Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

A study of braids in 3-manifolds

Tools
- Tools
+ Tools

Lambropoulou, Sofia S. F. (1993) A study of braids in 3-manifolds. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Lambropoulou_1993.pdf - Submitted Version - Requires a PDF viewer.

Download (15Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b1449484~S1

Request Changes to record.

Abstract

This work provides the topological background and a preliminary study for the analogue of the 2-variable Jones polynomial as an invariant of oriented links in arbitrary 3- manifolds via normalized traces of appropriate algebras, and it is organized as follows:

Chapter 1: Motivated by the study of the Jones polynomial, we produce and present a new algorithm for turning oriented link diagrams in S3 into braids. Using this algorithm we then provide a new, short proof of Markov's theorem and its relative version.

Chapter 2: The objective of the first part of Chapter 2 is to state and prove an analogue of Markov's theorem for oriented links in arbitrary 3-manifolds. We do this by modifying first our algorithm, so as to produce an analogue of Alexander's theorem for oriented links in arbitrary 3-manifolds. In the second part we show that the study of links (up to isotopy) in a 3-manifold can be restricted to the study of cosets of the braid groups Bn,m, which are subgroups of the usual braid groups Bn+m .

Chapter 3: In this chapter we try to use the above topological set-up in a procedure analogous to the way V.F.R. Jones derived his famous link invariant. The analogy amounts to the following: We observe that Bn,1 - the braid group related to the solid torus and to the lens spaces L(p, 1) - is the Artin group of the Coxeter group of Bn-type. This implies the existence of an epimorphism of eEn,1 onto the Hecke algebra of Bn-type. Then we give an analogue of Ocneanu's trace function for the above algebras. This trace, after being properly normalized, yields a HOMFLY-PTtype isotopy invariant for oriented links inside a solid torus. Finally, by forcing a strong condition, we normalize this trace, so as to obtain a link invariant in SI x S2.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QA Mathematics
Library of Congress Subject Headings (LCSH): Three-manifolds (Topology)
Official Date: 1993
Dates:
DateEvent
1993Submitted
Institution: University of Warwick
Theses Department: Mathematics Institute
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Rourke, C. P. (Colin Patrick), 1943-
Extent: 104 leaves
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us