some differentially expressed cDNAs that have a baseline level in the driver cDNA. 

Thus, the short hybridisation is used to suppress the abundant common mRNAs. 

Up-regulated genes suppressed greatly in + 1 cDNA, making these cDNAs better 
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drivers than the initial PeR-amplified cDNAs for short-term hybridisation steps. 

The enriched + cDNA hybridises only with itself and not detectably with enriched 

- cDNA vice versa. Further enrichment can be accomplished by driving out the 

most abundant enriched cDNA fragments, yielding 7 and 8 cDNA (see Figure 7). 
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FIG.7. Flow diagram for isolation of up-regulated genes. A plus sign (+) refers to the mRNA 
isolated from tadpole tails treated with thyroid hormone (3,3',5-triiodo-L-thyronine, T3) for 24 hr, 
as well as the cDNAs derived from this + mRNA; - refers to mRNA and cDNAs from untreated 
tadpoles, LH, long hybridisation; SH. short hybridisation; BD, biotinylated driver DNA (from Wang 
and Brown, 1991). 
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After three cycles of subtractive enrichment, + and - enriched cDNA fragments 

were amplified with peR. The amplified cDNA was purified, and small portion of 

this purified product was subjected to an additional cycle of peR amplification to 

ensure that all cDNA fragments were double-stranded. The products were cleaved 

with EcoRi and ligated to dephosphorylated pBluscript vector for transformation 

into competent E.coli DH5 cells. The clone fragments were then mapped to a high 

molecular weight cDNA library to find multiple fragments that are derived from the 

samemRNA. 

This method finds differences between two samples of mRNA. Large genetic 

deltions can be isolated by gene amplification following subtractive hybridisation 

simply by driving mutant against control genomic DNA (Wieland et al., 1990). 

Repeated rounds of enrichment and amplification of the remaining tracer genomic 

DNA, in principle could isolate ultimately a single-copy gene that was missing in 

the driver genomic DNA. A deleted 0.5kb genomic DNA fragment, within the size 

range that is amplified efficiently by peR, would be enriched 12,OOO-fold to 

comprise 0.2% of total DNA and, therefore, be detected by this method. The 

highest enrichment in these experiments was about 2000-fold, so one or more 

additional rounds of subtractive hybridisation would be required. This method also 

identify a single gene responsible for a disease where the amount of mRNA 

accumulates in the abnormal cells differs from that in control cells. It should aid in 

the identification of multiple genes involved in a complex genetic disease where 
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the expression of more than one gene is altered. A gene expression screen can 

identify differentially expressed genes related to developmental, physiological, or 

pharmacological events in any organism. 

The gene expression screen will not isolate all of the genes in the program. It will 

not identify genes that are critical to the program whose mRNA abundance is 

unaltered by TH. The screen will miss regulated genes whose cDNAs are not 

fragmented to the size range 200-800 bp by the two restriction enzymes used to 

cleave the cDNA. peR does not preferentially amplify DNA by size in the range 

of 200-800 bp. About 15% of published X.laevis mRNAs lack the recognition sites 

for the two restriction enzymes. Any mRNA that has no poly (A) tail will be lost 

because oligo dT was used to prime cDNA synthesis. 

A method recently published by (Liang and Pardee, 1992) which was used in our 

experiments is based on the assumption that every cell expresses some 15,000 

genes and, in principle, every individual mRNA molecule can be reverse 

transcribed and amplified by t~e polymerase chain reaction (peR). The idea was to 

use a set of arbitrary primers for peR amplification of cDNA generated by reverse 

transcription from mRNA. This technique can be used for the following purposes: 

1. To visualise mRNA composition of cells by displaying subsets of mRNAs as 

short cDNA bands; samples "run in parallel reveal differences in their mRNA 
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patterns. A comparison will be made between normal and regressing tails in order 

to estimate populations of mRNAs that differ among them. 

2. These cDNAs can be eluted from the gel, amplified further in a second PCR, for 

cloning and sequencing: thereby a tag for each mRNA can readily be obtained and 

compared with sequences in data banks. 

3. Individual clones can be used as probes for northern or southern (DNA) blots 

and to isolate longer sequences either from cDNA or genomic libraries. This step 

may be necessary and important because the PCR display technique tends to 

produce sequences derived from 3' untranslated region of mRNA. These 3' 

untranslated sequences are typically AlT rich, and will not often be useful in data 

base searching especially because the untranslated regions are poorly conserved 

among species. The potential of this technique is to identify differentially 

expressed mRNAs and to clone their genes. 

4. Homology mayor may not be found in data banks. If however, recognition 

resulted in known genes in Xenopus OR Mammals (or more widely, in other 

organisms), then something about their function may be known. However, if a new 

cDNA is found then its function will not be apparent from the data banks. 

68 



1.17.3. Differential display reverse transcriptase PCR (DDRT.PCR) 

A method recently described by (Liang and Pardee, 1992) termed DDRT-PCR was 

developed as a tool to detect and characterise altered gene expression in eukaryotic 

cells. Selection of 3' primers takes advantage of the polyadenylate poly A + tail 

present on most eukaryotic mRNAs. The basic principle is to systematically 

amplify messenger RNAs and then distribute their 3'termini on a denaturing 

polyacrylamide gel. The essence of differential display method is to use for reverse 

transcription an anchored oligo-dT primer which anneals to the begining of a 

subpopulation of the poly A + tails of mRNAs. The anchor oligo-dT primers consist 

of Ilor 12Ts plus two additional 3'bases which provide specificity, and have the 

general formula 5'-T"MN-3' where M may be dG, dA, or dC and N may be one of 

the four deoxynucleaotides G,A,C,or T. These are used in conjunction with a 

decamer oligonucleotide of arbitrary defined sequence for the subsequent PCR 

amplification. For example a primer such as 5'-T IICA would allow anchored 

annealing to mRNAs containing TG located just upstream of their poly A + tails. 

This primer will recognise one-twelfth of the total mRNA population because there 

are 12 different combinations of the last 3 bases, omitting T as the ultimate base. 

The primer permits initiation of reverse transcription of only this subpopulation. 

Following reverse transcription the PCR reactions are performed using the cDNA 

and the corresponding 3' primer in the presence of an arbitrary 10 mer 5'primer. 

These reactions are carried out in the presence of [a35S]-dATP and as a result 

amplified eDNA fragments of 3' termini of mRNAs can thus be separated by size 
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on a denaturing polyacrylamide gel. Samples of RNA from different origins with 

different treatments can be put through this system and analysed side by side on 

the resultant gel. This allows qualitative and quantitative changes in expression 

pattern between the two samples to be identified. The differentially expressed 

bands identified by this system can then be isolated from the gel, reamplified and 

cloned. 

Differential display has several technical advantages as compared to subtractive 

and differential hybridisations. It is much quicker, 2 months are required to isolate. 

clones from cells by subtractive hybridisation, which includes mRNA isolations, 

cDNA library construction, subtraction, and screening by differential hybridisation. 

With differential display the patterns are obtained in 2 days and clones in 5 days. 

In addition, unlike subtractive hybridisation, differential display allows 

simultaneous detection s of both groups of differentially expressed genes (for 

example, candidate tumour suppresser genes and oncogenes). Most genes by 

statistics should be present in the patterns as single bands. Therefore, redundancy, 

underrepresentation of rare mRNAs, and false positive clones are minimised. In 

terms of sensitivity, because the method describe here is PeR-based, only IJlg of 

mRNA is required per 100 lanes, compared to 50 times as much or more for 

subtractive hybridisation. A direct comparison of the number of cDNA bands 

amplified by a given set of primers with either a cDNA library or mRNA of the 

same cell type indicates that the new method is much more sensitive. This suggests 
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possible underrepresentations of many genes during cDNA library constructions. 

Reproducibility from run to run of the method in displaying mRNA patterns with 

the same RNA sample is high (> 95% bands are always seen) in comparison with 

the great variations in the kinds and numbers of genes islated by subtractive 

hybridisation. The advantage of subtractive hybridisation is its enrichment and 

focus on only differentially expressed genes. Because of its simplicity based based 

on PCR and a DNA sequencing gel, two of the most widely used molecular 

biological techniques, the differential display should find wide and rapid 

applications in studying cancer, heart disease, cell differentiation, and aging, among 

others. These results demonstrate the potential of this technique to identify 

differentially expressed mRNAs and so to clone their genes. It should make 

possible the detection of the most mRNAs in a cell by use of multiple primer sets. 

The procedure has several limitations: (a) Because the DNA fragments are 

separated on a DNA sequencing gel, the procedure is limited to fragments less than 

600 bp. (b) The initially isolated PCR products have to be re-amplified once or 

twice, in order to generate adequate amounts for Northern blot assay, cloning, 

sequencing, etc. (c) The number of false positives obtained from differential 

display gels caused by co-migrating bands has been found to be a contributing 

factor to the validity of the technique. 
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1.18. Aims of the project 

Application of the exogenous thyroid honnone (TH) exerts dramatic effects on 

amphibian metamorphosis. The diverse responses such as tail resorption, limb 

growth and differentiation and intestinal remodelling are mediated by TH.­

regulated genes during amphibian metamorphosis. Each organ or tissue has been 

programmed (detennined) to respond to the honnone in its own specificity with the 

TH-initiating the expression of each programme. We have chosen tail resorption as 

the simplest of these programmes because there is no concomitant growth and 

differentiation, merely death and resorption. These effects are of great interest in 

the study of developmental processes. 

The project aims to isolate and characterise genes regulated by thyroid hormone in 

Xenopus laevis. The technique of differential display DDRT-PCR will be applied 

to RNA isolated from TH-treated and untreated Xenopus laevis tadpole tails, 

allowing genes differentially expressed as a result of the TH-treatment to be 

isolated. 

Characterisation of clones isolated in this way will involve sequence analysis, 

identification of temporal and spatial expression patterns during embryogenesis by 

RT-PCR and in situ hybridisation and functional analysis including microinjection 

to identify any influences on developmental processes. 
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CHAPTER 2 
Materials 

2.1. General reagents and Suppliers 

Enzymes were obtained from the following suppliers: 

Restriction endonucleases, E.coli DNA polymerase 1, T4 DNA ligase, T4 

polynucleotide kinase, T7 and SP6 RNA polymerases, DNA polymerase Klenow 

fragment, MMLV reverse transcriptase were from Gibco (BRL); Taq DNA 

polymerase was from Promega; Calf intestinal alkaline phosphatase was from 

Boehringer Mannheim. 

All radioisotpoes were supplied by Amersham international at the following 

specific activities: [a32P]-dGTP, 3000 Ci/mmol; [a32P]_CTP, 3000 Ci/mmol; 

[a35S]-dATP as, 1000 Ci/mmol; [a35S]-methionine, 1000 Cilmmol. 

Nitrocellulose filters (Hybond-C) were from Amersham. 

Type II agarose, low melting point agarose and E.coli transfer RNA were supplied 

by Sigma. 

Materials for bacteriological media were from Difco laboratories (Michigan, 

U.S.A.) and Oxford Limited (England). 

Deionised formamide was from Fluka. 

Acrylamide was from Fisons, and bisacrylamide from Kodak. 

X-ray film was from Fuji Photo Company Limited (Japan). 

Animals: Xenopus laevis tadpoles stages 49-54. 

Materials: Triiodothyronine (T3) 5XlO-9 Min DMSO kept at 4°C. 
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Methane sulfonate salt ( MS222 ). 

Dimethyl sulfoxide ( DMSO ). 

Potassium permanganate. 

Ethanol. 

Lebovitz medium with glutamin (LIS) was from Gibco (BRL). 

Xenopus Kidney cDNA library Uni-ZApTMXR vector from Stratagene. 

Oligonucleotides were synthesised in the department using an Applied Biosystems 

automated synthesiser and also from Genosys. 

All other chemicals and reagents were from BDH or from Sigma chemical 

company, unless otherwise stated. 

2.2. Stock solutions 

10xTBE: 0.9M Tris-borate pH 8.3, 20mM EDT A. 

TE: lOmM Tris-HCL pH 8.0 ImM EDTA. 

20xSSC: 3M Na CI, 0.3M Sodium Citrate pH 7.0. 

SOxDenhardt's: 1 %(w/v)each of Ficoll, polyvinylpyrolidone, bovine serum albumin. 

lOxMOPS: 0.2M 3-(N-morpholino) propanesulphonic acid, 50mM Sodium 

Acetate, 10mM EDTA pH 7.0. 

Phosphate Buffered Saline (PBS): 0.8% (w/v) Na CI, 0.02% (w/v) KCI, 0.115% 

(w/v) Na2HP04, 0.02% (w/v) KH2P04. 

lxBarth-X: 88mM NaCI, ImM KCI, 2.5mM Na HC03, lSmM Tris-HCl pH 7.6, 

O.3mM CaN03, 0.41mM CaCh, 0.82mM MgS04. 
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NAE: O.3M Sodium Acetate pH 6.5, ImM EDTA. 

2.3. Bacteriological media 

All media was autoclaved before use 

Antibiotics: Ampicillin was used in plates and broth at a concentration of 

100Jlglml. Also, it was used along with other antibiotics Streptomycin and 

Gentamycin in tissue culture. 

LB-tetracyclin at 12.5Jlg/ml 

LB-kanamycin at 50Jlg/ml 

2.3.1 Liquid media 

LB Broth (per litre) 5g yeast extract, 109 bactotryptone, 109 NaCI. 

NZY Broth (per litre) Sg NaCl, 2g MgS04.7H20, 5g yeast extract, 109 NZ amine 

(casein hydrolysate). 

2.3.2 Platesffop agar/Top agarose 

LB Plates (per litre) 109 bactotryptone, 5g yeast extract, 109 NaCI, lSg bactoagar. 

For top agar, agar was added at 7g1litre. 

For top agarose, agarose was added at 7g/litre. 
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2.4. Bacteria, Plasmids and Phage 

2.4.1. Host strains and Genotypes 

MCI061: -F-, ara DI39, t1(ara,leu) 7696, t1lac Y74, gal U-, gal K-, hsr-, hsm+, 

strA. 

XLI-Blue MRF': A(mcrA) 183, A(mcrCB-hsdSMR-mrr) 173, endAI, supE44, thi-

1, recAI, gyrA96, relAI, lac[F'proAB, lac(lZAMI5, Tn 10 (tef)). 

SOLRTMStrain: e14-(mcrA), A (mcrCB-hsdSMR-mrr)I7I, sbcC, recB, recJ, umuC: 

Tn5 (kan'), uvrC, lac, gyrA96, retAI, thil, endAI, ;.,R [F'proAB, tac(lZAMI5]Su-. 

2.4.2. Plasmid vectors 

The Uni-ZApTMXR vector system (Stratagene) combines the high efficiency of 

lambda library construction and the convenience of a plasmid system with blue­

white colour selection. The Uni-ZAP XR vector can be screened with either 

nucleic acid probes or antibody probes and allows rapid in vivo excision of the 

pBluescript SK( -) phagemid. The polylinker of pBluescript SK( -) has 21 unique 

cloning sites flanked by T3 and T7 promoters and a choice of 6 different primer 

sites for DNA sequencing. The phagemid has the bacteriophage fl origin of 

replication, allowing rescue of single-stranded DNA, which can be used for DNA 

sequencing or site-directed mutagenesis. Transcripts made from the T3 and T7 

promotors generate riboprobes useful in Southern and Northern blotting and the 

lacZ promoter may be used to drive expression of fusion proteins suitable for 

western blot analysis or protein purification. 
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2.4.3 f1 Helper Phage 

VCSM13 (f1) for single-stranded rescue and ExAssist™ helper phage (M13) for the 

excision of the pBluescript phagemid from the ZAP vector. 
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CHAPTER 3 
Methods 

3.1. Gonadectomy (Testis removal) 

Pentobarbitone 0.3ml to 0.5ml were injected into the lymph sac of a male frog as a 

vein is too small to find. It took about 20 minutes to take effect. The frog was left 

in water while the drug took its affect. The incision was made on either side of the 

groin. First to cut was the skin and then the muscle. The testes can be found on the 

end of the large yellow fat body which is usually easy to find. 

3.2. Eggs and Embryos 

Female Xenopus laevis were induced to ovulate by injection of 100 U of follicle 

stimulating hormone (FSH) 48' hours to one week prior to laying, and then injection 

of 600 U of human chorionic gonadotrophin (HCG) 16 hours prior to laying. Eggs 

were laid directly into and cultured in Barth X (BX) prior to fertilisation. So that 

the jelly coat remai~ed unswollen and the eggs remained fertilisable in vitro. 

Testes were dissected from a male X. laevis and stored on ice in BX. Teased testis 

fragments were used to provide sperm to fertilise eggs in a small volume of BX. 

After approximately 2 minutes the eggs were flooded with distilled water. 

Fertilised eggs were identified. as a result of rotation within the vitelline membane, 

which occurs approximately 20 minutes after fertilisation. Such eggs were 

dejellied in 2% cysteine (w/v) pH 8.0, washed with and subsequently cultured in 

0.1 x BX. At later stages, to avoid exogastrulation, embryos were transferred into 

fresh O.lx BX containing lOJ1gJml gentomycin sulphate (Sigma). The temperature 
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of development was preferentially kept low (14°C). Embryos were staged 

according to Nieuwkoop and Faber (1967). 

3.3. Rearing of Xenopus laevis under laboratory conditions 

3.3.1. General information and precautions 

No detergents or disinfectants to be used in frog room at all, apart from drains (to 

be used with care). 

Frog room temperature was kept at 22°C. All water should stand for 24 hours to 

rid it of chlorine. The best system is to have an overhead tank to contain all water 

needed. Charcoal filters are incorporated to speed up the process. The water must 

also stand to allow it to be raised to the correct temperature. All frog water was 

changed daily. 

3.4. Feeding 

3.4.1. Tadpoles: 

Tadpoles were fed with nettle powder dissolved in water approximately 25 grams 

per 2 liters water, put on bubbler for 48 hours before feeding. 

3.4.2. Metamorphosis 

Young frogs after metamorphosis were fed on Daphnia and then on Brineshrimp 

every day. When frogs reach 20mm, they were changed to blood worm. The 
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amount to use must be judged by user every other day. When they reach 40mm, 

they were changed on to Xenopus chips if they can be obtained. 

When frogs start to grow, larger food can be used such as pond pellets with high a 

high protein content (60%), or they can have Beef heart on Bilice bottle maggots 

twice a week. 

Recipe for Barth X : 

Solution A. Composition per litre 

NaCI 128.17 gm 
KCI 1.85 gm 
Na HCO) 5.0 gm 
Tris-base 45.37 gm 

pH was adjusted to 7.8. 

Solution B. Composition per litre 

Ca (NO))2 4H2O 1.925 gm 
Ca CL2• 6 H2O 2.25gm 
Mg S04. 7 H2O 5.0gm 

Solutions A and Bare aliquoted into 40mls amounts in lOOmis bottles. These 

bottles were kept separate upright when freezing. To make Barth X 40ml of each 

of A and B are mixed and made up to one litre with distilled water. 

3.5. Microinjection of Xenopus embryos 

Embryos were generally injected bilaterally with mRNA at the two cell stage. Prior 

to injection, embryos were transferred to 5% Ficoll (w/v) to reduce cytoplasm 
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leakage. After injection, the embryos were maintained in Ficoll until stage 6, after 

which they were cultured in 0.1 x BX to avoid exogastrulation. 

3.6. Tadpole treatments 

To identify genes regulated by triiodothyronine (T3) two treatment regimes for 

tadpole tails were performed, from which RNA was extracted and analysed by 

differential display reverse transcriptase polymerase chain reaction (DDRT -PCR). 

(i) Controls-no treatment. 

(ii) T 3 treated with 5x 1 0-9 M for 48 hrs. 

Animals of the same developmental stages (52-56) and of similar sizes were 

selected. A total of six tadpoles were anaesthetised in 0.2% MS222, tails were 

then amputated using clean sharp scalpel or razor blades, washed thoroughly in 

potassium permanganate lOmglml, ethanol 70% and finally in sterile distilled 

water. They were then placed in a six well tissue culture cluster, each containing 

5ml of Lebovitz medium. The medium was supplemented with the antibiotics 

ampicillin, streptomycin and gentamycin. It also contained glutamine. The tissues 

were left in the culture medium at 21°C ± 1°C for 24 hrs before the hormone was 

added. The day after the removal of tissues was counted as Day O. Thereafter, 

2.5J.ll of triiodothyronine (final concentration 5xlO-9 M) was added to three wells 

of culture medium, while the remaining ones were treated as controls. The culture 

medium with the additives was changed every 48 hrs, unless the regime of 

additives was altered after the commencement of culture. All manipulations until 
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this point were carried out under sterile conditions. The organ-cultured tails were 

then examined histologically by fixing them in a solution of 4% paraformaldehyde­

PBS (Tata et ai, 1991) for 24 hrs at room temperature and then dehydrated with a 

series of increasing concentrations of ethanol. These were processed for 

embedding into paraffin and then serially sectioned, 8Jlm in thickness. Transverse 

sections of the tails were stained with hematoxylin and eosin by the standard 

procedure. 

3.7. Gels for resolving nucleic acids 

3.7.1. Non-denaturing agarose gels 

DNA samples, to which 0.2 volumes of loading buffer (50% glycerol, 5xTBE, 

0.1% bromophenol blue) had been added, were separated in 0.6 to 1.5% (w/v) 

agarose gels containing 0.2Jlglml ethidium bromide made in 1 xTBE buffer. Gels 

were run in IxTBE buffer containing O.5Jlglml ethidium bromide at 80mA. The 

gels were examined and photographed on an ultraviolet light box. 

3.7.2. Low melting point agarose gels 

These gels were used for isolation of DNA fragments generated by restriction 

enzyme digests. DNA samples to which 0.2 volumes of agarose gel loading buffer 

had been added were loaded on 0.8% (w/v) low melting point agarose gel made in 

1 xTBE buffer and containing 0.2Jlglml ethidium bromide. Gels were run in 

lxTBE buffer containing 0.5Jlglml ethidium bromide at 40mA. The gel was 

examined under a UV light transilluminator and the desired bands excised as a 
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small gel slice. Exposure of the gel to the UV light was kept to a minimum to 

avoid UV induced DNA damage. The gel slice was then transferred to a l.5ml 

eppendorf tube and weighed to calculate the volume of the gel slice (assuming 

19=1ml). 4 volumes of NAE (0.3M sodium acetate PH 6.5, ImM EDTA) was 

added and the gel slice melted by heating to 65°e for 15 minutes. After cooling to 

37°e an equal volume of neutral phenol was added, the solution was mixed 

vigorously and left on ice for 10 minutes. The tube was then centrifuged at 13,000 

rpm for 5 minutes and the aqueous phase transferred to a fresh tube. The aqueous 

phase was ether extracted, and the volume reduced to less than 0.5ml by extraction 

with butan-I-ol. The DNA was then precipitated with two volumes of ethanol at -

20oe. 

3.7.3. Denaturing polyacrylamide gels 

6% or 8% polyacrylamide (19:1 bis) gels containing 42% (w/v) urea in lxTBE (to 

relieve certain compression in sequencing gels 25% formamide was included in the 

gel mix) were poured between 20x40cm gel plates with O.4mm spacers. Nucleic 

acid samples in denaturing loading buffer (90% deionised fonnamide, 10mM 

EDT A pH 8, 0.01% bromophenol blue, 0.01% xylene cyanol) were heated at 

1000 e for 5 minutes, loaded onto the gel and electrophoresed at 38 Watts in 

1 xTBE. Gels were not fixed or dried prior to autoradiography. esS] samples 

(sequencing reactions) were autoradiographed at room temperature. However, 

e2p] samples were autoradiographed at -70oe with intensifying screens. Gels for 
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differential display were not fixed or dried before autoradiography. The top gel 

plate was removed, the gel covered in cling film and exposed to X-ray film at-

70°C. 

3.8. Subcloning techniques 

3.8.1. Restriction enzyme digest 

These were carried out according the manufacturers instructions. Plasmid DNAs 

were generally digested for one-two hours. 

3.8.2. Vector preparation for subcloning 

Vectors that had been digested with two restriction enzymes generating 

incompatible ends were run on a low melting point agarose gel and the linear 

vector fragment recovered. Vectors cut with a single restriction enzyme were 

treated with calf intestinal alkaline phosphatase (CIAP, Boehringer) by adding 2 

units of enzyme into the digestion reaction at the end of the digestion period and 

incubated for further 30 minutes at 37°C. The reaction product was then phenol 

extracted and ethanol precipitated. 

3.8.3. Preparation of target DNA for subcloning 

Target DNA was generally a restriction fragment isolated from a low melting 

agarose gel. In some cases it was necessary to ligate target DNA to vector with 

incompatible sticky ends. In these cases 5' overhangs (on both vector and target 

DNA) were made blunt by the addition of all 4 dNTPs (final concentration ImM 
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each) and 10 units of Klenow fragment of DNA polymerase into the digestion 

reaction (following completion of digestion) and incubated for 15 minutes at room 

temperature. 

3.8.4. Ligations 

Ligation reactions were carried out in 1 x ligation buffer (Gibco), vector DNA, 

target DNA and T4 DNA ligase. Standardly 20ng of vector and a concentration 

range of target DNA was used. A control ligation containing no target DNA was 

always included. For sticky end ligations 0.2 units of T4 DNA ligase was used, 

while one unit was used for blunt end ligations. These reactions were performed at 

14°C overnight. 

3.9. Transformations 

3.9.1 Preparation of competent cells 

L-broth (lOml) was inoculated with the appropriate E.coli strain (MC1061). The 

culture was placed overnight in a rotary shaker (200rpm) at 37°C. A Iml aliquot of 

this culture was removed and used to inoculate 20ml of fresh L-broth. The 

incubation was resumed for approximately 2-2.5 hours. The growth of the culture 

was monitored by measuring its optical density at 550nm against an L-broth blank. 

When this value reached 0.45-0.5 0.0. units, the cells were harvested by 

centrifugation of the culture at 3000rpm for 10 minutes at 4°C. The supernatant 

was discarded and the bacterial cell pellet gently resuspended in 10ml ice cold 
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MgCh (0.1 M). The cells were pelle ted as mentioned before and resuspended in 

IOml ice cold CaCh (O.IM). The cells were immediately pelleted as previously 

mentioned and resuspended in Iml ice cold CaCh and kept on for 90minutes until 

required for transformation. 

3.9.2. Transformation with plasmid DNA by heat-shock 

An aliquot of cells (1 00-200JlI), rendered competent by the CaCh washing method, 

were used for each transformation. Plasmid DNA (I-lOng) was added to the cells, 

which were subsequently incubated on ice for 90 minutes to enable adsorption of 

the DNA to the cell surface. In order to determine the transformation efficiency of 

the prepared batch of cells, a range of known concentrations of plasmid DNA was 

incubated with the cells. The cells were transferred to 42°C for 2 minutes and then 

quenched on ice for 15 minutes. L-broth (500JlI) was added to each Eppendorf and 

the cells were incubated for. 60 minutes at 37°C to enable expression of the 

ampicillin resistance gene born on the plasmid. A range of dilutions of the cell 

suspension was spread onto agar plates containing the antibiotic at l00J,lg/ml. The 

plates were incubated overnight at 37°C, A control aliquot of cells was cultured on 

Lamp plates. in order to confirm that the strain was not inherently ampicillin 

resistant. The viability of the cells, following CaCl2 treatment, was assessed on 

agar plates without antibiotic. 
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3.10. Preparation of Plating Bacteriophage Cultures 

A single colony of the appropriate bacterial host (XL 1-Blue) was inoculated into a 

50ml LB broth supplemented with 0.2% (v/v) maltose and 10mM MgS04 in a 

sterile flask. The culture was grown overnight with shaking at 30°C. This 

temperature ensures that the cells will not overgrow. The culture was monitored by 

measuring O.D. at 600nm until it reached 0.5. The cells were pelleted by 

centrifugation in a conical tube for 10 minutes at 2000rpm. Carefully the media 

was decanted and the cell pellet was gently resuspended without vortexing in 15ml 

of 10mM MgS04. The cells were diluted to OD6oo = 0.5 with 10mM MgS04. 

Approximately 600 J.lI ofOD6oo = 0.5 cells were needed for each 150-mm plate and 

200 J.lI of OD600 = 0.5 cells for each 100-mm plate. IJ.lI of lambda phage in SM 

buffer (50mM Tris-HCI pH 7.5, 0.58% (w/v) NaCI, 0.2% (w/v) MgS04.7H20, 

0.0 1% (w/v) gelatin) was added to 200 J.lI of host cells, well mixed and incubated 

for 15 minutes at 37°C to allow the phage to attach to the cells. Up to Ixl0s phage 

were absorbed with 600J.lI of host cells. 6.5ml of melted top agarose was aliquoted 

in to sterile tubes in a heating block at 48°C and allowed to equilibrate to 48°C. 

0.6 ml of infected cells was added to the top agarose and this was then poured onto 

dried 15cm x 15cm NZY plates and allowed to set evenly. The plates were then 

incubated inverted at 37°C until plaques of suitable size formed. 
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3.11. Bacteriophage Lambda Plaque Lifts 

This procedure was performed to transfer bacteriophage DNA from plates to 

nitrocellulose filters as described by the manufacturer. The host strain XLI-Blue 

was used. Bacteriophage lambda were plated on a large NZY plates to 600,000 

pfulplate with 600J.lI of host cells using ISml of top agarose and then incubated at 

37°C for 8 hours until suitably sized plaques formed. The plates were then 

refrigerated for 2 hours at 4°C to chill. Pieces of nitrocellulose filters cut slightly 

smaller than the plates, were carefully lowered onto the surface of the top agarose 

ensuring that no air bubbles formed. These were left for 2 minutes. With the help 

of a syringe needle the filter was pricked through the membrane into the agar for 

orientation. Using a pair of forceps, the filters were carefully removed with the 

DNA side up onto a tray containing several sheets of filter paper (Whatman 3mm) 

moistened with denaturing solution (I.SM NaCI and O.5M NaOH) and left for 2 

minutes during which time a second filter was applied to each plate. This replica 

filter was allowed to transfer for 4 minutes oriented in the same position of the first 

filter. Following denaturation, the filters were submerged in another tray containing 

neutralising buffer (I.5M NaCI O.SM Tris-HCI pH 8 for S minutes followed by a 30 

seconds rinse in 0.2M Tris-HCl pH 7.5 and 2xSSC buffer. The filters were then 

transferred onto 3MM Whatman paper and allowed to air dry. They were then 

baked at 80°C under vacuum for 2 hours. 
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3.12. Prehybridisation, Hybridisation, Autoradiography of Filters 

Filters were prehybridised in 5xDenhardt's, 6xSSC, 0.1 % SDS, 100J,lg/ml E.coli 

tRNA, 50% formamide and was performed in a heat-resistant glass tubes at 42°C 

for 2-20 hours. The prehybridisation solution was replaced by a fresh aliquot of the 

same buffer containing radiolabelled nucleic acid probe and hybridisation was 

carried out overnight at 42°C. 

Filters were washed twice in 2xSSC, 0.1 % SDS at room temperature for 10 

minutes each and then twice for 30 minutes each in the final wash conditions at 

65°C (varied according to the hybridisation stringency required). The filters were 

then allowed to air dry on a filter paper and wrapped in a clingfilm and exposed to 

X-ray film with intensifying screen at -70°C. For orienting the filters, "Putative" 

clones with the strongest signal on film was determined by lining up the film and 

mark numbers and dots wher.e the needle poked through. A square centimetre 

where the putative clone lined up with the film spot was cut with the help of an 

inverted yellow tip and transferred to fresh sterile tube containing 1ml of SM buffer 

and 20J,l1 of chloroform, well vortexed and kept stored at 4°C. This phage stock 

was replated at a lower density and plaque lifts performed. Positive plaques were 

identified and the process repeated until the agar plug taken contained a single 

positive plaque. 

89 



3.13. In vivo Excision Using The EXASSIST/SOLAR System 

This system was designed to allow efficient excision of the pBluescript phagemid 

from the Uni-ZAP vector. 

The plaque of interest from the agar plate was transferred to a sterile microfuge 

tube containing 500~1 SM buffer and 20~1 of chloroform. This was well vortexed 

to release the phage particles into the SM buffer and incubated for 1-2 hours at 

room temperature or overnight at 4°C. This was kept at 4°C as phage stock. An 

overnight culture of XLI-Blue MRF' and SOLR cells was grown in LB broth at 

30°C. To a SOml of LB broth, O.Sml of the overnight culture was added and grown 

at 37°C for 2-3 hours until the OD600 = 0.5. The XLI-Blue MRF' cells were gently 

pelleted by centrifugation at (1500 x g) and resuspended in IOmM MgS04. The 

SOLR cells was allowed to grow to OD600 = 0.5-1.0 for excision and then 

removed from the incubator and left at room temp. 

In a SOml conical tube, 200~1 of XLI-Blue MRF' cells, 250~1 of phage stock (> 

I x I 05 phage particles), 1 fll of ExAssist helper phage (> 1 x 106 pfu/ml) were 

combined and the mixture was incubated at 37°C for 15 minutes. 3ml ofLB broth 

was added and a further incubation with shaking at 37°C for 2-2.5 hours to 

overnight was performed. The cells were pelleted by centrifugation at 2000 x g and 

the supernatant was transferred to a fresh tube and the tube was heated at 70°C for 

15 minutes. This was again centrifuged at 4000 x g for 15 minutes. Carefully, the 
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supernatant was transferred into fresh sterile tube. This stock contained the excised 

pBluescript phagemid packaged as filamentous phage particles. To plate the 

rescued phagemids, 200~1 of freshly grown SOLR cells were added to 10-100~1 of 

the phage stock. The tubes were incubated at 37°C for 15 minutes and 1O-50~1 

were plated on LB-ampicillin plates (lOO~g/ml). The plates were incubated 

inverted overnight at 37°C. 

3.14. Isolation and recovery of DNA fragments 

3.14.1. The GENE CLEAN II method 

DNA fragments were resolved by agarose gel electrophoresis and visualised under 

long wave UV light. The desired gel slice was excised and subjected to the 

GENECLEAN II procedure. This, briefly, involves dissolution of the agarose in 

sodium iodide and subsequent incubation of the mixture with a specially 

formulated silica matrix (GLASSMILK), which binds single and double stranded 

DNA in favour of agarose, proteins, or small RNA. The matrix is extensively 

washed in a Tris-ethanol buffer to remove DNA contaminants before elution of the 

DNA in a small volume of water or TE. A modification of this protocol, known as 

the "DOUBLE GENECLEAN" method, was employed in the case of subcloning 

single PCR products. The PCR mixture was treated as above to remove excess 

primers, enzymes and salts and the resulting elute (50~1) was incubated with the 

appropriate restriction enzyme (s) and recommended buffer for 1-4 hours. The 

reaction was stopped with 0.5M EDTA pH 8.0 (lJ.lI per lOO~1 reaction volume) and 
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the restricted PCR fragment purified by a second round of the GENECLEAN 

procedure. No further purification was necessary and the elute could be used 

directly in ligation reactions. 

3.14.2. Wizard TMMiniprep DNA purification system (Prom ega) 

This system was used to rapidly isolate small quantities of plasmid DNA suitable 

for direct sequencing. It was used exactly as described in the product guide. The 

cells from lo5ml of an overnight were collected by micrcentrifugation for 2 

minutes, and resuspended in 200~1 of res us pension buffer (50mM Tris-HCI pH 7.5, 

lOmM EDTA, 100~g1ml RNase A). 200~1 cell lysis solution (0.2M NaOH, 0.1% 

SDS) was added and the contents mixed by inverting the tube. 200~1 of 

neutralisation solution (1.32M potassium acetate) was added, the contents mixed. 

The contents were microfuged for 5 minutes and the cleared supernatant was 

transferred to a tube containing Iml of wizard purification resin. This mixture was 

passed through a mini column using a syringe. 2ml of column wash solution 

(100mM NaCI, lOmM Tris-Hel pH 7.5, 2.5mM EDTA, 50% ethanol) was passed 

over the minicolumn. The washed minicolumn was transferred to a lo5ml 

eppendorf tube and the tube was microfuged for 30 seconds, to dry the resin. The 

minicolumn was transferred to a new eppendorf, and 50~1 of water was applied to 

the minicolumn to elute the DNA from the resin. Plasmid DNA was collected from 

the mini column by microfugation for 1 minute. 
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3.15. Estimation of DNA concentration 

An estimation of the concentration of DNA in aqueous solution can be obtained 

spectrophotometrically by measuring its optical density at 260nm. At this 

wavelength an optical density of 1 absorbance unit signifies a solution containing 

50~glml double stranded DNA or 40~glml single stranded DNA or approximately 

20~glml single stranded oligonucleotides. These figures only apply for 

homogeneous or pure DNA solutions. The ratio between the readings at 260nm 

and 280nm gives an indication of the purity of the solution concerned. Thus, if the 

OD26o:0D28o ratio falls between 1.8 and 2.0 this is deemed satisfactory, if it is less 

than 1.8 accurate quantification is not possible by simple OD measurements. 

Fragments generated by digestion of plasmid DNA were visualised on ethidium 

bromide stained agarose gels and their concentration estimated by direct 

comparison of the intensity of the corresponding bands, with that of known DNA 

standards included on the gel. The fluorescent yield of DNA bands, as viewed 

under UV light is not unconnected with fragment size as larger fragments will 

intercalate more ethidium bromide. Standards were prepared by linearising known 

concentrations (1 OOngl~1 and 50ngl~1 of commercially available pBR322 DNA 

with the restriction enzyme EcoRl). 

93 



3.16. Large scale preparation of plasmid DNA and purification by caesium 

chloride/ethidium bromide centrifugation 

The method used was the alkaline lysis method described by Maniatis et at (1982). 

A single colony was inoculated into 10mi LB containing the appropriate antibiotic, 

and grown overnight at 37°e. The next day O.5mI of this culture was used to 

inoculate SOml of LB, and this culture was grown on a shaker at 37°C for 2-3 

hours. This SOml culture was then used to inoculate SOOml of LB in a 2litre flask 

which was shaken (200rpm) overnight at 37°C. The next day the cells were 

pelleted by centrifugation at SOOOrpm for 10 minutes. The following quantities are 

those used for cells from a single SOOml bacterial culture. The pellets were 

resuspended in a total of lOml of ice cold solution I (50mM glucose, 25mM Tris­

HCI pH 8.0, 10mM EDTA pH 8.0, Smglmllysozyme). The slurry was transferred 

to an oakridge tube. After incubating at room temperature for S minutes. 10ml of 

freshly prepared solution IT (O.2M NaOH, 1 % SDS) was added, and the tube was 

inverted several times to mix the contents. The tube was left on ice for 10 minutes 

after which 7.5ml of ice cold 5M potassium acetate pH 6.0 was added. The 

contents of the tube were mixed by inverting several times and then left on ice for 

10 minutes. The pH of the solution was then tested with pH paper to ensure that 

the sodium hydroxide had been completely neutralised, and more potassium acetate 

added if necessary. Bacterial debris and chromosomal DNA were pelleted by 

centrifugation at 13,000 rpm for 30 minutes. 18ml of the resultant supernatant was 

transferred to a 30ml corex tube and nucleic acids were precipitated by adding 
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12ml of isopropanol. after 15 minutes at room temperature the tubes were 

centrifuged at 10,000 rpm for 30 minutes at 20°C, and the pellets resuspended in a 

total of 20ml TE. Exactly 20g of caesium chloride was dissolved in this and 0.6ml 

of ethidium bromide (lOmg/ml) was added. Using a syringe this solution was 

transferred to a Beckman heat-sealable centrifuge tube. The tubes were topped up 

with liquid paraffin, balanced and heat sealed. The tubes were then centrifuged at 

45,000 rpm in a vertical rotor for 20 hours at 20°C. The tubes were viewed under 

UV light and the lower band (which is supercoiled plasmid DNA) was removed 

from the gradient using a syringe. The solution was extracted five times with 

water-saturated butan-l-01 to remove the ethidium bromide, and then dialysed 

against two litres of TE overnight. The DNA was precipitated in a corex tube at -

20°C by the addition of sodium acetate to a final concentration of O.3M and two 

volumes of ethanol. The DNA was recovered by centrifugation at 10,000 rpm for 

30 minutes at 4°C and resuspended in O.Sml of TE. The solution was then 

extracted with neutral phenol and reprecipitated with ethanol. The DNA was 

pelleted by microcentrifugation for 10 minutes and then resuspended in O.5ml of 

TE. The concentration of the DNA was then determined by measuring the A26o. 

3.17. Sequencing of double stranded DNA 

Approximately 5Jlg of plasmid DNA was denatured in 0.2M NaOH and 2mM 

EDTA (5 minutes at room temperature). The mixture was neutralised with 

0.1 volumes of 3M Sodium Acetate pH 4.8 and the DNA was ethanol precipitated. 
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The dried pellet was resuspended in 7~1 of sterile distilled water and mixed with 

2~1 of 5x annealing buffer and 1 ~l sequencing primer (1 O~glml). Annealing was 

promoted by incubation at 37°C for 15-45 minutes. Sequencing reactions were 

performed using the USB sequenase version 2.0 system according to the 

manufacturer's instructions. The protocol employed is based on the 

dideoxynucleotide chain-termination method described by Sanger et al., (1977). 

Following denaturation at 80°C for 3 minutes, 3~1 of the samples were loaded onto 

a denaturing urea/polyacrylamide gel and electrophoresed as detailed in section 

3.18. 

3.18. Polyacrylamide gel electrophoresis for products of sequencing reaction 

The DNA ladder generated by the chain-termination method of DNA sequencing 

can be resolved by vertical electrophoresis through a 38cm polyacrylamide/urea 

gel, consisting of 7.5ml 38% (w/v) acrylamide 2% (w/v) bisacrylamide, 5ml lOx 

TBE, 21g urea and made up to SOml with distilled water. Polymerisation was 

initiated with the addition of 450~1 10% (w/v) APS and 70~1 TEMED. The 

solution was mixed and poured into the gel casting apparatus. A shark-tooth comb 

was inserted with its straight edge into the gel, which was then allowed to 

polymerise in a horizontal position for at least one hour. 

The polymerised gel was placed in a vertical electrophoresis tank and 1 xTBE was 

added to upper and lower reservoirs. The comb was removed and replaced in the 
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opposite orientation, with the teeth inserted slightly into the gel so as to fOIm the 

wells. The gel was pre-run for 30 minutes. Immediately prior to sample loading, 

the wells were washed out with buffer in order to remove traces of urea and 

acrylamide. Samples were heated to 80°C for 3 minutes, loaded onto the gel and 

electrophoresed under constant power (38 watt) for 1-4 hours. After this time the 

gel plate was prised a part and the gel immersed in a fixing solution of 10% (v/v) 

acetic acid and 10% (v/v) methanol for 15 minutes. The gel was dried onto 

Whatman paper under the combined action of heat and vacuum. The dried gel was 

exposed overnight to X-ray film at room temperature. 

3.19. Preparation of total RNA from Xenopus laevis tadpole tails 

Tadpole tails after treatment regimes were washed thoroughly in sterile distilled 

water, frozen in liquid nitrogen for few seconds and then placed in a glass 

homogeniser or eppendorf tubes depending on volume containing the denaturing 

solution (25g guanidine thiocyanate 4M and 33ml CSB buffer (42mM sodium 

citrate, 0.83% N-Iauryl sarcosine and 0.2mM p-mercaptoethanol). For Ig of 

homogenate, 1.2ml of 2M sodium acetate pH 4.0 was added and the tube contents 

were mixed thoroughly by inversion.12ml of phenoVchloroformlisoamyl alcohol 

mix (25.24.1) were also added mixed by inversion, shaken vigorously for 10 

seconds and chilled on ice for 15 minutes. This mixture was then transferred to a 

SOml thick-walled polypropylene tube (DEPC-treated) and centrifuged at 10,000 x 

g for 20 minutes at 4°C. Carefully, the top aqueous phase which contained the 
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RNA was removed and transferred into a fresh DEPC treated tube. DNA and 

proteins were retained in the organic phase and at the interphase. RNA was 

precipitated by adding an equal volume of isopropanol and incubated the sample at 

-20°C for at least 30 minutes. To obtain the maximum RNA yield from tissue 

samples that contain relatively low amounts of RNA, longer precipitation (up to 

overnight) is recommended. RNA was pelleted by centrifugation at 10000x g for 15 

minutes at 4°C, and resuspended in Sml of denaturing solution. In some instances, 

heating to 65°C may be required. An equal volume of isopropanol was added and 

the RNA was precipitated as described above. The pelleted RNA was then washed 

with ice-cold 75% (lOml) ethanol and centrifuged as above. The pellet was then 

dried in a vacuum desiccator for IS-20 minutes and resuspended in RNAse-free 

deionised H20 and stored at -20°C. 

3.20. Differential Display Reverse transcription-peR 

This method was first described by Liang and Pardee (1992). It is used to identify 

messages that are differentially expressed among RNA samples and involve reverse 

transcription as well as PCR steps. 

3.21. Reverse transcription reactions 

Reverse transcription reactions were carried out on 2 Jlg of total RNA extracted 

from Xenopus laevis tadpole tails using superscript M-ML V reverse transcriptase 

(BRL) with reaction buffer and DTT added as described by the manufacturer. The 
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reaction was carried out in the presence of 2.5 J..LM of 3 'primer (one of set of twelve) 

and 20J..LM dNTPs. In addition, 200 units of reverse transcriptase and 10 units of 

human placental ribonuclease inhibitor (BRL) were used in each 20J..LI reaction. 

Reactions were incubated at 37°C for one hour and then the enzyme was heat 

inactivated at 70°C for 10 minutes. 

3.22. peR reactions 

One-tenth of the product cDNA from the reverse transcription reaction was 

introduced into each 20 /-ll PCR reaction. PCRs were then carried out in the 

presence of 2.5 /-lM of 3' primer same as the one used in reverse transcription step, 

0.5J..LM of 5' primer arbitrary lOmer and 2J..LM dNTPs. The reaction mix included 

IJ..Ll [a3sS]-dATPaS, manufacturers reaction buffer (BRL) and magnesium chloride 

to 1.25mM. The reaction mixture was overlaid with 20/-l1 of mineral oil and 

2.5units of Taq DNA polymerase (BRL). Following the denaturation of the 

reaction mixture at 94°C for 30 sec, annealing at 42°C for Imin, and an extension 

at 72°C for 30sec. 6.5/-l1 of the PCR reaction products was analysed on a 6% 

denaturing polyacrylamide gel. Samples utilising the same primer but originating 

from different treatment regimes were run side by side to allow identification of 

differentially expressed products. Gels were not fixed or dried prior to 

autoradiography. The gel was left on the gel back plate, wrapped in cling film, 

radioactive ink was used to mark the gel to subsequently allow the gel to be lined 

up with the autoradiograph and autoradiography was carried out at -70°C. 
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3.23. Quantitative RT -peR 

Reverse transcription reactions were carried out using 0.5 ~g (2~l) of total Xenopus 

RNA from thyroid hormone treated and untreated samples made up to a total 

volume of 20~1 sterile distilled water, and heated to 75° for 5 minutes in a heating 

block or PCR machine. Reactions were then stored on ice. The following 

components were added. Random hexamers (100~M stock) (l~l, at 3.3~M final 

concentration), 3~1 (lOx PCR buffer), 1.8~1 (50mM MgCh), 1.5~1 (IOmM dNTPs), 

0.6~1 (50ul~1 RNase inhibitor. The reaction mixture was allowed to incubate at 

42°C for 5 minutes before adding 2~1 of MMLV reverse transcriptase (Gibco BRL, 

200ul~I), and a further incubation at 42°C for 60 minutes was performed. The 

reaction was stopped by heating to 95°C for 5 minutes and stored at -20°C. 2~1 of 

the synthesized cDNA was used in a 50~1 PCR reaction. The cDNA can be 

aliquotted into O.5ml eppendorfs and stored on ice while the PCR reaction stock is 

made. 2.5~1 of lOx PCR buffer was added to the aliquotted cDNAs, followed by 

the addition of 0.75Jll of MgCh (50mM), 0.5~1 dNTPs (10mM), 0.05~1 [a32p]_ 

dGTP (lO~CiI~I), 2Jll L+R primer mix (12.5~M), 0.2~1 Taq DNA polymerase 

(5u1~1), and the volume was adjusted with 14.1 ~l H20. 25 ~l of light paraffin oil 

was topped on tubes to prevent evaporation. PCR cycles were performed as 

follows: (denaturation at 94°C for 3 minutes), (annealing at 55°C for I minute), 

(extension at 72°C for Iminute). The number of cycles varies, for elongation factor 

Ef-l a, 18 cycles were sufficient, however the others are less abundant and need 25 

cycles. The important thing is to stay in the exponential phase of the amplification. 
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3.24. OJigolabelling I Random Priming 

This is the fast and easy way to make a probe from an isolated DNA fragment. 

Briefly, the fragment of interest from LMP agarose gel (low melting point) was 

isolated and purified by melting the agarose at 65°C. The DNA was then 

precipitated by adding 3M sodium acetate to O.3M final concentration followed by 

extraction with phenol/O.3M sodium acetate then phenol I chloroform! isoamyl 

alcohol. The DNA was then checked on a minigel for estimating quantity. 50-

l00ng of the DNA fragment was made up to 32.5Jll distilled water. heated to 95°C 

for 3 minutes and immediately cooled on ic~. 10Jll OLB solution (Le .• 

oligolabelling buffer) A:B:C at l00:2S0:1S0 ratio was added (Soln 0: 2.Sm1/2M 

Tris-HCI pH 8, 0.5m11lM MgCh. Iml H20; So]n A: Iml soln O,18Jll 2-

mercaptoethanol. 5JlI dATP. dCTP, dTTP each O.IM all that except used for 

labelling; So]n B: 2M HEPES pH 6.6; So]n C: 6-mer random hexamer oligos at 90 

00 units/m] in TE). 2Jll BSNlOmglm]. 5Jll S0J..1Ci [a32PJ_ dGTP and 2Jll Klenow 

DNA polymerase were added in order. They were then allowed to incubate well 

shielded at room temperature for 2 hours to overnight. The probe was then 

precipitated by adding 50JlI H20, IJlI Smglml tRNA, lOOJlI ch]oropane (Le. phenol: 

chloroform: isoamy]alcoho]) and well vortexed followed by 5 minutes spin. The 

aqueous layer was then taken and an equal volume (100Jll) of SM ammonium 

acetate, 2.S volume (SOOJll) of ethyl alcohol was added and left at -20°C for 30 

minutes. dried and resuspended in 100Jll H20. Another way of precipitating the 

probe was by adding lOJlg tRNA, 12.SJll 3M Sodium acetate, SOJlI isopropanol and 
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mixing well followed by a 5 minutes incubation on ice and a 15 minutes spin. A 

radioactive counts comparison was made between supernatant and pellet. These 

ought to be equal. Resuspended pellet was then stored shielded at -20°C for later 

use. Alternatively, a spin column (from Pharmacia) was used to elute and purify 

the probe from the unincorporated nucleotides. 

3.25. Paraffin wax sections of tadpole tails 

3.25.1. Fixation 

Tadpole tails isolated from Xenopus laevis stage 52 after their treatment regime, 

were fixed in a solution of paraformaldehyde-PBS (Tata, et al., 1991) for 24 hrs at 

room temperature. They were then placed in 70% ethanol for 15 minutes at room 

temperature. The liquid was drawn off and replaced by 100% ethanol for 15 

minutes, this was then replaced by xylene and let to stand for 15 minutes. Xylene 

was then decanted and replaced by warm xylene at 60°C for 15 minutes, this was 

replaced by xylene-wax warmed at 60°C (saturated or near saturated solution) 

followed by an incubation for 30 minutes at 60°C. This was again replaced with 

100% wax at 60°C. and a further incubation for 30 minutes. The last step was 

repeated and finally the wax was changed and left at 60°C. for one hour to 

overnight. 
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3.25.2. Embedding 

In a watch-glass smeared with glycerol, a small amount of wax was poured in, and 

the tails was carefully and quickly oriented with the help of warmed forceps, paper 

label and more wax were added to fill the watch-glass, this was allowed to set 

somewhat and the whole assembly was immersed in cold (preferably chilled) water 

and left to set completely, preferably 2 hours after which the wax block was floated 

out of the watch-glass. 

3.25.3. Sectioning 
3.25.3.1. Preparation of subbed slides for tissue sections 

Subbed slides were prepared in advance by washing them in strong detergent, and 

then rinsed in distilled water, dipped into a solution of gelatin (0.5%, Sigma) plus 

0.5% chrome alum. This solution was prepared by dissolving gelatin by boiling 

without the chrom alum until cooled to room temperature. The slides were then air 

dried and baked at 80°C for 8 hours to overnight. 

The wax block was the trimmed by cutting away from the specimen and note was 

taken for the required orientation. The wax was then mounted onto a wooden 

block by melting the wax (i.e., using a heated scalpel), and the wax-embedded 

specimen was then placed on top. The edges were well sealed by using a heated 

blade. The assembly was allowed to cool thoroughly so that the wax was fully set 

in place. The wax block was finally trimmed. In order to produce a good ribbon, 

the sides of the wax block were placed so as to present a rectangular face to the 
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knife. The blade was cleaned by wiping with tissue soaked in xylene. The block 

was then mounted in the microtome with the blade adjusted in position. The angle 

of the blade was set to 16 degrees, and sections of 8 microns were cut to form a 

ribbon. As the ribbon formed, suitable lengths were taken by lifting them with a 

soft paintbrush and placed on a subbed slides. The sections were placed in a 

logical order of which a note was kept, and the slides were labelled using a 

diamond pencil. Carefully, some water was pipetted onto the slide to float the 

sections. The slides were then placed on a hotplate at 40°C to extend the sections. 

When the sections were fully extended, the water was sucked off and the slide left 

to dry on the hotplate. 

3.25.4. Dewaxing 

It is essential that sections are completely dewaxed. The slides were placed in 

xylene for 15 minutes. They were then transferred into clean xylene for few 

minutes. 

3.25.5. Staining 

The sections were placed in 25% ethanol, stained in Hematoxylin for 3-8 

minutes, washed in alkaline tap water with many changes for 5 minutes. 

Scott's Hematoxylin: Hematoxylin 1.25 g 
Glycerol 100 ml 
Dist.water 100 ml 
Ethanol 100 ml 
Glacial acetic acid 10 ml 
Potash alum 7 g 

104 



The sections were also stained 1 % aqueous eosin for one minute, taken up through 

ethanol series (30, 60, 80, 95, 100%) , air dried and mounted in DePex (i.e., 

commercial mountant). 

3.26. Preparation of synthetic RNA for microinjection into oocytes I embryos 

3.26.1. III vitro transcribed capped RNA 

This was essentially performed according to the manufacturer instructions 

(Ambion's message machine T3 RNA polymerase). Briefly, for synthesis of run­

off transcripts of defined size, the double-stranded DNA template was digested to 

completion with suitable restriction enzyme that cleaves distal to the promoter 

(XhoJ). After restriction enzyme digestion, the template was checked on 1 % 

agarose gel, isolated and purified using GENECLEAN II kit and the DNA 

concentration was estimated. IJ.1g of linearised template DNA (2J.11 of O.5J.1g/J.1I) 

was used in a 20J.11 reaction volume. In a l.5ml microfuge tube at room 

temperature, 4J.11 RNase-free water, 2J.11 lOxTranscription buffer, 1OJ.11 

Ribonucleotide Mix (15mM. ATP, CTP, VTP; 3mM OTP and 12mM cap 

analogue),2J.11 lOxEnzyme Mix (a combination of placental ribonuclease inhibitor, 

RNA polymerase and other components required for optimal RNA synthesis) were 

mixed and microfuged briefly to collect all the reaction mixture at the bottom of the 

tube. The reaction was incubated at 37°C incubator for 90 minutes. IJ.11 of RNase­

free DNase I (2VIJlI) was added to the reaction, mixed thoroughly and a further 

incubation at 37°C for 15 minutes was carried out. The reaction was terminated 
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and the RNA was recovered by adding 30JlI of RNase-free dHzO and 25JlI of 

Lithium Chloride Precipitation solution (7.5M Lithium Chloride, 75mM EDTA), 

mixed thoroughly and chilled for at least 30 minutes at -20°C. The RNA was 

pelleted by centrifugation at 4°C for IS minutes at maximum speed. Carefully the 

supernatant solution was removed and the pelleted RNA was washed once with 

70% ethanol and re-centrifuged to maximise removal of unincorporated 

nucleotides. The supernatant solution was carefully removed and the RNA was 

resuspended in RNase-free dHzO. 

3.27. In vitro translations 

In vitro transcribed RNA was used to synthesise proteins in vitro using rabbit 

reticulocyte lysate (Promega). The reaction involved IJlI (O.l-0.5Jlg) of synthetic 

capped transcript with 10JlI of rabbit reticulocyte lysate and 20JlCi esS]­

methionine; The reaction was incubated at 30°C for Ihour and stopped by placing 

the reaction on ice. Samples of the translation products were analysed by SDS­

PAGE. Prior to loading on the gel the sample was mixed with an equal volume of 

2x SDS-Ioading buffer (l12mM Tris-HCI pH 6.8,3.6% SDS, 18% glycerol, 0.01 % 

bromophenol blue, l.4M 2-mercaptoethanol) and boiled for 3 minutes. 
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3.28. SDS-protein polyacrylamide gel electrophoresis 

A separating gel consisting of 10-15% acrylamide (37.5:1 bis), 0.3M Tris-HCI pH 

8.8, 0.08% SDS was poured into the assembled gel plates (minigels), leaving 

sufficient space at the top for the stacking gel to be added later. After 

polymerisation (10-15 minutes), the surface of the separating gel was first rinsed 

with water to remove any unpolymerised acrylamide and then with a small volume 

of stacking gel mix (3% acrylamide (20:1 bis), 0.12SM Tris-HCI, 0.1% SDS). The 

remaining space was filled with stacking gel and the comb was immediately 

inserted. After the stacking gel had polymerised (30-45 minutes), the comb was 

removed and the wells were rinsed with water to remove the unpolymerised 

acrylamide. A small aliquot of protein sample was mixed with an equal volume of 

loading buffer (112mM Tris-HCI pH 6.8, 3.6% SDS, 18% glycerol, 0.01% 

bromophenol blue, I.4M 2-mercaptoethanol), heated to 95°C for 5 minutes and 

then loaded on the gel. Typically, electrophoresis was carried out at a constant 

current (l5mA in the stacking gel and 30mA in the separating gel) in Ix running 

buffer (50mM Tris, 400mM glycine, 0.1% SDS). Electrophoresis was usually 

performed until the bromophenol blue dye front had run off the bottom of the gel. 

Gels were fixed in 45% methanol, 10% acetic acid for 30 minutes, vacuum dried 

and autoradiographed. 
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3.29. Whole-mount in situ hybridisation analysis 

In situ analysis was performed as described in Harland (1991). 

3.29.1. Embryo preparation 

Various stages of embryos and tadpole tails at stage 52 were fixed in MEMF A 

(O.IM MOPS pH 7.4, 2mM EOTA, ImM MgS04, 3.7 formaldehyde). The 

vitelline membranes were removed from the pre-hatched stages. Embryos were 

then fixed overnight at 4°C. MEMF A was rinsed from the embryos washed 

thoroughly in distilled water and replaced by methanol. Such embryos can be kept 

at -20°C. 

3.29.2. Prehybridisation 

Embryos and were rehydrated through a methanol senes (75%, 50%, 25%, 

methanol (v/v) for 5 minutes in each). They were then transferred to PTw 

(PBS+O.l % (v/v) Tween-20). Digestion with Proteinase K to 51lg/ml was carried 

out at room temperature for 10 minutes. They were then washed in PTw (2x5 

minutes), and refixed in 3.7% formaldehyde in PTw for 20 minutes. After fixation, 

they were washed in PTw (5x5 minutes) to remove any fixative before the 

hybridisation step. They were then transferred to hybridisation mix [(50% 

formamide, 5xSSC, lmg/ml torula RNA (Sigma), 1001lg/ml Heparin (Sigma), 2% 

Blocker powder (Boehringer), 0.1 % Tween-20 (BDH), 0.1 % CHAPS (Sigma)] and 

prehybridised at 60°C for at least 6 hours. 
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3.29.3. Probe synthesis 

This is a standard transcription reaction with DIG labelled UTP (DIG-UTP) being 

incorporated in the place of UTP using the DIG RNA labeling kit (Boehringer). 

Subc10nes were introduced into transcription vectors in an orientation that allowed 

synthesis of the antisense strand. Then a 20JlI labelling reaction contained 1 x 

transcription buffer, lOrnM ATP, lOmM CTP, lOrnM GTP, 6.5mM UTP~ 3.5mM 

DIG UTP, 1 Jlg linearised template DNA, 20units human placental RNase inhibitor 

and 20 units RNA polymerase. The reaction was incubated at 37°C for 1-2 hours. 

The product was ethanol precipitated at -20°C for at least 30 minutes and 

resuspended in 10JlI water. 

3.29.4. Hybridisation 

Embryos and tails were transferred to fresh hybridisation mix containing probe 

(IJlg/ml). Hybridisation was carried out at S2°C overnight. Both embryos and tails 

were then washed in 2xSSC / O.3%CHAPS at 60°C (3x20 minutes). RNase A 

digestion (20Jlg/ml) was then carried out at 37°C for 30 minutes. Additional 

washes comprising 2xSSC / 0.3% CHAPS at room temperature for 10 minutes, 

0.2xSSC / 0.3% CHAPS at 60°C for 2x30 minutes, PTw / 0.3% CHAPS at 60°C 

for 2xl0 minutes, PTw at room temperature for 10 minutes were carried out. 
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3.29.5. Detection 

PTw was replaced with PTw / 0.5% Blocker powder and incubated at room 

temperature for IS minutes. This was then replaced with a fresh aliquot of the 

same solution containing anti-digoxygenin antibody (112000 dilution) (Boehringer) 

and incubated overnight at 4°C. Embryos and tails were then washed in Ptw/5mM 

Levamisol (Sigma) at 4°C (4xl hour) and transferred to chromogenic buffer 

(lOOmM Tris-HCI pH 9.5, 50mM MgS04, 100mM NaCI, 0.1% Tween-20, 5mM 

Levamisol) and incubated at room temperature for 10 minutes. The chromogenic 

buffer was replaced by chromogenic buffer+20J..ll/ml NBTand BCIP mix 

(Boehringer). Samples were covered in foil and maintained at room temperature 

to allow the colour reaction to develop. Colour reactions were stopped by rinsing 

in TE and fixed in MEMF A. Samples were then dehydrated in methanol and 

cleared in 2: I benzyl benzoate: benzyl alcohol (BDH) prior to photography. 
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CHAPTER 4 

Isolation of thyroid hormone (Triiodothyronine) T3-induced genes by DDRT­
peR 

4.1. Introduction 

Until recently analysis of changes in gene expression relied mainly on subtractive 

hybridisation or differential hybridisation used to identify genes that are expressed 

in only one cell type of respective pairs of cells. These are mainly qualitative 

methods which do not allow quantitative comparisons. In addition, these methods 

are time consuming and not always satisfactory. 

A method recently published by Liang and Pardee (1992) allows identification and 

isolation of genes that are differentially expressed. This technique was used to 

attempt to identify genes regulated by thyroid hormone (triiodothyronine T3) in 

Xenopus laevis tadpole tails. 

4.2. Treatment of Xenopus laevis tadpole tails stage 52 with 5xl0-9 .M T3 

4 .. 2.1. Introduction 

Amphibian metamorphosis IS a post-embryonic process that systematically 

transforms different tissues in a tadpole. Thyroid hormone plays a causative role in 

this complex process by inducing a cascade of gene regulation. While natural 

metamorphosis does not occur until endogenous thyroid hormone has been 

synthesised, tadpoles are competent to respond to exogenous thyroid hormone 
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shortly after hatching. In addition, even though the metamorphic transitions of 

individual organs are all controlled by thyroid hormone, each occurs at distinct 

developmental stages. Recent molecular studies suggest that this competence of 

premetamorphic tadpoles to respond to the hormone and the developmental stage­

dependent regulation of tissue-specific transformations are determined in part by 

the levels of thyroid hormone receptors and the concentrations of cellular free 

thyroid hormone. In addition, at least two genes, encoding a cytosolic thyroid 

hormone binding protein and a 5'-deiodinase, respectively, are likely to be critical 

players in regulating cellular free thyroid hormone concentrations. 

One of the more dramatic effects of T 3 and T 4 in metamorphosis is to induce 

complete regression of the tadpole tail. The dependence of this resorption upon the 

local action of the thyroid hormone has been clearly established since isolated 

tadpole tails maintained in vitro in a simple chemically defined medium will 

undergo complete regression in the presence of very low doses of T 3 and T 4 (Tata, 

1994). 

The rate of tail regression was determined by daily measurements of its length as a 

result of T3 stimulation (see Figure 8). In addition, Figure 9 depicts the 

morphology of stage 52 tail explants, representative of six samples cultured in 

multiwell dishes. In culture, wells 1, 2 and 5, showed a highly conserved dorsal 

and ventral fins on each side of the central body composed of muscle and 
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connective tissue, skin and muscle were observed after 5 days of the 

commencement of the experiment. By this time 5xlO-9 M T3 caused the total loss 

of both fins as well as considerable loss of connective tissue, skin and muscle 

(wells 3,4 and 6). 

In transverse sections of the tails cultured, both the more substantial ventral and the 

smaller dorsal fins are easily seen in the untreated tails. The mesenchyme and the 

closely packed muscle fibres surrounding the central notochord, spinal chord and 

connective tissue are also clearly seen. In parallel with the shortening of the tail 

length, transverse sections revealed the total elimination of dorsal and ventral fins 

as well as connective tissue accompanied by considerable compaction and loss of 

muscle tissue upon addition of 5xlO-9 M T3 (Figure 10). 
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FIG 8. Cultured tail regression induced by triiodothyronine (T
3
). 

The rate of tail regression was detennined by daily measurements 
in cultures of stage 52 Xenopus laevis. Symbols for the controls 
and T3 treated samples are indicated. Day 0 indicates tail explants 

without any additives; Day I to 5 represent tail explants treated 
-9 

with 5 xlO M T3. 
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FIG 9. Effect of triiodothyronine (T3) on Xenopus laevis tadpole 
tails stage 52 in organ culture. Tadpole tails were cultured in 
multi-well dishes for 24 hrs before the hormone was added. 
Additions: well 1, 2,5; control; well 3,4,6; 5x 1 0-9M T)" Note in 

culture well 1,2,5 the highly conserved dorsal and ventral tail fins 
on each side of the central body, composed of muscle and 
connective tissue, 5 days after the commencement of the 
experiment. By this time 5x10-

9
M T3 caused a considerable loss 

of connective tissue, skin and muscle (wells 3,4 and 6). 
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FIG 10. Histological sections of stage 52 Xenopus laevis tadpole 
tails after 5 days in culture and following treatment with 5x 1 O·9M 
T3 stained with eosin and hematoxylin. 

Panel A. Shows the more substantial ventral and the smaller 
dorsal fins in the untreated tails. The mesenchyme and the closely 
packed muscle fibers surrounding the central notochord, spinal 
chord and connective tissue are also clearly seen. 

Panel B. Reveals total elimination of dorsal and ventral fins as 
well as connective tissues accompanied by considerable 

compaction and muscle loss upon the addition of 5x 1 O·9M Tr 

Abbreviations: DTF and VTF; dorsal and ventral tail fins; SC, 
spinal cord; NC; notochord; M, muscle. 
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4.3. Differential display reverse transcriptase polymerase chain reaction 

DDRT-PCR 

RNA extracted from stage 52 Xenopus laevis tadpole tails following their treatment 

regimes was subjected to DDRT-PCR. Each of the set of twelve 3' primers were 

used to prime reverse transcription reactions. Following RT the subpopulation of 

cDNAs generated were introduced to a PCR reaction primed by the same 3' primer 

that was present for the cDNA synthesis and a 10 mer 5'primer arbitrary in 

sequence. The 5'primer used was the same in all differential PCR reactions 

performed, this primer was termed 504 and had the sequence AGACTTCGAG. 

The resulting PCR products were compared across the treatment regimes, side by 

side, following electrophoresis on a 6% denaturing acrylamide gel and 

autoradiography. 

In order to limit the number of false positives that are isolated, it is important to 

obtain reproducible RT-PCR band patterns with the system under investigation. 

This has been achieved with the method outlined in the methods section by 

optimising the annealing temperature. 

Duplicate reactions ensure that bands are reproducible and therefore likely to 

represent a defined priming site. This reproducibility enhances the possibility that 

differences seen in the band pattern are more likely to indicate differentially 

expressed genes. With this in mind, only bands indicating differential gene 
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expression in duplicate were isolated (figure 11). These gels were repeated twice 

to ensure that the band pattern obtained in the first gel is similar to the one in the 

second gel when repeated. 

The primers that generated clear banding patterns varied in number of distinct 

bands present in a track. The number of bands varied from 50-100 from a single 

gel run, the size of these products was in the range between 100-350 bases. The 

majority of the bands were present at similar intensity across the treatments. 

I was keen to isolate genes that altered in response to thyroid hormone and so I was 

looking for bands either stronger or weaker (Le. up-regulated or down-regulated) by 

thyroid hormone. From the four sets of reactions that gave good banding patterns it 

was possible to select ten bands that appeared to be obviously differentially 

expressed, these ten bands represent 1 % of the total number of bands that were 

looked at. Of these ten bands eight were up-regulated by thyroid hormone and two 

were down-regulated. Obtaining more differential bands by varying the run length 

of the acrylamide gel and by substituting in different 5' primers in the peR remains 

possible. The ten differential bands were excised from the gel and the DNA eluted, 

ready for further characterisation. 
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FIG 11. An example of differential display technique (DDRT­
PCR) on total RNA extracted from thyroid hormone treated 

-9 
(5xlO M T

3
, lanes 1,3,5,7) and untreated, (lanes 2,4,6,8) 

Xenopus laevis tadpole tails. The autoradiograph shows the 
banding pattern obtained from two sets of primers. (i) 5'Primer-
504 (ii) 3' Primer- T12CA on lanes (1,2,5,6) (iii) 5' Primer-

504 (iv) 3' Primer- T12GC on lanes (3,4,7,8). Duplicate gels 

ensure the reproducibility of the DDRT-PCR. Only bands in 
duplicate were isolated. xL52 band is indicated by arrow. 
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4.4. Excision, reamplification and cloning of differential bands 

Differentially expressed bands were identified on the autoradiograph oriented on 

the gel by lining up the radioactive ink mark. After developing the film, cDNA 

bands of interest were located by cutting through the film. A scalpel blade was 

used to cut the gel slice. The gel slice was then transferred to an eppendorf tube 

containing 50111 ofNAE (300mM sodium acetate, ImM EDTA). The tube was left 

at room temperature overnight to allow DNA to elute from the gel slice. 200ng of 

carrier glycogen was added and phenol extraction was carried out, after removing 

the acrylamide slice. Nucleic acids were precipitated from the aqueous phase at -

20°C for one hour following the addition of two volumes of ethanol. Nucleic acids 

were then pelleted by centrifugation and the pellet was dried in a vacuum drier and 

resuspended in 20111 of distilled water. 7111 of this eluted DNA was reamplified in a 

40111 PCR reaction volume using the same primer set and PCR conditions as used 

in the mRNA display except the dNTP concentrations were 2011M and no [a35S]_ 

dA TP as was added. IOIlI of PCR samples were run on a 1% agarose gel and 

stained with ethidium bromide which showed the majority of amplifications to 

have worked (see figure 12.). These PCR products were phosphorylated using T4 

polynucleotide kinase and electrophoresed on a 1 % agarOse gel, the correct PCR 

product was cut from the gel and purified using GENECLEAN II (see Methods 

3.14.1.). The PCR products were then ligated into the dephosphorylated Hinc/I site 

pBluescript KS vector. Five of these ten differential cDNAs were selected, 

reamplified, and cloned (see Figure 13). Because of the time constraints, only one 
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clone was proceeded with for further characterisation at any extent. The remaining 

samples were stored at -20oe for future use. 

4.5. Sequencing differential products 

The identified clones (Figure 13) for each differential band, were then sequenced 

by both the dideoxy chain termination method using a sequenase version 2.0 kit 

(Stratagene) and the automated sequencing utilising the pBluescript T3 primer. 

Depending on the orientation of the insert this was sequenced either from the 

polyadenylate tailor the 5' end. The sequence obtained in each case was very NT­

rich, a characteristic of 3'untranslated sequence, with no significant open reading 

frames. These sequences (see Appendix B), were in turn used to search the 

GenEMBL nucleotide sequence databases, using the non-redundant BLAST search. 

Due to the small size of the inserts, sub cloning steps to obtain complete sequence 

were not needed. 
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FIG 12. Differential display PCR products eluted from 6% 
polyacrylamide gel and amplified further in a second PCR. After 
amplification, these products were analysed on 1 % agarose gel 
and visualised by ethidum bromide under the UV illuminator. The 
products were run side by side along with DNA ladder. The size of 
each PCR product was determined. xL52 band is indicated; other 
bands: 1, 3,4, 5 correspond to DDTA, DDTC3, DDTD3, DDTE 
respectively. 
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FIG 13. peR products cloned into HincII site cut pBluescript 
(KS). These products represent cDNAs of interest eluted from 
1 % low melting point (LMP) agarose gel, after being purified 
with DNA purification kit (Promega). The cloned cDNAs were 
released from the pBluescript (KS) using restriction enzymes Kpnl 
and Sma!. The size of each clone was determined by using DNA 
ladder marker. (M, marker; xL52 clone is shown along with the 
other cloned products 1,2,3,4. These cloned products (i.e., 
1,2,3,4), refer to the sequenced products in Appendix Bas: 1, 
DDTA; 2, DDTE; 3, DDTC3; 4, DDTD3. 
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4.6. Confirmation of the inducibility of cloned products by RT -PCR 

4.6.1. Introduction 

Levels of individual mRNAs have been analysed by procedures such Northern 

blots, RNase protection. These common methods for detection and analysis of 

gene transcripts, require amounts of total RNA in excess of several micrograms, 

even when examining gene transcripts expressed at high levels. Typically, RNA 

analysed by these methods must be further enriched for mRNA by oligo (dT) 

cellulose chromatography. RT-PCR not only provides a more sensitive method 

requiring smaller amounts of RNA, but in some cases is the only method that can 

be used. For example, the dystrophin gene, defective in patients with muscular 

dystrophy, is expressed at very low levels (representing only 0.01-0.001 % of total 

muscle mRNA), making it difficult to study by conventional methods. RT-PCR 

was successfully used by (Chelly et al., 1988), to study levels of this mRNA in 

clinical samples. The poorly expressed multi drug resistance gene mdr-l has also 

been studied by RT-PCR, whereas conventional methods were unsuccessful at 

finding transcripts (Fuqua et al., 1990; Murphy et al., 1990). In some experimental 

models, genes may be expressed at moderate to high levels, but only in tissues of 

minute size, such as early mouse embryos (Gaudette and Crain, 1991). 

Reverse transcription (R T) followed by polymerase chain reaction (PCR) 

amplification is a widely used, highly sensitive method for the expression analysis 

of low abudance messenger RNAs (Kawaski and Wang, 1989). Oligo (dT), 
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random (hexamer) primers and the peR antisense primer are used as primers for 

the reverse transcription reaction. Oligo (dT) primers are often inefficient for 

transcripts with long 3'untranslated regions, since the efficiency of reverse 

transcription decreases as distance from the primer increases. Both oligo (dT) and 

random hexamer primers are not sequence-specific and, therefore, an alternative 

lies in the use of sequence-specific primers, such as the peR antisense primer 

itself. 

4.6.2. RT-PCR assays to confirm thyroid hormone inducibility of xL 52 clone 

4.6.2.1. Determination of the number of rounds of amplification used in PCR 

with primers designed in this study 

A number of primer sets were designed for use in this study. All peR primer pairs 

were designed using Primer Designer software (Scientific & Educational Software) 

to optimise annealing temperatures and avoid the risk of primer dimer and 

secondary structure formation, which might prevent proper priming. In order to 

establish the conditions at which these primers could amplify the target eDNA. 

RNA from Xenopus tadpole tails isolated at the stage desired for this analysis, was 

reverse transcribed and amplified for various numbers of cycles. The elongation 

factor Ef-l a primers were tested. This primer set was chosen to act as a control, 

since it is non-inducible and varies little in post-neurula stages. The data obtained 

were analysed and the minimum number of cycles required for amplification was 

established. The reason behind this is that because peR amplification is an 
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exponential process, small variations in amplification efficiency can drastically 

affect the yield of products. In addition, the efficiency at the later stages of 

amplification due to depletion of reaction components, diminished enzymatic 

activity, and accumulation of products. Therefore, any attempt to quantitate 

mRNA levels by PCR must be limited to the analysis of products generated only 

during the exponential phase of the amplification. Under these conditions, RT­

PCR can yield reasonably precise information about relative changes in mRNA 

levels. 

The PCR product concentration is proportional to the starting target DNA as long 

as product accumulation remains exponential. The point at which exponential 

accumulation plateau can be roughly estimated by noting the point at which 

continued cycles do not produce significantly increased product yields. 

Preparation of total RNA from tadpole tail explants was described in the Methods 

3.19. Care was taken to avoid contamination of the reactions with either RNase or 

any DNA which could be amplified with the PCR primers; Gilson barrels, plungers 

and seals were routinely cleaned with ethanol and sterilised in a UV plate drier. All 

incubations were carried out using a Hybaid thermal cycler to ensure consistency. 

For reverse transcription (RT) reactions 0.51lg of total RNA was made up to a total 

volume of 20.1111 using freshly thawed milli-Q water (MQW). The diluted RNA 
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was then heated to 75°C for 5 minutes and cooled on ice. Reverse transcription 

mix was made as in Table 6. 

Table 6. Reverse transcriptions for RNA analysis 

Component Amount Final concentration 
per 30~1 

I 00 ~M Random hexamers I~l 3.3 JlM 
lOx PCR buffer 3~1 Ix 
50mM MgCl2 1.8~1 3mM 
10mMdNTPs 1.5~1 500~M 

50 u I ~l RNase inhibitor O.6~1 Iu I ~l 

To each RNA sample 7.9JlI of RT mix was added and the reaction was incubated 

for 5 minutes before adding 2JlI (400 U) of MML V reverse transcriptase (RT ase) 

enzyme and incubating at 42°C for a further hour. Control tadpole tail RNA 

incubated as respective positive and negative controls for each set of reactions. RT 

reactions were immediately heated to 95°C for 5 minutes on completion as apart of 

the thermal cycler program. cDNAs were stored at - 20°C until use. 

Since only I ~l was sufficient for each PCR reaction, the cDNA was first diluted 5x 

with MQW and divided into Sill aliquots after thorough mixing. Each aliquot was 

used in PCR with a primer pair specific to one of the marker gene. PCR reactions 

were set up on ice in a 2S~1 volume by adding 20111 of PCR reaction mix, as in 

Table 7. 
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Table 7. Components of the PCR reaction 

Component Amount per Final concentration 
25111 

lOx PCR 2.5~1 Ix 
50mMMgCh 0.75111 l.5mM 
WmMdNTPs 0.5111 200l1M 
IOI1Ci 1111 fa 32P1_ dGTP 0.05111 0.511Ci 
12.511M each Left/Right Primer 2111 IJlM each 
Mix 
MQW 14.1111 
5 u 1111 Taq DNA Polymerase 0.1111 O.5U 

After an initial denaturing step (94°C for 3 minutes) PCR reactions were cycled as 

below for the appropriate number of rounds of amplification. 

Annealing temperature (XOC) for most primer sets was 55°C. 

Denaturing 
Annealing 
Extension 

30 seconds 
1 minute 
1 minute 

9JlI of each PCR reaction was mixed with 6JlI of formamide loading buffer (95% 

deionised formamide, 10mM EDT A pH 8.0, 0.1 % xylene cyanol, 0.1 % 

bromophenol blue), boiled for 5 minutes and loaded onto a OAmm thick 6% 

sequencing gel. Gels were run at 20 watts for 1 hour, fixed, and dried. 

RNA isolated from Xenopus laevis tadpole tails after a treatment regime in exactly 

the same way as was described for the differential display system was used as a 

template for reverse transcription to complementary DNA (cDNA), using random 

hexamers. The cDNA in turn is used as a template for PCR, using Ef-1a upstream 

and downstream primers to act as controls and gene specific primers termed 
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GSPland GSP2 designed to amplify a selected cDNA region (see Table 8) 

Subsequently, the PCR product was analysed on a 6% polyacrlamide gel. 

Table 8. Primer sequences used in RT-PCR assay 

PRIMER SEQUENCE 
5'~3' 

Gene-specific primer 1 GSPI TGTGGCTGTTTCTATGCCAACG 
Gene-specific primer 2 GSP2 CAGTCTCTTGGCCAATCTT 
Ef-l a Upstream primer CAGATTGGTGCTGGATATGC 
Ef-l a Downstream primer CACTGCCTTGATGAC 

The amplified cDNA was identified by the size of the PCR product which is 

predicted from the knowledge of the cDNA nucleotide sequence of clone xL52. 

An example of such induction by the T3 is shown in Figure 14. 

The induction seen in this assay is presumed to be real because the signal for the 

control primers of the elongation factor (Ef-Ia) is constant across the two samples. 

The untreated track shows a low level of expression compared to the level of 

expression seen in T 3-treated track. 
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FIG 14. RT-PCR to confirm differential expression of cloned 
PCR products. Two gene specific primers were designed from 
xL52 clone and used for amplification procedure. Ef-l a was 

-9 
used as a control on cDNA prepared from both T3-treated 5xl0 M 

for 48hrs and C-untreated control tadpole tails. To ensure linear 
amplifications, range of eDNA concentrations (O.4J.lI, O.8J.lI, 1.6J.ll) 
were included: (No reverse transcriptase as a negative control is 
also included); this range of eDNA concentrations was used as a 
standard, and incorporated in all R T -PCR figures: 15 and 23. The 
products were analysed on 6% polyacrylamide gel. 
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4.7. Summary Discussion 

Our experiments were designed to isolate and then characterise the responsive 

genes in amphibian tail, that occur during T 3-induced regression, the final change 

in amphibian metamorphosis. The entire process is cell autonomous (Brown et al., 

1996). Even though the target organ consists of a variety of cell types, they have a 

single uniform fate, namely resorption. The tail can be cultured in a salt solution 

for many days, and it responds to TH in a fashion that cannot be distinguished from 

the normal process of tail resorption that occurs at the climax of metamorphosis 

when endogenous TH is at its highest level (Brown et al., 1996). 

Differential display performed on RNA samples isolated from cultured 

triiodothyronine T 3 treated and untreated Xenopus laevis tadpole tails, produced ten 

differentially expressed bands. Eight were up-regulated and two were down­

regulated in response to the thyroid hormone T3. These cDNA fragments isolated 

from a displaying sequencing gel, were reamplified in a second PCR and used for 

RT-PCR analysis to confirm the up-regulation of these genes in response to T3 

stimulation. 

The next step is to determine the identity of these cDNA fragments by sequencing 

analysis. However, because a decamer (at upstream) and T12MA (at downstream) 

were used for the differential display PCR, neither of these primers is long enough 

to specifically prime the sequencing reactions using a normal sequencing protocol. 
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Therefore, the isolated cDNA fragments from the differential display was 

subcloned into a cloning vector. The differentially gel isolated bands of interest 

were cloned into pBluescript (KS) vector cut at HincII site. These cloned products 

were completely sequenced using both sequenase version 2.0 kit (Stratagene) and 

automated sequencing. 

Sequence analysis and database searches showed that none of the clones revealed 

significant matches to any of the known genes, since the PCR technique tends to 

produce sequences derived from 3'untranslated region of mRNA. These 

3 'untranslated sequences are typically AfT rich, and will not often be useful in 

database searching especially because the untranslated regions are poorly conserved 

among species. 

I was then keen to look at the identity of these sequenced differentially PCR 

products in more details. The first step towards identifying these bands of interest 

was to confirm that they were in fact, products generated as a result of thyroid 

hormone induction T3. Therefore, it was decided to use the RT-PCR technique as a 

tool for this purpose. 

RT-PCR assays showed that of these thyroid hormone treated products, only one 

clone appeared to be up-regulated by the hormone which was termed xL52. 

132 



Having confirmed the inducibility of this clone, as an initial step towards gene 

identification, isolation of longer sequences from the coding region of clone xL52 

became priority, since the original cDNA fragments isolated by the differential 

display which were obtained by priming mRNA with oilgo (dT) were therefore 

more likely to be located within or near the 3' end of their respective mRNA. The 

choice of cDNA library was based on tissue distribution of the clone xL52 among 

various Xenopus laevis adult tissues. 
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CHAPTERS 

Isolation of eDNA clones from adult Xenopus laevis Kidney library 

5.1. Distribution of xL 52 clone among Xenopus laevis adult tissues 

Having confirmed the thyroid hormone inducibility, it was decided to look at the 

distribution of xL52 clone mRNA among the various Xenopus laevis adult tissues 

as an initial step towards the isolation of longer sequences from the coding region 

of xL 52 clone using cDNA libraries. 

The same technique ,RT-PCR, was applied on total RNA extracted from brain, 

kidney, liver and muscle to see how xL52 clone was distributed through the various 

Xenopus laevis adult tissues. Total RNA isolated from the above mentioned tissues 

was reverse transcribed and cDNA was synthesised. The cDNAs were then 

subjected to amplification procedure. using the same gene specific oligonucleotide 

primers for the confirmation of thyroid hormone inducibility. Assays were 

performed on comparable samples using Ef-l a primers to confirm integrity and 

quality of RNA samples. The xL52 clone was observed to be most abundant in 

brain, kidney, liver and less abudant in muscle as shown in the autoradiograph 

Figure 15. 
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FIG 15. The distribution of clone xL52 in Xenopus laevis adult 
tissues. RT-PCR analysis was performed on total RNA extracted 
from liver, kidney, muscle and brain adult frog. Gene specific 
primers termed GSPI and GSP2 were designed from clone xL52 
and used for the amplification procedure. To ensure cDNA 
quality, range of cDNA concentrations were included (O.4~I, 

O.8~1, 1.6~l). A negative control (No RTase) is also included to 
show the lack of contamination from genomic DNA. The PCR 
products were analysed on 6% polyacrylamide gel. The clone 
xL52 was represented in all the tissues examined as seen in the 
Figure below. The elongation factor-I a is also included as 
control with these preparations.. Abbreviations: M , muscle; Br, 
brain; K, kidney; L, liver. 
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5.2. Xenopus laevis Kidney cDNA library 

Uni-ZApTMXR Vector 

The cDNA library (Xenopus, outbred adult) was purchased from (Stratagene), and 

was performed as essentially described by the manufacturer. 

Description: 

Primer: Oligo dT 

Insert Size: > 0.5 kb 

Average Insert Size: 1.0 kb 

Cloning Site: EeoR! and }{hoI 

Primary Plaques: 2.0x106 pfu 

Estimated Background: 2% nonrecombinants 

Estimated Titer: 2.5xl06 pfu / ml 

Actin Screen: 0.26% 

Host Strains: The XLI-Blue MRF' strain is the recommended host strain for 

amplification and screening of Uni-ZApTM XR cDNA libraries. The XLI-Blue 

MRF' strain is a restriction minus strain and allows blue / white color selection of 

recombinant clones when grown on plates containing IPTG and X-gal. 

fl Helper Phage: 

VCSM13 (fl): lxlOll pfu/ml, supercoiled single-stranded DNA migrates at -6 kb 

on an agarose gel (for single-stranded rescue). 

ExAssist™ helper phage (M13): lxlOlopfu/ml, supercoiled single-stranded DNA 

migrates at -5 kb on an agarose gel (for excision). Exassist helper phage has a-
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complementing ~-galactosidase sequences, which may interfere with sequencing or 

site-directed mutagenesis where oligonucleotide primers hybridise to ~­

galactosidase sequences (e.g., M13-20 primer). It was therefore, recommended 

VCSM 13 helper phage for single-stranded rescue and ExAssist for excision of the 

Bluescript phagemid from the ZAP vector. 

S.2.1. General Vector Description 

The Uni-ZAP XR vector system combines the high efficiency of lambda library 

construction and the convenience of a plasmid system with blue-white color 

selection. The Uni-ZAP XR vector is double digested with EcoRI and XhoI and 

will accommodate DNA inserts from 0 to 10 Kb in length. The Uni-ZAP XR 

vector can be screened with either nucleic acid probes or antibody probes and 

allows rapid in vivo excision of the pBluescript SK( -) phagemid, allowing the 

insert to be characterised in a plasmid system. The polylinker of pBluescript SK( -) 

has 21 unique cloning sites flanked by T3 and T7 promotors and a choise of 6 

different primer sites for DNA sequencing. The phagemid has the bacteriophage f1 

origin of replication, allowing rescue of single-stranded DNA, which can be used 

for DNA sequencing or site-directed mutagenesis. Unidirectional deletions can be 

made with exonuclease III and mung bean nuclease by taking advantage of the 

unique positioning of 5' and 3' restriction sites. Transcripts made from the T3 and 

T7 promotors generate riboprobes useful in Southern and Northern blotting, and 
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the lac-Z promoter may be used to drive expression of fusion proteins suitable for 

Western blot analysis or protein purification. 

The library was synthesised using the ZAP-cDNA synthesis method. The linker­

primer was designed with a GAGA sequence to protect the XhoI restriction enzyme 

recognition site and an I8-base poly(dT) sequence. The restriction site allows the 

finished cDNA to be inserted into the vector unidirectionally in the sense 

orientation with respect to the lac-Z promotor. 

The linker-primer is a 50-base oligonucleotide with the following sequence: 

5' GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAG(T)18 3' 

GAGA sequence XhoI 

The adaptors are comprised of 9- and 13-mer oligonucleotides, which are 

complementary to each other and have an EcoRI cohesive end. The adaptors have 

the following sequence: 

5' AATTCGGCACGAG 3' 

3' GCCGTGCTC 5' 

The pBluescript SK( -) plasmid in the Uni-ZAP XR vector contains the N-terminus 

of the lac-Z gene, which can be a-complemented by the specific host strain used. 

There are 36 amino acids from the MET sequence to the EcoRI site. A total of 131 

amino acids are coded for, but this is interrupted by the large polylinker. 
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5.3. Isolation of full length cDNA clones from adult Xenopus laevis Kidney 

library screened with xL52 clone 

5.3.1. Introduction 

A cDNA library is different from a genomic library in that it represents only a small 

subset of all genes in a genome. cDNA libraries use mRNA as a starting point, and 

thus represent only the expressed sequences in a given cell type, tissue or stage of 

embryonic development. The decision whether to construct a genomic or a cDNA 

library depends on the question at hand. If you are interested in a particular gene, it 

may be easier to prepare a cDNA library from a tissue that expresses that gene. For 

example, red blood cells make large amounts of hemoglobin, and most of the 

mRNA in these cells is j3-globin mRNA. 

A cDNA library prepared using mRNA isolated from red blood cells is a direct way 

to isolate a globin cDNA. If the regulatory sequences adjacent to the globin gene 

are of interest, then a genomic library would need to be constructed, since these 

regulatory sequences are not present in the globin mRNA and would not be 

represented in the cDNA library. 

5.4. Screening of the Xenopus kidney cDNA library 

To analyse clone xL52, the full length cDNA was isolated by screening adult 

Xenopus laevis kidney cDNA library. Each screen was carried out as described in 

the Methods 3.l1. Duplicate lifts were made to allow for the detection of false 
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positives. Nitro-cellulose membranes were oriented by pushing a sterile needle, in 

three different places through into to the agar plate, the holes were then marked in a 

marker-pen on the bottom of the petri-dish. Autoradiography were aligned with the 

filters using radioactive ink and A and B lifts were exposed to X-ray films, so the 

detection of positive signals could made by simply lying A and B autoradiographs 

together on a lightbox. Clone xL52 was labelled by digesting the insert from the 

pBluescript using restriction enzymes Kpn I and Sma I. A 100ng cDNA insert was 

labelled with [a32P]-dOTP by random priming hexamers (Pharmacia), and the 

unincorporated nucleotides were removed using Sephadex 0-50 Columns 

(Pharmacia). Probe was added after prehybridising the filters and hybridisation 

was carried out for 16 hours at 42°e. Wash stringencies were carried out as 

follows (twice in 2x SSC, 0.1 % SDS at room temperature for 10 minutes each; 

twice in 0.2x sse, 0.1 % SDS at 65°e for 30 minutes each). Filters were then dried 

before exposing to X-ray film, at -70oe with an intensifying screen. 

5.4.1. Primary screen using clone xL52 probe 

Screening was performed as described in the Methods, using the following wash 

conditions (twice for 10 minutes each in 2xSSe, 0.1 % SDS at room temperature; 

twice for 30 minutes each in 0.2x sse, 0.1 % SDS at 65°e). The probe screened 

for cDNAs containing the untranslated region present in clone xL52. The use of a 

Xenopus laevis kidney cDNA library was decided because of the signals detected in 

kidney, brain, muscle and liver of Xenopus adult tissues by RT-PCR assay 
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suggesting that this clone would be represented at some level. Approximately 

6x 1 05 phage were screened with the clone xL52 probe described in the Methods 

section. Replica filter lifts were taken from each plate. Seven positive plugs were 

obtained from the first round of screening, these were picked using the large end of 

sterile blue tips. The phage plug was stored in 500J.lI SM buffer and lOJ.ll 

chloroform at 4°e. 

5.4.2. Secondary and tertiary screen 

One phage plug, termed R4 from the originally picked 7 positives was replated at a 

lower density of approximately 500 p fuJp late. The screening procedure was then 

repeated and the X-ray film exposed for two days, positive plaques were detected 

on the filters. 6 positives were picked using sterile inverted yellow tips and stored 

as before. One phage plug was replated at a lower density of -50 pfu/plate. The 

screening procedure was then repeated and exposed to X-ray film for 24 hours, 

positive plaques were seen on the filter. Two positives were picked this time using 

sterile inverted yellow tips and stored as above. The results showed all plaques to 

be positive and plaque pure. An example of the third round screen is shown in 

Figure 16. 
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FIG 16. Third round screen of positive cDNA clone from 
Xenopus laevis kidney library. An autoradiograph showing the 
replica filters. 
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5.4.3. In vivio Excision ofpBluescript from the lambda Uni-ZAP XR vector 

The insert-containing pBluescript vector had to be excised from the plaque pure 

isolates. This was done using the ExAssist SOLAR system (Stratagene see 

methods 3.13.) which allows efficient excision of the pBluescript phagemid from 

the Uni-ZAP-XR vector. The ExAssist helper phage contains an amber mutation 

that prevents replication of the phage genome in a non-suppressing E. coli strain 

such as SOLAR cells. This allows only the excised phagemid to replicate in the 

host, removing the possibility of coinfection from the ExAssist helper phage. The 

excision was performed according to the manufacturer's instructions. This plaque 

pure isolate was taken for further analysis below. 

5.5. Restriction map of clone xth-2 cDNA 

A restriction map is a compilation of the number, order, and distance between 

restriction enzyme cutting sites along a cloned segment of DNA. Restriction maps 

provide information that can be used for sub cloning fragments of a gene, or for 

comparing the organisation of a gene and its cDNA so as to identify exons and 

introns in the genomic copy of the gene. 

Fragments generated by cutting DNA with restriction enzymes can be separated by 

gel electrophoresis and visualised by staining the DNA with ethidium bromide and 

viewing under ultraviolet illumination. The size of the individual fragments can be 

determined by running a set of marker fragments of known size on the same gel. 
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Restriction maps provide an important way of characterising a DNA segment, and 

it can be constructed in the absence of any information about the coding capacity or 

function of the mapped DNA. In conjunction with other techniques, restriction 

mapping can be used to define the boundaries of a gene, and it provides a way of 

dissecting the molecular organisation within a gene and its flanking regions. 

Mapping can also serve as a starting point for the isolation of an intact gene from 

cloned segments of DNA, and it provides a means for locating mutational sites 

within genes. 

Restriction enzyme cutting sites can be used as genetic markers, thus reducing the 

distance between sites on a map, increasing the accuracy of maps, and providing 

reference points for the correlation of genetic and physical maps (Klug and 

Cummings, 1997). 

Figure 17 shows standard single and double restriction enzyme digests used to 

determine the restriction enzyme map from clone xth-2 that contains cutting sites 

for restriction enzymes. For the construction of this map, a number of samples of 

clone xth-2 were digested with restriction enzymes, one with EcoRi and one with 

XhoI and one with both EcoRi and XhoI. The fragments generated by digestion 

with the restriction enzymes were separated by electrophoresis. The sizes of the 

separated fragments were estimated by comparison to a set of standard markers run 

in adjacent lanes. To construct the map, the fragments generated by the restriction 
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enzymes were analysed (see Figure 18 for the restriction enzyme sites of clone xth-

2) 

When the DNA was cut with the restriction enzyme XhoI. no fragments were 

produced except that the cloning vector pBluescript (SK) was linearised with this 

enzyme. 

When the cloned DNA (xth-2) was cut with EcoRl. two fragments were produced. 

one 3.3 Kb which represented the cloning vector plus an additional 300 bases from 

the insert xth-2. and one -2.2 kb represented the clone xth-2 on its own. This was 

confirmed by the double restriction enzyme digests. Using both restriction 

enzymes. EcoRI and XhoI, three fragments were generated: 3 kb for the cloning 

vector, -2.2 kb and -0.3 kb for the insert xth-2 respectively. 

Taken together, the results show that there was one restriction site for EcoRI as 

indicted by the single and double restriction digestion. but there was no site for the 

restriction enzyme XhoI as indicated by the single restriction digestion. The same 

analysis was carried out on the other restriction enzymes. 

Kpnl, SmaI, XbaI, Sac/I, EcoRV, BamHI, Bgll, Clal. DraI. Notl. Sall. Pstl. DralIl. 

or Bgll were found not to cut the molecule xth-2. However. HindlIl and Stu] 

restriction digestion each released two fragments. indicating the presence of one 
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site for each enzyme. In addition, HinclI, digestion released four fragments, 

indicating the presence of three sites for the enzyme. 

146 



FIG 17. illustrates examples of the construction of restriction 
map of clone xth-2. The cloned cDNA was subjected to 
standard single and double restriction digests: (A): M, marker; 
1, the uncut plasmid containing the insert; 2, linearised DNA 
with restriction enzyme XhoI; 3, single restriction digest with 
EcoRI; 4, double restriction digest with EcoRI and XhoI. (B): 
represents single restriction digest with HincII. (C): shows 
single restriction digest with Pst!, and HindIII. 
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FIG 18. Restriction enzyme sites of clone xth-2 eDNA isolated 
using the differential display clone xL52 probe. 
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5.6. Sequence analysis of xth-2 

In a sense, the ultimate characterisation of a cloned DNA segment is the 

determination of its nucleotide sequence. The ability to sequence cloned DNA has 

added immensely to our understanding of gene structure and the mechanisms of 

gene regulation. 

The DNA sequencing method provides information about the organisation of genes 

and the nature of mutational events that alter both genes and gene products, 

confirming the conclusion that genes and proteins are collinear molecules. 

Sequencing has also been used to study the organisation of regulatory regions that 

flank prokaryotic and eukaryotic genes, and to derive the amino acid sequence of 

proteins. 

In addition, to identify DNA defects that cause mutant phenotypes, DNA 

sequencing is used to study the organisation of a gene (the number of introns and 

exons and their boundaries), to provide information about the nature and function 

of proteins encoded by genes, including the size, number and type of domains 

(membrane spanning, DNA binding) and relationship to similar proteins and 

proteins from other organisms (Klug and Cummings, 1997). 

The sequencIng strategy adopted for clone xth-2 is outlined in Figure 19. 

Sequencing (by the dideoxy chain termination method and automated sequencing) 
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was from double stranded plasmid templates, derived from pBluescript subclones, 

utilising T3 and T7 primers. Oligonucleotides were derived internally from both 

ends of the clone (see Table 9) and sequencing was carried out until overlapping 

sequences were obtained, indicating that the entire clone was completely 

sequenced. Presumptive 5' and 3' ends of the clone were allocated following 

identification of the probe sequence. The cDNA length of xth-2 clone is -2.5kb of 

an open reading frame starting from the AUG, in reading frame 1, at the 166nt 

position and ending at a T AA stop site at the 2377nt position. There are no stop 

codons upstream of the AUG site at the 166nt position. Therefore, it can be 

assumed that the xth-2 eDNA does not appear to be a full length The nucleotide 

sequence obtained for the clone xth-2 in the presumptive coding region is shown in 

Figure 20. The longest open reading frame from the in frame methionine is 

indicated. The -2.5kb eDNA (xth-2) includes a 2.2 kb open reading frame capable 

of encoding a protein of 737 amino acids with a calculated molecular mass of -84.0 

kD. An alignment of the amino acid sequences of all known Hem family proteins 

in database, showing regions o.f similarity with xth-2 are shown in Figure 21. Also, 

a comparison of members of Hem family as a matrix of amino acid residues is 

shown in Figure 22. 
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FIG 19. Sequencing strategy of clone xth-2. The xth-2 cDNA was 
first sequenced at both ends using pBluescript T3 and T7 primers. 
Arrows indicate length read in each sequencing reaction and 
asterixes indicate automated sequencing reactions using internal 
primers. SP 1, SP2, SP3 primers were used for sequencing from 
the S'end of the clone; Rl, R2, R3 primers were used for 
sequencing from the 3' end of the clone. SP3 and R3 primers 
indicate the overlapping region. 

Table 9. Sequencing Primers Used For Clone xth-2 

PRIMER SEQUENCE 
5'~3' 

pBS SK (T3) ATTAACCCTCACTAAAG 
pBS SK (T7) AATACGACTCACTATAG 
SPl CCGTCATGCAGACAACATTC 
SP2 TAGTGGAGATGTTGGTGGAGAC 
SP3 CAATCAGTCAAGCCGTT 
Rl ATAGGCTGGAGGAAGCAAG 
R2 CATCTCTCAGTGCTTCCTGTG 
R3 CATTGCTTACCTGCCTCAGT 
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FIG 20. Nucleotide sequence of xth-2 cDNA excluding linkers. The first in frame 
methionine is underlined at 166nt position (but translation in vivo probably runs 
through the region upstream, as this is an incomplete cDNA, see text). Stop codon 
(TAA) is underlined at 2377nt position. 

1 AACAAAAGGA TAAATGACAT CAGGGAATGT AAAGAGAATG CAGTATCACA 

51 TGCAGGAAGC ACACACAGAG AAAGGCGCAA ATTTTTAAGG TCTGCATTGA 

101 AAGAACTTGC TACCGTACTT GCCGATCAGC CAGGCCTTCT GGGTCCCAAA 

151 GCACTTTTTG TATTCATGGC ATTATCTTTT GCCCGTGATG AAATAATATG 
MAL S FAR DEI I 

201 GCTACTCCGT CATGCAGACA ACATTCCCAA GAAATTTGCA GATGACTTCA 
W L L R HAD NIP K K FAD D F 

251 TGGATAAGCA CATTGCTGAG CTCATATTTT ATATGGAAGA ACTTCGAGCG 
M D K H I A ELI F Y M EEL R A 

301 CATGTACGGA AGTATGGACC AGTGATGCAG CGATACTATG TGCAGTACTT 
H V R K Y G P V M Q R Y Y v Q Y 

351 GTCTGGCTTT GATGCAGTTG TATTAAATGA GCTTGTTCAG AATCTTTCTG 
L S G FDA V V L N E L V Q N L S 

401 TGTGCCCTGA GGATGAATCC ATTATAATGT CGTCATTTGT AAACACTATG 
V C P E DES I I M S S F V N T M 

451 ACCTCCCTGT GTGTGAAACA AGTTGAAGAT GGAGAGGTTT TTGACTTCAG 
T S L C V K Q E V D G E V F D F 

501 AGGAATGAGA CTGGATTGGT TTAGATTGCA GGCATATACC AGTGTTTCCA 
R G M R L D W F R L Q A Y T S V S 

551 AAGCATCGTT AAGTCTCGCT GACCACAGAG AACTTGGAAA AAT GAT GAAC 
K A S L S LAD H R E L G K M M N 

601 ACTATAATAT TCCATACCAA AATGGTGGAT TCCTTAGTGG AGATGTTGGT 
T I I F H T K M V D S L V E M L 

651 GGAGACATCA GACCTTTCAA TATTTTGCTT TTACGGCCGA GCTTTTGAAA 
VET S D LSI F C F Y G R A F E 

701 AAATGTTTCA GCAGTGTTTG GAGCTGCCTT CCCAGTCAAG ATATTCCATC 
K M F Q Q C L E L P S Q S R Y S I 

751 CCCTTCCCAC TTTTATGCAC TCACTTTATG AGTTGCACTC ATGAACTTTG 
P F P L L C T H F M S C THE L 

801 CCCTGAAGAG CGGCATCACA TTGGAGACCG CAGTTTGTCA CTATGTTACA 
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C PEE R H H I G D R S L S L C Y 

851 TGTTCTTGGA TGAAATGGCA AAGCAAGCTC GAAATCTAAT TACAGACATC 
M F L D E M A K Q A R N LIT D I 

901 TGCACAGAAC AATGTACTCT TTGTGATCAG TTGCTGCCAA AGCACTGTGC 
C T E Q C T LCD Q L L P K H C 

951 CAAAACAATC AGTCAAGCCG TCAATAAAAA GCAGACTGGA AAGAAAGGAG 
A K TIS Q A V N K K Q T G K K G 

1001 AACCAGAAAG GGAAAAACCT GGAGTTGAAA GCTTGAGAAA GAATAGACTT 
E PER E K P G V E S M R K N R L 

1051 GTGGTAACAA ACTTGGATAA ATTGCACACT GCACTTTCAG AGCTCTGTTT 
V V T N L D K L H TAL S E L C 

1101 CTCTATCAAC TATGCACCAA ATATGGTTGT ATGGGAACAC ACATTTACCC 
F SIN YAP N M V V W E H T F T 

1151 CAAGAGAGTA TTTGACGTCG AACTTGGAAA TCCGCTTTAC CAAGTCTATT 
PRE Y L T S N LEI R F T K S I 

1201 GTTGACATGA CCATGTACAA TCAAGTCACC CAAGAGATTG CTAAACCTTC 
V D M T M Y N Q v T Q E I A K P 

1251 TGAGTTGTTT ACAGTGTTAG AAGCCTACAT GACTGTACTC CAGTCAATAG 
S ELF T V LEA Y M T V L Q S I 

1301 AAAACTATGT GCAGATTGAC ATCACAAGGG TTTTTAACAA TGTTCTACTT 
E N Y v Q I D I T R V F N N V L L 

1351 CAGCAAACTC AACATTTAGA CAGCCATGGA GAGCCAACAA TCACCAGTTT 
Q Q T Q H L D S H G E P TIT S 

1401 ATACACTAAT TGGTATTTGG AAACAAAACT GAGGCATGTA AGCAATGGAC 
L Y T N W Y LET K L R H V S N G 

1451 ATATAGCCTG TTTCCCAGCA AT GAAAG CAT TTGTAAACCT GCCTGGTGAG 
H I A C F PAM K A F V N LPG E 

1501 AATGAGCCTA CTTTTAATGC AGAAGAGTAT CCGATGAGAG CACTCTCTGA 
N E P T F N A E E Y P M R A L S 

1551 GCTGCTGGGA CCATATGGCA TGAAGTTTCT GAGTGAGAGC CTCATGTGGC 
ELL G P Y G M K F L S E S L M W 

1601 ATATTTCCTC ACAGGTGGCT GAGCTTAAGA AACTTGTGGT GGAGAATGTT 
HIS S Q v A ELK K L V V E N V 

1651 GATGTCTTAA CCCAAATGAG GACAAGTTTT GATAAGCCAG AGCAGATGGC 
D V L T Q M R T S F D K P E Q M 

1701 AGCCCTTTTC AAAAGGCTTA CATCCGTTGA CAGTGTCTTG AAGAGGGTCA 
A A L F K R L T S V D S V L K R V 
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1751 CCATTATTGG AGTTATATTG TCTTTCCGAT CTCTGGCACA GGAAGCACTG 
T I I G V I L S FRS L A Q E A L 

1801 AGAGATGTTT TGTCTTACCA CATTCCTTTT CTTGTAAGCT CTGTTGAAGA 
R D V L S Y HIP F L V S S V E 

1851 CTTCAAGGAT CACATTCCTA GAGAGACGGA CATGAAGGTT GCAATGAATG 
D F K D HIP RET D M K V A M N 

1901 TGTATGAGTT ATCATCAGCA GCTGGATTGC CCTGTGAAAT AGACCCTGCC 
V Y E L S S A A G L P C E I D P A 

1951 TTGGTTGTGG CACTGTCCTC TCAAATAGCC TGTCTGCTCA TGGTGTTTGT 
L V V A L S S Q I A C L L M V F 

2001 GGCTGTTTCT ACGTCAACGT 
V A V S T S T 

TGGCCAGCAA CGTCATGTCG 
LAS N VMS 

CAATACAGTC 
Q Y S 

2051 CTGCAATAGA AGGTCATTGC AACAACATAC ACTGTTTGGC AAAGGCATCA 
P A I E G H C N NIH C L A K A S 

2101 ACCAAATTGG CGGCAGCACT ATTTACCATT CACAAAGGGG CATTGAAGGA 
T K L A A A L F T I H K GAL K 

2151 TCGTCTGAAA GAATTCTTGG CGCTTGCATC CTCCAGCCTA CTAAAGATTG 
D R L KEF L A LAS S S L L K I 

2201 GCCAAGAGAC TGATAAAACT ACTACAAGAA ACAGGGAATC TGTTTATTTG 
G Q E T D K T T T R N RES V Y L 

2251 CTGCTAGATA TGATTGTGCA AGAATCGCCA TTCCTGACCA TGGATCTGCT 
L L D M I V Q ESP F L T M D L 

2301 GGAGTCCTGC TTCCCATACG TCTTACTGAG AAATGCGTAC CACGCGGTTT 
L ESC F P Y V L L RNA Y H A V 

2351 ACAAACAGAG TGTCACATCC TCTGCATAAA TATTTACTTT GCGGAACAAA 
Y K Q S V T S S A 

2401 CCAGCGCTCA GTTGAAATGC CTCAATTTTC CCCAGAAACT GTGGTGGAGT 

2451 ACTTTTACTG AATGGTTTGG AAAAACAAAA CAAACAAACA AAAAC 
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FIG 21. Alignment of the amino acid sequences of all known Hem family proteins. Amino 
acid sequence of xth-2 and Hem-2 and aJignment of sequences of all known members of the 
Hem family. Each lane contains 50 residues aligned with each other. Potential membrane­
spanning segments are in bold blue for other members of Hem family. Clone xth-2 sequence 
is on top in bold red. hemJ, Hematopoietic Protein; mh19, House mouse brain protein; 
dhem2, Fruit Fly (Drosophila melanogaster), Nap1 , Norway Rat (Rattus norvegicus) 
(for Nck associated protein). 

1 50 xth2 · ......... · ....... . . · ......... · . · ..... · . · . . . · ... . . 
heml · ..... · . · . · ...... . . . · .. · ..... · . · ..... · . · . . . · . . ... 
mh19 · . · . · . · . · . · ...... . . . · .. · . . ... · . · . . . . . · . · ... · . . . . . 
dhem2 MARPIFPNQQ KIAEKLIILN DRGLGILTRI YNIKKACGDT KSKPGFLSEK 
Napl · . · . · . · .ML RGTEIVYIKF VLKFFKRNSL YNIKKACGDP KAKPSYLIDK 

xth2 
51 100 · ... · . · . · . · ......... · .. · ...... · . . . . . . . . . · . . . . ..... 

heml · ..... · . · . · ......... · ......... · . . . . . . . . . · ....... . . 
mh19 · . · . · . · ... · ... . . . . . . · ......... · ......... · ......... 
dhem2 SLESSIKFIV KRFPNIDVKG .... LNAIVN lKAEIIKSLS LYYHTFVDLL 

Nap1 NLESAVKFIV RKFPAVETRN NNQQLAQLQK EKSEILKNMA LYYFTFVDVM 

101 150 
xth2 · ......... · ......... · ......... · ......... · ......... 
hem1 · ......... · ......... · ......... • •••••••• 10 · ......... 
mh19 · ......... · ......... · ......... · ......... · ......... 
dhem2 DFKDNVCELL TTMDACQIHL DITLNFELTK YYLDLWTYV SLMIVLSRVE 

Nap1 DLRDHVCDLL NTIAVCQVFF DITVNFDLTK NYLDLTVTYT TLMILLSRIE 

151 200 
xth2 · ......... · ......... · ......... · ......... · ......... 
hem1 · ......... · ......... · ......... · ......... · ......... 
mh19 · ......... · ......... · ......... · ......... · ......... 
dhem2 DRKAVLGLYN AAYELQNNQA DTGFPRLGQM ILDYEVPLKK LAEEFIPHQR 

Nap1 GRKAIIRLYN YAHEMTHGGS DREYPRLGQM IVDYEHPLKK MMVEFVPHSK 
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xth2 
hern1 

rnh19 

dhern2 

Nap1 

xth2 
hern1 

rnh19 
dhern2 

Nap1 

xth2 
hern1 
rnh19 
dhern2 
Nap1 

xth2 
hern1 
rnh19 
dhern2 
Nap1 

xth2 
hern1 
rnh19 
dhern2 
Nap1 

201 250 · .. . .. . . . . 
· . . . .. ... . 
· ... .. . . . . . .. . .. . . . . 

LLTSALRSLT SIYALRNLPA DKWREMQKLS LVGNPAILLK AVRTDTMSCE 

SLSDALISLQ MVYPRRNLSA DQWRNAQLLS LISAPSTMLN PAQSDTMPCE 

251 300 · . .. .. . ... · .. ... .... · ..... . . . . . . . . ... . .. . ... . . . ... 
· . . . . ... . . · . . .... . .. · .. . . . ... . . ... . ... . . . . .. .. ... . 
· .. . . ... .. · . . .. . .. . . · .... . .. . . ... . .. QSSS CLSLFRDEVF 
YISLEAMDRW IIFGLLLNHQ MLGQYPEVNK IWLSALESSW VVALFRDEVL 
YLSLDAMEKW IIFGFILCHG MLNTEATALN LWKLALQSSS CLSLFRDE . F 

301 350 
. . ....... .. .. . . .. NKRI NDIRECKENA VSHAGSTHRE RRKFLRSALK 
. . . . . . . . . . . . . . . . . . . . . . ...... . . . ..... . .. . . ...... . .. 
HIHKAAEDLF VNIRGYNKRI NDIRECKEAA VSHAGSMHRE RRKFLRSALK 
QIHQYIQATF DGIKGYSKRI GEVKEAYNTA VQKAALMHRE RRKFLRTALK 
HIHKAAEDLF VNIRGYNKRI NDIRECKEAA VSHAGSMHRE RRKFLRSALK 

351 400 
ELATVLADQP GLLGPKALFV FMALSFARDE I IWLLRHADN IP ..... KKF 
. . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . .. .. . . . .. . 
ELATVLSDQP GLLGPKALFV FMALSFARDE IIWLLRHADN MP .. . .. KKS 
ELALIMTDQP GLLGPKAIFI FIGLCLARDE ILWLLRHNDN PPLLKNKGKS 
ELATVLSDQP GLLGPKALFV FMALSFARDE IIWLLRHADN MP .... . KKS 

401 450 
ADDFMDKHIA ELIFYMEELR AHVRKYGPVM QRYYVQYLSG FDAVVLNELV 
. . . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . . .. . ... 
ADDFIDKHIA ELIFYMEELR AHVRKYGPVM QRYYVQYLSG FDAVVLNELV 
NEDLVDRQLP ELLFHMEELR ALVRKYSQVM QRYYVQYLSG FDATDLNIRM 
ADDFIDKHIA ELIFYMEELR AHVRKYGPVM QRYYVQYLSG FDAVVLNELV 
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451 500 
xth2 QNLSVCPEDE SIIMSSFVNT MTSLCVKQVE DGEVFDFRGM RLDWFRLQAY 
heml . ... . .. . .. . . ... .. . .. . . . . .. . . . . . . . . ...... . .. . .. .... 
mh19 QNLSVCPEDE SIIMSSFVNT MTSLSVKQVE DGEVFDFRGM RLDWFRLQAY 
dhem2 QSLQMCPEDE SIIFSSLYNT AAALTVKQVE DNELFYFRPF RLDWFRLQTY 
Napl QNLSVCPEDE SIIMSSFVNT MTSLSVKQVE DGEVFDFRGM RLDWFRLQAY 

501 550 
xth2 TSVSKASLSL ADHRELGKMM NTIIFHTKMV DSLVEMLVET SDLSIFCFYG 
heml . . ..... . . . ... . ..... M NLIVFHSRML DSVEKLLVET SDLSTFCFHL 
mh19 TSVSKASLSL ADHRELGKMM NTIIFHTKMV DSLVEMLVET SDLSIFCFYS 
dhem2 MSVGKAALRI AEHAELARLL DSMVFHTRVV DNLDEILVET SDLSIFCFYN 
Napl TSVSKASLSL ADHRELERMM NTIIFHTKMV DSLVEMLVET SDLSIFCFYS 

551 600 
xth2 RAFEKMFQQC LELPSQSRYS IPFPLLCTHF MSCTHELCPE ERHHIGDRSL 
heml RIFEKMFAMT LEESAMLRYA IAFPLICAHF VHCTHEMCPE EYPHLKNHGL 
mh19 RAFEKMFQQC LELPSQSRYS IAFPLLCTHF MSCTHELCPE ERHHIGDRSL 
dhem2 KMFDDQFHMC LEFPAQNRYI IAFPLICSHF QNCTHEMCPE ERHHIRERSL 
Napl RAFEKMFQQC LELPSQSRYS IAFPLLCTHF MSCTHELCPE ERHHIGDRSL 

601 650 

xth2 SLCYMFLDEM AKQARNLITD ICTEQCTLCD QLLPKHCAKT ISQAVN ... K 

heml HHCNSFLEEL AKQTSNCVLE ICAEQRNLSE QLLPKHCATT ISKAKNKKTR 

mh19 SLCNMFLDEM AKQARNLITD ICTEQCTLSD QLLPKHCAKT ISQAVNKKSK 

dhem2 SVVNIFLEEM AKEAKNIITT ICDEQCTMAD ALLPKHCAKI LSVQSARKKK 

Napl SLCNMFLDEM AKQARNLITD IYTEQCTLSD QLLPKHCAKT ISQAVNKKSK 

651 700 
xth2 K .. QTGKKGE PEREKPGVES MRKNRLVVTN LDKLHTALSE LCFSINYAPN 
heml KQRQTPRKGE PERDKPGAES HRKNRSIVTN MDKLHLNLTE LALTMNHVYS 
mh19 K . . QTGKKGE PEREKPGVES MRKNRLVVTN LDKLHTALSE LCFSINYVPN 
dhem2 D .. KSKSKHF DDIRKPGDES YRKTREDLTT MDKLHMALTE LCFAINYCPT 
Napl K .. QTGKKGE PERKSPGVES MRKNRLVVTN LDKLHTALSE LCFSINYVPN 
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701 750 
xth2 MVVWEHTFTP REYLTSNLEI RFTKSIVDMT MYNQVTQEIA KPSELFTSVR 
hern1 FSVFEHTIFP SEYLSSHLEA RLNRAIVWLA GYNATTQEIV RPSELLAGVK 
rnh19 MAVWEHTFTP REYLTSHLEI RFTKSIVGMT MYNQATQEIA KPSELLTSVR 
dhern2 VNVWEFAFAP REYLCQNLEH RFSRDLVGMV MFNQETMEIA KPSELLASVR 
Nap1 MAVWEHTFTP REYLTSHLEI RFTKSIVDMT MYNQATQEIA KPSELLTSVR 

751 800 
xth2 AYMTVLQSIE NYVQIDITRV FNNVLLQQTQ HLDSHGEPTI TSLYTNWYLE 
hern1 AYIGFIQSLA QFLGADASRV IRKPLLQQTQ PLDSCGEQTI TTLYTNWYLE 
rnh19 EYMTVLQSIE NYVQIDITRV FNNVLLQQTQ HLDSHGEPTI TSLYTNWYLE 
dhern2 AYMNVLQTVE NYVHIDITRV FNNCLLQQTQ ALDSHGEKTI AALYNTWYSE 
Nap1 AYMTVLQSIE NYVQIDITRV FNNVLLQQTQ HLDSHGEPTI TSLYTNWYLE 

801 850 
xth2 TKLRHVSNGH IACFPAMKAF VNLPGENEGL FNAEEYP . .. .MRALSELLG 
hern1 SLLRQASSGT IILSPAMQAF VSLPREGEQN FSAEEFSDIS EMRALAELLG 
rnh19 TLLRQVSNGH IAYFPAMKAF VNLPTENELT FNAEEYSDIS EMRSLSELLG 
dhern2 VLLRRVSAGN IVFSINQKAF VPISPEGWVP FNPQEFSDLN ELRALAELVG 
hern2 TLLRQVSNGH MPYFPAMKAF VNLPTENELT FNAEEYSDIS EMRSLSELLA 

851 900 
xth2 PYGMKFLSES LMWHISSQVA ELKKLVVENV DVLTQMRTSF DKPEQMAALF 
hern1 PYGMKFLSEN LMWHVTSQIV ELKKLVVENM DILVQIRSNF SKPDLMASLL 

rnh19 PYGMKFLSES LMWHISSQVA ELKKLVVENV DVLTQMRTSF DKPDQMAALF 
dhern2 PYGIKTLNET LMWHIANQVQ ELKSLVSTNK EVLITLRTSF DKPEVMKEQF 
Nap1 PYGMKFLSES LMWHISSQVA ELKKLVVENV DVLTQMRTSF DKPDQMAALF 

901 950 
xth2 KRLTSVDSVL KRMTIIGVIL SFRSLAQEAL RDVLSYHIPF LVSSVEDFKD 
hern1 PQLTGAENVL KRMTIIGVIL SFRAMAQEGL REVFSSHCPF LMGPIECLKE 
rnh19 KRLSSVDSVL KRMTIIGVIL SFRSLAQEAL RDVLSYHIP. .. SS .. . ... 
dhern2 KRLQDVDRVL QRMTIIGVII CFRNLVHEAL VDVLDKRIPF LLSSVKDFQE 
Nap1 KRLSSVDSVL KRMTIIGVIL CFRSLAQEAL RDVLSYHIPF LVSSIEDFKD 
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901 950 
xth2 KRLTSVDSVL KRMTIIGVIL SFRSLAQEAL RDVLSYHlPF LVSSVEDFKD 
hem1 PQLTGAENVL KRMTIIGVIL SFRAMAQEGL REVFSSHCPF LMGPlECLKE 
mh19 KRLSSVDSVL KRMTIIGVIL SFRSLAQEAL RDVLSYHlP . . . SS ...... 
dhem2 KRLQDVDRVL QRMTIIGVII CFRNLVHEAL VDVLDKRlPF LLSSVKDFQE 
Nap1 KRLSSVDSVL KRMTIIGVIL CFRSLAQEAL RDVLSYHlPF LVSSlEDFKD 

951 1000 
xth2 HlPRETDMKV AMNVYELSSA AGLPCEIDPA LVVALSSQ . . . ... . ..... 
hem1 FVTPDTDlKV TLSlFELASA AGVGCDIDPA LVAAIANLKA DTSSPEEEYK 
mh19 . . . . . . . . . . .... .... . . . . ........ . ......... . ......... 
dhem2 HLPGGDQlRV AS .. . EMASA AGLLCKVDPT LATTLKSK . . KPEFDEGEHL 
Nap1 HlPRETDMKV AMNVYELSSA AGLPCEIDPA LVVALSSQNQ RTLVQEEDlK 

1001 1050 
xth2 IACLLMVFVA VSMPTLASNV MSQYSPAlEG HCNNlHCLAK ASTKLAAALF 
hem1 VACLLLIFLA VSLPLLATDP SSFYSlEKDG YNNNlHCLTK AllQVSAALF 
mh19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... 
dhem2 TACLLMVFVA VSIPKLARNE NSFYRATlDG HSNNTHCMAA AlNNlFGALF 
Nap1 IACLLMVFVA VSLPTLASNV MSQYSPAlEG HCNNlHCLPK PSTKLLLLCL 

1051 1100 
xth2 Tl.HKGALKD RLKEFLALAS SSLLKlGQET DKTTTRNRES VYLLLDMIVQ 
hem1 TLYNKN. lET HLKEFVVVAS VSLLQLGQET DKLKTRNRES ISLLMRLVVE 
mh19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . .... 
dhem2 TlCGQSDMED RMKEFLALAS SSLLRLGQES DKEATRNRES IYLLLDEIVK 
Nap1 QF.TKEALKD RLKEFLALAS SSLLKIGQET DKTTTRNRES VYLLLDMIVQ 

1101 1137 
xth2 ESPFLTMDLL ESCFPYVLLR NAYHAVYKQS VTSSA* .. 
hem1 ESSFLTLDML ESCFPYVLLR NAYREVSRAF HLN* . . .. 
mh19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .... . 
dhem2 QSPFLTMDLL ESCFPYVLlR NAYHGVYKQE QlLGLAL* 
Nap1 ESPFLTMDLL ESCFPYVLLR NAYHAVYKQS VTSSA* .. 
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FIG 22. Comparison of amino acid sequences of members of the Hem family as 
a matrix of identical amino acid residues. hem 1, Hematopoietic Protein; mh 19, 
House mouse brain protein; dhem2, Fruit Fly (Drosophila melanogaster), Nap 1, 
Norway Rat (Rattus norvegicus) (for Nck associated protein). Protein xth-2 is 
in red bold. 

Hem I mhl9 dhem2 Napl xth-2 

Heml 100 58 48 59 53 

mh19 100 60 99 94 

dhem2 100 58 60 

Nap1 100 91 

xth-2 100 
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5.7. Summary and Discussion 

The differential display clone xL52 was used as a probe to screen Xenopus eDNA 

kidney library based on the signals detected by R T -PCR assay when various 

Xenopus adult tissues like (brain, kidney, liver and muscle) were used as templates 

for analysis by RT-PCR in an attempt to isolate longer sequences, which include 

the coding region. The results obtained from this analysis indicated that clone 

xL52 was represented in all the tissues examined with slightly lower level in 

muscle tissue. On the primary screen approximately half a million plaques were 

plated which produced 7 positive plaques. This gives a representation of 

approximately 1 in 7000 or 0.001 % clone xL52 recombinants in the library. One 

positive plaque was isolated to plaque purity with the following length: -2.5kb, 

which will be used later on in our discussion as xth-2. Simple restriction digests 

have been used to produce a rudimentary restriction map to aid in the sequencing of 

clone xth-2 cDNA. 

The entire clone was completely sequenced and its restriction map was determined. 

Sequence analysis using the incomplete open reading frame from xth-2 clone at the 

amino acid level revealed matches to a recently discovered family of tissue-specific 

transmembrane proteins which are conserved from invertebrates through mammals 

"The Hem protein family". The level of similarity of xth-2 to mammalian Hem 

proteins was more than 90%. 

161 



A human cDNA was recently cloned, termed Hem-I, which showed an expression 

pattern restricted to blood cells (Hromas et al., 1991). Kato (1990) reported a 

murine partial cDNA clone termed mhI9, that showed a specific expression pattern 

in mouse brain. When comparing the predicted sequences of these two proteins, a 

high degree of similarity was noticed suggesting that they belong to a family of 

proteins with distinct expression patterns. 

Extending the search for further members, six members from Caenorhabditis 

elegans to humans were identified. This indicates that this small family, termed the 

Hem family is conserved to a high degree from invertebrates through mammals. 

Moreover, members appear to be specifically expressed in distinct tissues, such as 

in the hematopoietic or central nervous system. In addition, the patterns of 

expression are developmentally regulated. This analysis suggests that the primary 

sequence has been retained and that the function may be conserved. One member 

of this family dhem-2 is found in Drosophila. It has an essential function in 

oogeneSIS. P-element mutants of dhem-2 are maternally lethal (Baumgartner et al., 

1995). 

Considering these protein homology comparisons, it appears that the Hem family 

consists of at least two types of proteins, with one type including Hem-2, dhem-2, 

humtag, the C. elegans ESTs (i.e., expressed sequence tags), and mh19, and the 

other including Hem-I. Moreover, their distinct tissue expression clearly allows 
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discrimination between the two types of family members (Baumgartner et al., 

1995). 

Although all Hem family proteins are remarkably rich in leucine residues (average 

13%), as compared with an average value of 8% in Drosophila and vertebrate 

proteins (Smoller et al., 1990), none of these residues conforms to known 

conserved leucine motifs. Several cysteine residues are strictly conserved 

indicating that the overall folding pattern may be similar in all members. The main 

characteristic of the common protein structure is the presence of several 

hydrophobic regions indicative of membrane-spanning domains. Thus, it is 

probable that the proteins transverse the cell membrane several times. This 

hypothesis is supported by the finding that polyclonal rabbit antisera against human 

Hem-l peptide recognises the cell membrane by immunohistochemical analysis. 

No member of the family revealed a clear signal cleavage site near the predicted 

initiator methionine residue. It is not known, however, whether the N terminus is 

on the extracellular side of the membrane or whether it is intracellular. 

Expression analysis of vertebrate Hem genes showed that Hem-l was previously 

found to be expressed preferentially in cells of hematopoietic origin (Hromas et al., 

1991). Hem-l was expressed in the myeloid leukaemia line HL-60, the erythroid 

leukaemia line HEL and the monocytic leukaemia line U937. It was not expressed 

in human brain, HepG2 hepatoma cells or human pancreatic carcinoma cells. 
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Thus, Hem-1 expression was tightly restricted to blood cells (Baumgartner et al., 

1995). 

Hem-2 was expressed in a wider range of tissues. It was most highly expressed in 

brain, heart, liver and testis. Within the brain, it was also widely expressed. 

However, there was somewhat higher expression in the amygdala, hippocampus 

and thalamus (Baumgartner et al., 1995). 

The function of the Hem-2 genes may be conserved during evolution. It has been 

shown that dhem-2 is expressed maternally. Furthermore, one lethal P-element 

insertion in the dhem-2 5'untranslated region was shown to lead to female sterility 

indicating that the dhem-2 gene is essential for Drosophila oogenesis and early 

embryogenesis. 

Many genes appear to have been assembled from a pool of modules that are widely 

shared (Doolittle, 1992). It appears that there are convenient structural units that 

are used over and over again, the same modules sometimes being used to perform 

different tasks. Genes can be grouped into families based on these shared structural 

modules. 

The idea that many proteins are constructed from various modules, each 

identifiable by a consensus sequence that is sometimes related to the ex on structure 
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of the gene, is becoming increasingly familiar (Bork, 1992). However, there is no 

evidence yet that domains of the Hem family of proteins are shared with other 

proteins. Rather, it appears to constitute a family that has retained its autonomy in 

the protein world. The function of this family remains an intriguing question. 

Since it does not share domain homology to other protein families, there are few 

clues as to its function in cellular metabolism. 

s.s. The Hem family of conserved proteins during evolution 

It was confirmed the existence of a small family of proteins that is highly conserved 

from invertebrates through mammals. To date, the family consists of two types of 

proteins, which are expressed in distinct tissues. One type is preferentially 

expressed in the central nervous system and oocytes, while the other is 

preferentially expressed in hematopoietic cells (Baumgartner et al., 1995). 

Related protein sequences may be classified into two types: orthologous sequences, 

which are found indifferent species where the differences reflect species 

divergence, and paralogous sequences, which are derived from a gene duplication, 

typically before separation of the species. Hence, it was proposed that dhem-2, 

mh19, Hem-2, humtag and the two C.e/egans ESTs (Le., expressed sequence tags) 

are respective orthologues, while Hem-l is the corresponding paralogue. This 

implies that a common ancestor species existed, which may have harboured a 

prototype of a Hem gene. Since the nematodes harbour a copy of the Hem-2 
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orthologue, it follows that this ancestral type must have existed very early. 

Subsequently, gene duplications events, in combination with the development of 

tissue specification, such as the formation of the central nervous system, or blood 

cells could have led to the appearance of two protein types (Baumgartner et al., 

1995). 

5.9. Isolation of Hem Proteins 

5.9.1. Isolation of Hem-l protein 

This was isolated through screening a large number of polymerase chain reaction 

generated products. A sequence that was was expressed in only hematopoietic 

cells. Using this fragment, a complete Hem-l eDNA was cloned (Hromas, et al., 

1991). 

5.9.2. Isolation of mh19 protein 

This is a partial cDNA clone randomly selected from mouse cerebellar cDNA 

libraries (Kato. 1990). 

5.9.3. Isolation of dhem-2 protein 

During the course of the analysis of the tenm gene (Baumgartner et al., 1994), 

noticed the presence of a gene immediately 3' of the tenm transcription unit. The 

analysis of partial sequences revealed a high degree of similarity to the human gene 

Hem-I, which has expression restricted to blood cells. Subsequently, a terminal 

fragment from the 14kb EeaR] subclone was used to screen 8 to 12 hour cDNA 

library (Brown and Kafatos, 1988) yielding four eDNA clones of which dhem-2 
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turned out to be the largest and it was chosen for further analysis (Baumgartner, 

1995). 

5.9.4. Isolation of Nap1 protein 

A specific 559 bp cDNA fragment, corresponding to nucleotide 862 to 1420 of the 

mouse mh19 cDNA (Kato, 1990), was amplified by peR. This fragment was 

labelled and used to screen a rat brain cDNA library (constructed in the AZAP2 

vector) by colony hybridisation (Kitamura, 1996). All protein sources, sizes, tissue 

specificity and expression pattern are indicated in Table 10. 
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Table 10. The Hem Family (Transmembrane Proteins) 

Name Source Tissue-Specificity Protein Function Reference 
Size 
in kD 

xth-2 African Brain, Kidney 84.0kD Not Known 1 

Clawed Liver and 

Frog Muscle. 

Xenogus laevis 

Hematopoietic Human Blood. Expressed 118 kD Not known 2 
Protein Hem-l Homo sagiens only in cells of 

hematopoietic 
origin. 

Membrane- House mouse Brain. High 74.0kD Not Known 3 
associated Mus musculus expression 
Protein Hem-2 in cerebral cortex. 
(Brain Protein 
Hl9) (mhI9) 
Membrane- Norway Rat Brain. 128 kD Associates 4 
associated Rattus Preferentially preferentially 
Protein Hem-2 norvegicus expressed in with the fIrst 
(Nap 1 Protein) brain, heart, SH3 domain 

liver and testis. of Nck 
protein. 

Membrane- Fruit Fly Expressed 129 kD Plays a role 5 
associated Drosoghila maternally during growth 
Protein Hem-2 melanogaster in the oocyte and of the oocyte. 
(dhem-2) shows uniform 

expression during 
the fIrst half of 
embryogenesis, but 
becomes restricted 
to the brain and the 
nervous system 
during late 
embryogenesis. 

Table References: 

1. This thesis, (1998) 
2. Hromas et al., (1991) 
3. Kato, K. (1991) 
4. Kitamura et al., (1996) 
5. Baumgartner, S. (1995) 
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CHAPTER 6 

Detection of clone xth-2 transcripts in Xenopus laevis embryos by RT -peR 
assays 

It was decided to assay for xth-2 transcripts in developing Xenopus laevis embryos 

using RT-PCR assays, in order to obtain a developmental profile of when and at 

what levels this transcript is expressed. 

6.1. Developmental profile of expression of clone xth-2 transcript 

Xenopus laevis embryos were cultured under standard conditions and at a various 

developmental stages embryos were collected and frozen in liquid nitrogen. 

Subsequently, these embryos were homogenised and nucleic acid extracted for 

analysis by RT-PCR assay. Four developmental stages were analysed in this way 

representing points from the gastrula (stage 13) and stages 14,20 and 25. 

RNA extracted from these embryos was reverse transcribed and the synthesised 

cDNA was then subjected to PCR using a pair of gene specific primers: 

(A) 5' GCTTACATCCGTTGCAGTGT 3' (B) 5' CAGATTGGTGCTGGATATGC 3'. The 

results obtained (see Figure 23) showed the presence of four bands of the expected 

size and almost of similar intensity which means that the developmental stage 

series suggests that the xth-2 transcript is present at all stages of development and 

showed the same level of expression. Assays were performed on comparable 

samples using Ef-la primers: Ef-la Upstream primer 5' GGCAATCCAGCTGCTGATGA 3' 

Ef-la Downstream primer 5' CACTGCCTTGATGAC 3' 
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FIG 23. The temporal pattern of expression of clone xth-2 was 
determined by reverse transcription followed by (RT-PCR), using 
RNA extracted from different stages of Xenopus development. 
Gene specific primers were used for the temporal expression. PCR 
cycles were carefully performed on Xenopus embryos of stages 
13, 14, 20, 25 cDNAs. To ensure integrity and cDNA quality, 
range of cDNA concentrations (O.4J.lI, O.8J.lI, 1.6J.ll) were included: 
(No reverse transcriptase as a negative control is also included. 

The xth-2 clone is expressed and maintained throughout 
development. The level of expression of xth-2 clone was abundant 
in all the selected developmental stages as shown in the Figure. 
Elongation factor-I a was used as a control for these preparations. 
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6.2. Spatial distribution of xth-2 in normal Xenopus embryos by whole mount 
in situ hybridisation 

6.2.1. Introduction 

Three techniques have been used to analyse localised gene expression in Xenopus 

embryos. Since the embryos are large, microdissected tissues can be assayed 

biochemically for the presence of specific RNAs (Mohun et ai., 1984)~ skilled 

dissection can yield a high degree of spatial resolution (Hopwood et ai., 1989) but 

can not provide information at the level of single cells. Protein products can be 

localised by immunological methods, and analysis of embryos by whole-mount 

immunohistochemistry provides both high resolution and three-dimensional 

information (Dent et ai., 1989; Hemmati-Brivanlon and Harland, 1989), however, 

after isolating a gene of interest it takes considerable time and effort to raise and 

purify specific antibodies. In situ hybridisation is a powerful technique for 

examining the spatial expression of RNAs in embryos, but in situ hybridisation to 

sectioned Xenopus embryos is laborious and not reproducible. The method has not 

been sufficiently sensitive to detect rare transcripts, such as those from homeobox 

genes, so that only moderately abundant RNAs have been analysed. Even then an 

exposure time of weeks (Weeks and Melton, 1987; Sato and sargent, 1989) or even 

months (Altaba and Melton, 1989) is often necessary. Since in situ hybridisation 

has been carried out on sectioned tissue, two-dimensional information must be 

reconstituted into three dimensions; this must be done either by the imagination of 

the investigator or by computer (Wilkinson et ai., 1987). 
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A sensitive, non-radioactive in situ hybridisation method has been developed for 

the localisation of specific RNAs in whole-mount Drosophila embryos (Tautz and 

Pfeifle, 1989). This has been the basis of the whole mount technique for Xenopus 

embryos (Harland, 1991), the non-radioactive method is rapid, sensitive and allows 

staining of whole embryos. 

6.2.2. In situ assays 

RT-PCR analysis on RNA extracted from the whole Xenopus embryos at various 

developmental stages demonstrated that xth-2 transcript was expressed during 

embryogenesis. In order to localise xth-2 transcript to specific cell types, and 

investigate its expression pattern, the technique of non-radioactive whole mount in 

situ hybridisation (Harland, 1991) was carried out on albino embryos (stages 20-

29). The detailed protocol is described in the Methods .3.29. 

At tailbud stage xth-2 is expressed in restricted parts of the brain, in and around the 

eye, in the developing branchial arches, and in the somites (Figure 24) Panels: A­

C. Panel C, shows a stage 26 embryos stained for a prolonged period to show the 

specificity of somite staining, however, other embryos were stained for a shorter 

period to reveal that expression pattern extended throughout the central nervous 

system (CNS) to the tailbud. 
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FIG 24. Whole mount In situ hybridisation on Xenopus laevis 
embryos showing the expression pattern using a digoxygenin 
labelled antisense RNA probe transcribed with T7 RNA 
polymerase from xth-2 clone into pBluescript (SK) linearised with 
Sma/. In situ analysis was performed as described by Harland 
(1991 ). 

A field of embryos shows the hybridisation pattern (panel A). 
Control embryos (no probe) are also shown. 

xth-2 mRNA is detected along the anterio-posterior region of the 
late tailbud embryos including (the brain:fore brain (fb); mid brain 
(mb); and hind brain (hb); branchial arches (ba) tail bud (tb) in 
panel B, and the somites (S) in panel C which showed prolonged 
staining. 
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6.3. Summary and Discussion 

Temporal and spatial distribution of the transcript xth-2 by RT-PCR and whole 

mount in situ hybridsation analysis revealed that this clone was uniformly 

expressed in the stages examined: 13,14,20,25. The transcription of the gene xth-2 

therefore, appears to be regulated during development and triggered at the 

beginning of neurulation. This is because in situ hybridisation was also performed 

on early stages of Xenopus embryos and no signal was detected or too weak to be 

detected. However, the majority of the early stage's embryos were broken while 

performing the procedure, although it was repeated several times and therefore, 

were unable to take any photgraph (data not shown). The expression pattern 

extended along the anterio-posterior region. The level of expression was high in 

the brain (CNS) and the tailbud. 

Inspection of the anterior domain of xth-2 expression in tailbud embryos indicates 

that expression is predominantly in the visceral arches and the otic vesicle. The 

term visceral arches is used instead of the commonly used "branchial arches" as in 

aquatic species this term refers to only the gill arches and excludes the mandibular 

and hyoid arches. The striped expression pattern observed in the visceral arch 

region is a result of expression of xth-2 being stronger in the arches than in the 

grooves in between. This may be a result the greater depth of the expressing tissue, 

rather than expression levels. 
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This level of expression extended throughout to the tailbud region where the 

Xenopus tail bud is not composed of homogeneous cell population, and consists of 

distinct cell populations which differ by lineage and expression of marker genes. 

It would be very interesting to look at the expression pattern of xth-2 during 

amphibian metamorphosis as well, however, because of the time available, I was 

unable to carry out these investigations, but, this will be one of my priorities in the 

future work. 
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CHAPTER 7 

Protein Analysis 

7.1. Introduction 

Although the cDNA of xth-2 appears to be not full length, there is an incomplete 

coding region, predicted to start from the first in frame AUG codon at the 166nt 

position. This needed to be confirmed in an in vitro cell-free translation system. 

This was essential as protein secondary structure predictions, characteristics and 

database searches are dependent on having the correct amino acid sequence. 

7.2. In vitro translation of clone xth-2 eDNA 

The predicted molecular weight of the translation product of xth-2 starting from the 

AUG start site at the 166nt position is -84.0 kD. To confirm this, xth-2 cDNA was 

used as a template for in vitro transcription to generate mRNA to be used in a 

rabbit reticulocyte cell free translation system. 

1 J,lg of XhoI linearised pBluescript containing xth-2, was used to generate mRNA 

using T3 RNA polymerase in a 20J,l1 final reaction volume (see Methods 3.26.1.). 

When the reaction was complete, 1 J,ll of the reaction mixture was electrophoresed 

on 1% (w/v) agarose gel to confirm the reaction had worked, producing an 

undegraded mRNA of the expected length. 
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1 J.lI of the transcription reaction was then used in the in vitro translation reaction as 

described in Methods 3.27.), using eSS]-methionine to label the protein product. 

When the reaction was complete a quarter of the reaction mixture was 

electrophoresed on a 10% SDS-polyacrylamide gel. The gel was fixed, dried and 

exposed to X-ray film overnight. The autoradiograph showed several bands (see 

Figure 25 ), of which one strongly labelled band of the predicted molecular weight 

-84.0kD. The appearance of the other smaller secondary bands after analysis of a 

translation reaction by SDS-P AGE could be due to an internal start sites which may 

be present in the sequence. Another possibility that if the translated protein 

contains a large number of the amino acid used for labelling (e.g., methionine) and 

the amount of label is used up too quickly, premature termination may result, 

producing secondary bands upon analysis. Also, post-translational modifications, 

such as isoprenylation or myristylation, may occur in reticulocyte translations and 

can affect the rate of migration of the translated product in the SDS-PAGE. 

Because these processes may only affect a percentage of the molecules, two or 

more bands may be apparent on SDS-P AGE. Becuase of the large amount of 

globin in reticulocyte lysates, proteins of approximately the same size may migrate 

abnormally. In addition, proteases in reticulocyte lysates can cause degradation to 

the translated protein as a result truncated products will be observed on SDS­

PAGE. 
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FIG 25. In vitro translation of synthetic capped transcripts derived 
from pBth-2 template linearised with XhoI. 0.51lg of transcript was 
introduced into a rabbit reticulocyte lysate (RRL from Gibco). 
The product was analysed by SDS-PAGE (100/0). A single product 
of about -84.0 kD is indicated. A control of translation without 
added transcript is also included. 
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An alternative vector (s) used for producing synthetic mRNAs is an SP6 cloning 

vectors into which any protein coding cDNA clone can be inserted for the purpose 

of synthesising functional mRNA (see Appendix C ). 

Messenger RNAs produced by pSP6 in in vitro transcription of cDNA clones are 

effective templates for translation. The SP6 derived mRNAs are translated as 

efficiently as native mRNAs in injected oocytes and in wheat germ extracts. This 

transcription system produces large amounts (micrograms) of mRNAs in a single 

enzymatic reaction and does so in the absence of other unwanted transcriptional 

events (such as transcribing both strands of the DNA template). pSP6 transcription 

of the recombinant pSP64T plasmids will produce synthetic mRNAs that contain 5' 

and 3' flanking regions, including a poly A tail. These 5' and 3' flanking regions, 

which are derived from globin mRNA, allow for the efficient translation of the 

inserted protein coding region both in injected oocytes and in wheat germ extracts. 

Krieg and Melton (1984) suggested that this procedure can be used to identify and 

synthesise the protein encoded by any cloned cDNA. This may therefore be an 

attractive alternative to so called hybrid selected translation assays when the 

mRNA of interest is rare. In addition, it may be possible to use this method to 

produce sufficient amounts of mRNA and subsequently protein in order to generate 

antibodies against the products of cloned cDNAs. Finally, as an alternative to 

DNA expression vectors, it should be possible to inject synthetic SP6 mRNAs into 
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cells in order to direct the synthesis of specific proteins and mutants thereof (Krieg 

and Melton, 1984). 

7.3. Dominant negative approach 

A dominant negative approach has been successfully used to identify the 

developmental roles of many genes. For example, the elimination of fibroblast 

growth factor (FGF) signalling in the embryos of Xenopus iaevis, using a truncated 

form of Xenopus FGFR-l with dominant negative activity has generated greater 

understandi'ng of the mechanisms of mesoderm induction and patterning in 

Xenopus and a good example of the use of dominant negative approach. The 

modified receptor, called XFD, is deleted in the cytoplasmic tyrosine kinase 

signalling domain, and capable of inhibiting the response of the wild type receptor 

to FGF (Amaya et a/., 1991). Embryos expressing XFD show relatively normal 

head development, but posterior and trunk structures are severely reduced, or 

vestigial, with reduction deletion of axial structures posterior to the hindbrain 

(Amaya et a/., 1991). These phenotypic defects can be mostly easily explained as 

the result of loss, or severe reduction of trunk mesoderm and inhibition of tail 

extension, and suggest a role for FGF in induction of posterior axial mesoderm in 

vivo. XFD can block the induction of mesoderm by bFGF and XeFGF, but can also 

block induction by bVgI and activin in animal cap assays (Cornell and Kimelman, 

1994; LaBonne and Whitman, 1994). However, activin induction of a subset of 

markers of mesoderm is unaffected by XFD, suggesting that functional FGF 
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signalling is not required for the induction of all mesoderm (LaBonne and 

Whitman, 1994; Cornell and Kimelman, 1994). 

Mice which are homozygous null for the FGFR-l gene are embryonic lethals, dying 

just after gastrulation and exbibiting growth and patterning defects (Deng et al., 

1994). Although the mesoderm does develop in these embryos, anterior-posterior 

axis extension is incomplete, the notochord is expanded and somites are missing. 

FGFR-l is therefore proposed to be involved in receiving a signal which modulates 

the competence of anterior streak cells to respond to a node-derived organiser 

signal. Therefore, in the absence of FGFR-l, normal paraxial mesodermal fates are 

respecified to axial fates in the mouse. 

Since the phenotype generated by XFD was revealed, several subsequent studies 

have identified dominant negative and constitutively active mutations of 

components of the classical MAP kinase cascade in Xenopus, generating trunkless 

embryos with normal heads, and blocking convergence and extension movements 

in animal cap explants treated with FGF or activin. The high level of 

understanding of the signal transduction pathway controlled by FGF has enabled 

LaBonne and colleagues to propose a model to explain the effect of XFD on a 

subset of mesodermal markers induced by activin in animal caps and the 

requirement for an activin-like signal in mesoderm induction by FGF (LaBonne et 

al., 1995). MAP kinase is activated rapidly in animal caps by FGF signalling but 
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not by activin (Hartley et at., 1994; LaBonne and Whitman, 1994), and XFD, 

inhibits this. In addition, a low level of active MAP kinase detected in untreated 

animal caps was aslso inhibited by XFD, suggesting the existence of a low level 

(sub-inducing) FGF signal (LaBonne et ai., 1995). XFD was also shown to prevent 

immediate early induction of a mesodermal marker by activin, suggesting that the 

purpose of sub-inducing signal was to enable induction of mesoderm by activin. 

7.4. Clone xth-2 protein sequence 

The predicted amino acid sequence of the in vitro translation product is shown in 

figure, starting from the AUG start codon at the 166nt position and ending at the 

TAA stop codon at 2377nt position and codes for a protein of 737 amino acid 

residues. The amino acid sequence of xth-2 is shown in Figure 26. 

FIG 26. Amino acid sequence ofxth-2 protein, 737 amino acids 

1 MALSFARDEI IWLLRHADNI PKKFADDFMD KHIAELIFYM EELRAHVRKY 

51 GPVMQRYYVQ YLSGFDAVVL NELVQNLSVC PEDESIIMSS FVNTMTSLCV 

101 KQVEDGEVFD FRGMRLDWFR LQAYTSVSKA SLSLADHREL GKMMNTIIFH 

151 TKMVDSLVEM LVETSDLSIF CFYGRAFEKM FQQCLELPSQ SRYSIPFPLL 

201 CTHFMSCTHE LCPEERHHIG DRSLSLCYMF LDEMAKQARN LITDICTEQC 

251 TLCDQLLPKH CAKTI SQAVN KKQTGKKGEP EREKPGVESL RKNRLVVTNL 

301 DKLHTALSEL CFSINYAPNM VVWEHTFTPR EYLTSNLEIR FTKSIVDMTM 

351 YNQVTQEIAK PSELFTVLEA YMTVLQSIEN YVQIDITRVF NNVLLQQTQH 

401 LDSHGEPTIT SLYTNWYLET KLRHVSNGHI ACFPAMKAFV NLPGENEPTF 

451 NAEEYPMRAL SELLGPYGMK FLSESLMWHI SSQVAELKKL VVENVDVLTQ 

501 MRTSFDKPEQ MAALFKRLTS VDSVLKRVTI IGVILSFRSL AQEALRDVLS 
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551 YHIPFLVSSV EDFKDHIPRE TDMKVAMNVY ELSSAAGLPC E1DPALVVAL 

601 SSQ1ACLLMV FVAVSTSTLA SNVMSQYSPA 1EGHCNN1HC LAKASTKLAA 

651 ALFTIHKGAL KDRLKEFLAL ASSSLLKIGQ ETDKTTTRNR ESVYLLLDM1 

701 VQESPFLTMD LLESCFPYVL LRNAYHAVYK QSVTSSA*. 

FIG 27. Amino acid composition of xth-2 protein. The amino acid composition is 
shown in the Figure below which indicates that leucine and serine at 11.8 and 8.3 
mole-% respectively, to be the most abundant in the molecule. All amino acids are 
present in the protein. The predicted molecular weight is -84.0kD, which 
corresponds closely with the results from the in vitro translation analysis. 

Residue Number Mole Percent 
Ala (A) 50 6.7% 

Arg (R) 32 4.3% 

Asn (N) 28 3.8% 

Asp (D) 32 4.3% 

Cys (C) 21 2.8% 

Gin (Q) 29 3.9% 

Glu (E) 54 7.2% 

Gly (G) 21 2.8% 

His (H) 23 3.1% 

Ile (I) 37 5.0% 

Leu (L) 88 11. 8% 

Lys (K) 39 5.2% 

Met (M) 33 4.4% 

Phe (F) 38 5.1% 

Pro (P) 29 3.9% 

8er (8) 62 8.3% 

Thr (T) 46 6.2% 

Trp (W) 5 0.7% 

Tyr (Y) 24 3.2% 

Val (V) 54 7.2% 
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7.5. Protein database searches 

The most obvious first stage in the analysis of any new sequence is to perform 

comparisons with sequence databases to find homologues. Searches were 

performed using the FAST A and BLAST programs, with the GCG default 

parameters and a word size of 2, to search the non-redundant protein databases. 

Searches performed on the full 737 amino acid sequence, produced similarities to a 

recently discovered tissue-specific transmembrane proteins called "the Hem 

family". 

7.6. Motifs 

The following motifs were found using the MotifFinder program on which searches 

the prosite database of protein domains: 

Start End Site sequence 
N-glycosylation site 85 88 NLSV 

cAMP and cGMP-dependent protein kinase phosphorylation site 

280 283 KKQT 

525 528 KRLT 

535 538 KRMT 

Protein kinase C phosphrylation site 

63 65 TQR 

283 285 TGK 

298 300 SMR 

337 339 TPR 

545 547 SFR 

654 656 STK 

691 693 TDK 

695 697 TTR 
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Casein kinase II phosphorylation site 

72 75 SGFD 

142 145 SLAD 

165 168 SLVE 

260 263 TLCD 

307 310 TNLD 

337 340 TPRE 

344 347 SNLE 

375 378 TVLE 

412 415 SHGE 

512 515 TSFD 

528 531 TSVD 

567 570 SSVE 

568 571 SVED 

Tyrosine kinase phosphorylation site 

38 46 KhiaElify 

697 703 RnrEsvY 

N-myristoylation site 

356 361 GMTCTN 

541 546 GVILSF 

Amidation site 282 285 TGKK 

7.7. Isoelectric point 

The isoelectric point is the pH at which the protein has no net charge. Using 

Isoelectric, on the GCG (Wisconsin) package, the xth-2 protein is shown to be a 

neutral protein with an isoelectric point of -6.0. 
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7.8. Functional analysis of clone xth-2 in embryo system 

7.8.1. Introduction 

An indication of the function and any developmental implications of a new clone 

can be addressed by microinjecting the clone in developing Xenopus embryos and 

noting any phenotypic effects. It was decided to express xth-2 clone in developing 

embryos to see if this could give further clues to the functioning of the protein. 

7.9. Microinjection of Xenopus embryos 

Embryos were generally injected bilaterally (both blastomeres) with mRNA at the 

two cell stage or unilaterally (one blastomere). Gene expression can then be 

assayed by whole-mount in situ hybridisation Prior to injection, embryos were 

transferred to 5% Ficoll (w/v) to reduce cytoplasm leakage. After injection, the 

embryos were maintained in Ficoll until stage 6, after which they were cultured in 

O.lx BX to avoid exogastrulation. 

Xenopus eggs freshly laid into Barth X were fertilized artificially by squeezing the 

testis of a freshly killed Xenopus male. Fertilised eggs were then de-jellied using 

freshly made 2% cystine for about 10 minutes prior to micro-injection. Bilateral 

injection was performed at two-cell stage Xenopus embryos of synthetic capped 

transcript. Injected embryos were divided into two duplicate batches: batch 1 

included controls or uninjected embryos; batch 2 a full concentration of the 

synthetic message (lOng). Each batch contained about 20 embryos; (i.e., 80 
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embryos in total). They were then incubated at 14°C overnight, having been 

transferred to 0.1 Barth X following recovery from injection. 

7.10. Embryonic effects of expression of clone xth-2 

Following microinjection of xth-2 clone on Xenopus embryos, there was no clear 

indication of whether this clone had an effect on developing embryos. All the 

uninjected embryos (i.e., 40 embryos) developed normally (see Figure 28 A). 

However, few of the injected embryos (6 embryos out of 40) in batch 2 developed 

with minor abnormalities, most typically a reduction in the posterior structures (see 

Figure 28 B). These embryos (Le., full concentration injected message), were 

unable to elongate during neurula stages. The anterior region was fairly normal 

with well-developed head, a good eye and cement gland. There were no obvious 

signs of abnormalities during the early stages of development (i.e., blastula or 

gastrula). As a result of proper involution of the most anterior dorsal mesoderm, 

the head structures appeared normal, whereas posterior reductions were due to the 

improper involution of posterior lateral and ventral mesoderm. Expression of xth-2 

therefore, does not provide information on the or clues to its specific role during 

embryonic patterning events. This experiment was repeated in an attempt to 

confirm if these abnormalities could occur again. The number of abnormal 

phenotypes seen in the second experiment was more or less the same as the first 

one (Le., all the embryos were quite normal), and therefore this is the reason why 
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we could not consider this small number of tail-less phenotypes as a significant 

change. 
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FIG 28. Expression of xth-2 III developing Xenopus laevis 
embryos. 

Panel A. Shows field of uninjected embryos which developed 
normally. 

Panel B. Shows two Xenopus embryos demonstrating the effects 
induced by injection of (lOng) xth-2 and uninjected embryos that 
were allowed to develop until free living stage was reached. 

Injection of xth-2 resulted in a mild abnormality at the posterior 
end. There were no clear real tail structures. These tail-less 
phenotypes represented only a small proportion of the injected 
embryos (see text), and therefore, were considered insignificant. 
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7.11. Summary and Discussion 

In vitro translation studies have shown that the xth-2 cDNA produces several 

protein products, of which one main protein product of -84.0kD. This protein is 

produced when translation is initiated at the 166nt AUG codon and tenninated at 

the 2377nt stop codon. This produces a protein 737 amino acids in length, but it 

must be taken into consideration that this result is from in vitro system. In vivo the 

protein product produced may be the same or translation may initiate from any of 

the upstream AUG sites in reading frame. 

Using the isoelectric on GCG program (Wisconsin) package, the protein is 

predicted to be with an isoelectric point of -6.0., suggesting the protein to be 

neutral and nuclear in location. 

Protein database searches using incomplete open reading frame from xth-2 clone at 

the amino acid level have revealed matches to a recently discovered family of 

tissue-specific transmembrane proteins which are conserved from invertebrates 

through mammals "The Hem protein family". The level of similarity of xth-2 to 

mammalian Hem proteins was more than 90%. 

Functional analysis addressed by microinjection of clone xth-2 into Xenopus 

developing embryos has not revealed any significant effects that might be 
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considered as clues to its function. This could be attributed to the fact that this 

protein might interact with other proteins to exert its effect. 
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CHAPTER 8 

8.1. Discussion and Conclusions 

The technique of differential display RT-PCR has been applied to RNA extracted 

from thyroid hormone treated Xenopus laevis tadpole tails in an attempt to isolate 

and then characterise genes regulated by thyroid hormone. 

The banding patterns generated from different primer sets in this method produced 

ten products that appeared to be obviously differentially expressed. Of these ten 

bands, eight were up-regulated by thyroid hormone and two were down-regulated. 

However, it was only possible to follow up one of these differential bands to any 

extent, this clone appeared to be up-regulated by thyroid hormone. Library screens 

allowed the isolation of longer sequences from coding region of this clone, termed 

xth-2. The coding region of this clone was completely sequenced and the predicted 

amino acid sequence from the longest open reading frame was determined. 

Since the development of the differential display technique several improvements 

and modifications have been made to the procedure (Liang et al., 1993; Chen and 

Peck, 1996). 

The isolation of differentially amplified products and their identification and 

confirmation as fragments from a differentially regulated RNA (the labour-
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intensive step following differential display) has too been improved, producing 

greater efficiency and reliability of results (Vogeli-Lange et al., 1996). The 

technique has developed, in the last four years and represents a breakthrough as a 

method to isolate genes. The differential display technique decribed in this project 

was performed during 1993 at a time when only 13 publications were available on 

the technique. Therefore, the reaction protocol was taken directly from the Liang 

and Pardee (1992) publication. To date over 340 publications have described the 

use of the differential display technique and therefore, the methodology would be 

modified accordingly if these experiments were repeated. 

S.2. In vitro translation of xth-2 

In vitro translation studies in rabbit reticulocyte lysates have shown that xth-2 RNA 

produces several products of which -84.0kD is the main product. This protein is 

produced when transalation is initiated at the 166nt AUG codon and terminated at 

the 2377nt stop codon, producing a protein 737 amino acids in length. 

The sequence context around the 166AUG codon in xth-2, determined by in vitro 

translations, does not adhere strictly to the consensus sequence for initiation 

(Kozak, 1987). The sequence lacks a purine in the -3 position but possesses a G in 

the +4 position which may indicate why it has a higher efficiency than predicted. 
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In the xth-2 eDNA there are no stop codons upstream to the largest ORF. By 

comparison with known Hem proteins, part of the coding region is missing, and 

therefore, xth-2 cDNA does not represent a full length and the predicted initiative 

codon at 166nt is in fact, not the authentic AUO codon as in vitro translation 

suggests. The question raised is how accurate may the in vitro translation 

experiments represent the in vivo translation ofxth-2. 

8.3. Further discussion and Possible role of Hem proteins 

Functional analysis of xth-2 following its microinjection to the developing Xenopus 

laevis embryos, has not shown a clear phenotypic effect or clue to the function of 

this protein. Despite the high degree of sequence similarity between xth-2 protein 

and other members of the Hem proteins and from the data surveyed, the function of 

the Hem family to which xth-2 protein belongs is not yet known. 

Searching for clues as to the function of this protein, recent studies revealed that 

another member of Hem proteins was identified and termed NapJ (for Nck 

associated protein), and is known to be involved in signalling transduction through 

its association with the first SH3 domain of Nck protein. In addition, it has recently 

been found that NapJ showed an indirect interaction with activated OTP-binding 

protein Rae. Moreover, the 140kD Rae-binding protein is a potential candidate for 

a link that connects NapJ to Rae. The multimolecular complex comprising Rae, 

Nap! and probably the 140kD protein might mediate some of the biological effects 
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transmitted by the multi potent GTPase (Kitamura et a/., 1997). xth-2 protein has 

shown an overall identity of91 % at the amino acid level to Nap} protein, therefore, 

we could speculate that the function of xth-2 protein is similar to the Nap} protein. 

Also, the results obtained from sequence analysis have shown that xth-2 is of 

membrane protein, where we could assume that xth-2 might be a membrane 

receptor. As we know, receptors are proteins located either in the cell's plasma 

membrane or inside the cell. If this is the case, where a receptor is located in the 

cell's plasma membrane, then a possible model of how xth-2 protein might be 

involved in signal transduction is through a direct interaction between the receptor 

(xth-2) and the growth factors. 

The combination of the growth factors with the membrane receptor xth-2 causes a 

conformational change of the receptor, and this step, known as receptor activation, 

is always the initial one leading to the cell's ultimate responses to the messenger, 

which can be (1) changes in the membrane permeability, in the rates at which it 

transports various substances, or in its electrical state (2) changes in the rate at 

which a particular substance is synthesised or secreted by the cell; or (3) changes in 

the strength of contraction, if the cell is a muscle cell. 

Certain messengers involved in growth and development bind to their receptors, 

the receptors themselves become active protein kinases. The receptors then 
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phosphorylate specific cytosolic and plasma-membrane proteins including 

themselves. This provides one way of translating the first messenger's signal into 

cellular responses. These protein kinases that function in this way belong to the 

family known as tyrosine kinases, because they phosphorylate specifically the 

tyrosine portions of proteins. Despite the seeming variety of these ultimate 

responses, there is a common denominator: they are all due directly to alterations of 

particular cell proteins. 

Another possible model is that protein xth-2 could interact indirectly with other 

proteins like p140 that was recently cloned and found to be associated with SH3 

domain of Nck protein. This protein p 140 could be a potential linker between xth-2 

protein and Nck protein. Signal transduction in this case could be either through 

the interaction of xth-2 and p140 which can then transmit the signal through its 

association or activation of other cellular proteins (one possible pathway), or the 

signal can be transmitted through a multistep interactions of xth-2 with p 140 and 

Nck (another possible pathway), illustration of such hypothetical model is shown in 

Figure 29. 
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FIG 29. A hypothetical model of how xth-2 protein might be 
involved in signalling transduction. A: SH2-SH3 domains mediate 
protein-protein interactions that co-ordinate the activation of 
signalling pathways by tyrosine kinases. B: The 140 kDa protein 
that associates with Nck is a potential linker between xth-2 and 
Nck and may therefore shed light on the interaction of xth-2 with 
Nck as well as on signalling downstream of Nck. 
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To summarise, signal transduction is often mediated by specific protein-protein 

complexes. In many cases, the formation of such complexes is controlled by small 

modular domains termed the Src homology 2 and 3 (SH2 and SH3) domains (see 

Figure 30), which are found in a wide variety of proteins (Mayer and Baltimore, 

1993; Pawson, 1995; Pawson and Gish, 1992). SH2 domains have been shown to 

bind specifically and with high affinity to tyrosine-phosphorylated proteins and are 

thought to mediate the association of signalling proteins in response to tyrosine 

phosphorylation (Anderson et al., 1990; Margolis et al., 1990; Matsuda, 1991; 

Mayer et al., 1991). SH3 domains bind to specific proline-rich sites on target 

proteins (Pawson, 1995; Ren et al., 1993) These observations suggest that SH2-

SH3 domains mediate a network of phosphorylation-dependent protein-protein 

interactions that co-ordinate the activation of signalling pathways by tyrosine 

kinases. These complex interactions may be especially important in integrating 

signals in the animal, where any cell is potentially exposed to stimuli from multiple 

sources, such as soluble hormones, adjacent cells and the extracellular matrix 

(Kitamura et al., 1996). 
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FIG 30. Postulated role for SH3 domains in coupling tyrosine 
kinases to small G proteins. According to this scheme, proteins 
with SH2, SH3 and catalytic domains would be capable of 
multiple interactions with tyrosine kinases, Ras-like small G 
protein pathways and their enzymatic substrates (Pawson and 
Gish, 1992). 
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8.4. Possible role of Hem proteins in metamorphosis 

The signalling pathways that lead through apoptosis into cell death as an important 

feature of amphibian metamorphosis need to be detennined. In many cases of 

programmed cell death (PCD) during postembryonic development, the signals 

activating the process may induce a few early gene products that would lead to a 

cascade of proteins to be synthesised sequentially, including some that are 

components of the apoptotic apparatus. Progress is so rapid in this field that it is 

difficult to make any predictions. However, current knowledge of immediate-early 

genes and protein kinase pathways provide important clues as does the 

detennination of the morphology seen in apoptosis. A number of protein kinase 

and phosphatase genes have recently been identified and proposed a 

morphologic/functional model of signalling that lead to cell death. Therefore, we 

can not exclude the possibility that Hem proteins may take part in signalling 

transduction that lead to cell death during amphibian metamorphosis. 

8.S. Future Work 

A. Protein expression of xth-2 eDNA 

Cellular localisation of the xth-2 protein would provide invaluable information 

regarding the possible function of the protein. Questions such as whether the 

protein has a role during amphibian metamorphosis or it is translated during 

metamorphosis to have a role in tail resorption, could be answered. As antibodies 

to the cloned xth-2 cDNA product were not available, a logical step is produce a 
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fusion protein for use as antigen for the production of polyclonal antibodies. 

Expression of large amounts of fusion protein from a cloned gene introduced into 

E.coli is a fast method from which the protein can be easily purified and likely to 

elicit an antibody response. 

B. Role in apoptosis 

Experiments can also be designed to see if xth-2 protein is associated with cell 

death when expression is induced. 

C. Dominant negative 

The dominant negative approach has been successfully used to identify the 

developmental roles of many genes. Using a truncated form of xth-2 will generate 

greater understanding of its possible role. 

D. Thyroid hormone inducibility 

To see if xth-2 might be thyroid hormone inducible (i.e., whether it is a direct or 

indirect interaction). 
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Appendix A 

The stages of Xenopus embryonic development. Normal Table of 
Xenopus laevis (Daudin) Edited by P.D. Nieuwkoop and J. Faber 
First edition 1956, Second edition 1967. Republished 1994, with a 
new foreword by John Gerhart and Marc Kirschner Garland 
Publishing Inc, New York. 
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Appendix B 

Partial sequences of cDNAs derived from the differential display 
of Xenopus laevis tadpole tail RNA. 
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xL 52 

1 GAAATAGACC CTGCCTTGGT TGTGGCACTG TCCTCTCAAA TAGCCTGTCT 

50 GCTCATGGTG TTTGTGGCTG TTTCTATGCC AACGTTGGCC AGCAACTCAT 

101 GTGCGCAATA CAGTCCTGCA ATAGAAGGTC ATTGCAACAA CATACACTGT 

151 TTGGCAAAGG CATCAACCAA ATTGGCGGCA GCACTATTTA CCATTCACAA 

201 AGGGGCATTG AAGGATCGTC TGAAAGAATT CTTGGCGCTT GCATCCTCCA 

251 GCCTACTAAA GATTGGCCAA GAGACTGATA AAACTACTAC AAG 

DDTA 

1 GAAACCTTCC CCCTTCTTTT TTCGTACAAA AATGACTTGT CCTACGATAG 

50 CAACACTGCA GACGGGTACT TTGTAAATCG CCTGTCCGTG AGGGGACTAA 

101 TATTTTTCAC AACGAAACGG TCAATTAATT AATTAGATTG AAAGTATCCA 

151 GCGGGATGGT TCACGAATCT ATCTCTGTTG TTATTCTGTA ACGTTTTTTA 

201 GAGCTGTCTA TTCTCACGTA AAGCAAAAGT CTCTGTGTAT CGCGTGTTCC 

251 AAGTGAGGAT TAAGCCTCTG CGTCGTCTAA TAACTCCTCT TGTCTGAAGA 

301 AACATCACAT AAACGTCCGT TACGTGGGCC CACG 

DDTC3 

1 TATATATAAA AAACAAACAA AAGTCGTAAC AAACACAGTT TGACTAGCGT 

50 GGGTCAAGAC AGTCGAGAAA ATTGCGAAAA CGCTTAGACG TTAATGGACT 

101 TCCATAAATA TTAACTGATG TTGTTTGAAA CGAAAACACG GAGGGACAGA 

151 GACACCATTT GATGACCCAG AGAGAGTCAC TTCTAGCATC TCAAAGGAAA 

201 ATCAAGATAA AGCCGAAATC TGAACTAACA CAG 

DDTD3 

1 CTGTCGCCTG AGTCTCATTG TAATAATACT CCCTAATGAC CACTTAAATA 

50 TATCTGGAAA GACTATTCCG AATTAATCAA AATTGGAAAG GAAGAGGAAA 

101 CTTGTGTGGT ATACGACACG TAAAAAATAC GGGTAAAGGT TCGTTTAAAC 

151 CTAACATTGT ACTGTCGAGA CGTTATCTCC CAACGACCAA GAAATTTTCC 

201 GTCTTTATTT TGTGACCACT 

DDTE 

1 TCTGAAGCTC CCCCGTATTT AACTCGTAGT ACCGTGTTCC TCCTTGTTTC 

50 TGATACCTAG TTCACTGTCC CGACTGACCC CCGTTTATTT GTCCCCACTT 

101 ACCCACAAGA CACATTTTCA GTCGTACTCA ATAGACACTT TTAGCAAATT 

151 CATGACAAAG ACCTCTACAT TTATACTTTT ATATATGACT CGAGTTACTG 

201 AGCATAGGAG TCCACAC 



Appendix C 

Plasmid vector pSP64T 

pSP64T vector for synthesis of mRNA used for microinjection 
into Xenopus oocytes and embryos was proposed by Krieg and 
Melton (1984). The vector contains inserts of 3' and 5' 
untranslated regions (UTR) of Xenopus p-globin mRNA, and a 
BgIII site for cloning the inserts to be expressed. The SP6 
promoter is used to transcribe the insert flanked by the globin 
sequences. 
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