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In this paper, we develop a distributionally robust portfolio optimization model where the robustness is across

different dependency structures among the random losses. For a Fréchet class of discrete distributions with

overlapping marginals, we show that the distributionally robust portfolio optimization problem is efficiently

solvable with linear programming. To guarantee the existence of a joint multivariate distribution consistent

with the overlapping marginal information, we make use of a graph theoretic property known as the running

intersection property. Building on this property, we develop a tight linear programming formulation to find

the optimal portfolio that minimizes the worst-case Conditional Value-at-Risk measure. Lastly, we use a

data-driven approach with financial return data to identify the Fréchet class of distributions satisfying the

running intersection property and then optimize the portfolio over this class of distributions. Numerical

results in two different datasets show that the distributionally robust portfolio optimization model improves

on the sample-based approach
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1. Introduction

Optimization under uncertainty is an active research area with several interesting applications in

the area of risk management. An example of a risk management problem is to choose a portfolio

of assets with random returns such that the joint portfolio risk is minimized while a fixed level of

expected return is guaranteed. Markowitz (1952) was the first to model this problem using variance

as the risk measure. Several alternative risk measures have been proposed since for this problem.

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two such popular risk measures

(see, for example, Jorion (2001) and Rockafellar and Uryasev (2000)). However even assuming that

the joint distribution of the random returns is known, the calculation of VaR and CVaR for a

given portfolio involves multidimensional integrals, which can be computationally challenging. For

discrete distributions, the computation of these risk measures requires the consideration of all the

support points of the joint distribution. The number of support points of the joint distribution

can however be exponentially large in comparison to the number of support points of the marginal

distributions. For example, the problem of computing the probability that a sum of independent

but not necessarily identically distributed integer random variables is less than a given number is

known to be #P-hard (see Kleinberg et al. (2000)). Furthermore, if the assumed joint distribution

does not match the actual distribution, the optimal portfolio allocation might perform poorly in

out of sample realizations.

One popular approach to address this issue is that instead of assuming a complete joint distri-

bution for the random returns of the risky assets, only reliable partial distributional information

is used. Given limited distributional information, it is then natural to calculate the worst case

bounds for the VaR and CVaR measures and optimize the worst case bounds. Several models

have been proposed to capture the uncertainty (or ambiguity) in distributions. This includes the

class of distributions with information on the first and second moments (see El Ghaoui et al.

(2003), Delage and Ye (2010), Natarajan et al. (2009a), Zymler et al. (2013)), the Fréchet class of

distributions with information on the univariate marginal distributions (see Meilijson and Nadas
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(1979), Denuit et al. (1999)) and the Fréchet class of distributions with information on the mul-

tivariate marginals of non-overlapping subsets of asset returns (see Doan and Natarajan (2012),

Garlappi et al. (2007), Rüschendorf (1991)). In this paper, we adopt a more general representation

of distributional uncertainty where the multivariate marginals possibly overlap with each other.

1.1. Problem Setup

Throughout this paper, we use standard letters such as x to denote scalars, bold letters such as x

to denote vectors, tilde notation such as c̃ to denote random variables and the calligraphic notation

such as C to denote sets with C = size(C).

Let c̃ be a N -dimensional random vector where N = {1, . . . ,N} is the set of indices of the random

vector. Consider a convex piecewise linear function of the random vector defined as:

ϕ(c̃) , max
j∈M

(
c̃Taj + bj

)
, (1)

where the maximum is over the set of affine functions of the random vector indexed by M =

{1, . . . ,M} with aj ∈ <N , bj ∈ < and c̃Taj =
∑

i∈N c̃iaji . Let θ denote the N -dimensional joint

distribution of c̃. Associated with (1), is the evaluation of its expected value:

Eθ
[
max
j∈M

(
c̃Taj + bj

)]
, (2)

and a stochastic optimization problem of the form:

min
x∈X

Eθ
[
max
j∈M

(
c̃Taj(x) + bj(x)

)]
, (3)

where aj(x) and bj(x) are assumed to be affine functions of the decision vector x that is chosen

from a feasible region X . Portfolio optimization with the CVaR measure lies within the scope of

the stochastic optimization problem (3). To see this, let c̃i denote the random loss of the ith asset.

The total portfolio loss is then c̃Tx where xi is the allocation in the ith asset. The CVaR of the

portfolio for a given risk level α∈ (0,1) is defined as (see Rockafellar and Uryasev (2000, 2002)):

CVaRθ
α

(
c̃Tx

)
, min

β∈<

(
β+

1

1−α
Eθ

[(
c̃Tx−β

)+
])

,
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where y+ = max{0, y}. The problem of finding the portfolio x ∈ X that minimizes the CVaR is

then formulated as:

min
x∈X ,β∈<

(
β+

1

1−α
Eθ

[(
c̃Tx−β

)+
])

.

Portfolio optimization with the VaR measure is however not an instance of problem (3) due to the

inherent non-convexity of VaR. It is possible though to develop convex approximations to the VaR

measure using the CVaR measure (see Nemirovski and Shapiro (2006)).

In the distributionally robust optimization setting, θ is not known exactly except that it lies in

a set of distributions denoted by Θ. Then, it is natural to calculate upper and lower bounds on

the expected value Eθ [ϕ(c̃)]. In this paper, we restrict our attention to finding the tightest upper

bound on the expected value of the piecewise linear convex function in (2):

sup
θ∈Θ

Eθ
[
max
j∈M

(
c̃Taj + bj

)]
. (4)

The corresponding distributionally robust counterpart of (3) is:

min
x∈X

sup
θ∈Θ

Eθ
[
max
j∈M

(
c̃Taj(x) + bj(x)

)]
, (5)

where the optimal decision x∈X is identified for the worst-case distribution in the set Θ.

1.2. Fréchet Class of Distributions

One of the early results in multivariate bounds is the work of Fréchet (1940), Fréchet (1951)

who evaluated bounds on the cumulative distribution function of a random vector given only the

marginal distributions of the random variables. The class of joint distributions with fixed marginal

distributions is referred to as the Fréchet class of distributions and the bounds are referred to as

Fréchet bounds. In this paper, we develop a new class of Fréchet bounds and apply it to to solve

distributionally robust optimization problems.

Given a set N , let E = {J1, . . . ,JR} ⊆ 2N be a cover of the set N , i.e.,
⋃
r∈RJr = N , where

R= {1, . . . ,R}. Assume that there is no inclusion among the subsets, i.e., Jr * Js for any r 6= s.

Typical examples of a cover include the partition, the star cover, and the series cover:
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• Partition: E is a partition or a non-overlapping cover if for any r 6= s, Jr ∩Js = ∅. The cover:

E = {{1},{2}, . . . ,{N}} ,

is called the simple partition and forms the basic Fréchet class of distributions. When some of the

subsets consist of more than one random variable, the partition is referred to as a non-overlapping

multivariate marginal cover. An example of such a partition is:

E = {{1,2} ,{3,4, . . . ,N}} .

• Star cover: Let {I0,I1, . . . ,IR} be a partition of N . Then E is a star cover if Jr = Ir ∪I0 for

all r ∈R. The star cover:

E = {{1,2},{1,3}, . . . ,{1,N}} ,

is called the simple star cover.

• Series cover: Let {I0,I1, . . . ,IR} be a partition of N . Then E is a series cover if Jr = Ir−1∪Ir

for all r ∈R. The series cover:

E = {{1,2},{2,3}, . . . ,{N − 1,N}} ,

is called the simple series cover.

Given a joint distribution θ of the random vector c̃, let projJr(θ) denote the marginal distribution

of the sub-vector c̃r formed from the components in the subset Jr. This brings us to a general

definition of the Fréchet class of distributions (see Rüschendorf (1991)).

Definition 1. The Fréchet class of distributions ΘE for a cover E = {J1, . . . ,JR} is defined as the

set of all possible joint distributions of the random vector c̃ with the given multivariate marginal

distributions {θr}r∈R of the sub-vectors {c̃r}r∈R as projections:

ΘE , {θ
∣∣ projJr(θ) = θr, ∀ r ∈R}.
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Throughout the paper, we use the index r and the set Jr interchangeably. Given a real-valued

function ϕ(·), and the Fréchet class of distributions ΘE for a given cover E , the upper bound is

computed as:

ME(ϕ) = sup
θ∈ΘE

Eθ [ϕ(c̃)] . (6)

Several previous studies have focused on finding the Fréchet lower bound on the cumulative

probability that the sum of random variables is strictly smaller than a given number z:

inf
θ∈ΘE

Pθ

(∑
i∈N

c̃i < z

)
.

Note that these bounds directly translate to upper bounds on the tail probability:

sup
θ∈ΘE

Pθ

(∑
i∈N

c̃i ≥ z

)
.

The earliest known bounds for this problem were developed by Makarov (1982) and Rüschendorf

(1982) for a simple partition with N = 2. This bound is given as:

inf
θ∈Θ{{1},{2}}

Pθ (c̃1 + c̃2 < z) = max

{
sup

d:d1+d2=z

[
F−1 (d1) +F2(d2)

]
− 1,0

}
, (7)

where Fi(di) = P (c̃i ≤ di) and F−i (di) = P (c̃i <di). ForN ≥ 3, Kreinovich and Ferson (2006) showed

that computing the tightest bound when E is a simple partition, is already NP-hard. Several weaker

bounds have been proposed, among which is the standard bound of Embrechts et al. (2003) and

Rüschendorf (2005):

inf
θ∈Θ{{1},...,{N}}

Pθ

(∑
i∈N

c̃i < z

)
≥max

{
sup

d:
∑
i∈N di=z

[
F−1 (d1) +

N∑
i=2

Fi(di)

]
− (N − 1),0

}
. (8)

While the standard bound is tight for N = 2, it is not tight for N ≥ 3. For N ≥ 3, Wang and Wang

(2011) and Pucetti and Rüschendorf (2013) have developed tight bounds in special instances such

as homogeneous univariate marginals with monotone densities and concave densities respectively.

Embrechts and Puccetti (2006) have derived alternate dual bounds using results from mass trans-

portation theory (see Rachev and Rüschendorf (1989)). For non-overlapping multivariate marginal
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covers, Puccetti and Rüschendorf (2012) showed that the Fréchet bound on the cumulative distri-

bution function of a sum of random variables can be reduced to that of a simple partition. For the

simple star cover, Rüschendorf (1991) introduced a conditioning method to derive Fréchet bounds

using the bound for the simple partition. For the simple series cover, Embrechts and Puccetti

(2010) proposed a variable splitting method to estimate Fréchet bounds. Puccetti and Rüschendorf

(2012) have generalized this method to general overlapping covers. In general, given the hardness of

computing the tightest lower bound on the cumulative distribution function of the sum of random

variables, these methods generate tight bounds only in special instances.

In this paper, we compute a new Fréchet upper bound for the convex piecewise linear function of

a random vector and solve the associated distributionally robust optimization problem. In Section

2, we review a graph theoretic condition on the structure of a cover referred to as the running inter-

section property. This property guarantees the Fréchet class of distributions is nonempty. Using the

running intersection property, we show that the tightest upper bound for discrete distributions is

efficiently computable with linear programming. Our proof is constructive and provides an explicit

characterization of the distribution in the Fréchet class that attains the bound. The distribution

is an alternative to the maximal entropy distribution which corresponds to a conditionally inde-

pendent distribution in this setting. In Section 3, we compute new bounds on the worst-case VaR

and CVaR measures. Simple examples are provided in this section to illustrate the quality of the

bounds. In Section 4, we apply a data-driven approach with financial returns to identify the Fréchet

class of distributions with the running intersection property and then optimize the portfolio over

this class of distributions. We show that by combining simple heuristic algorithms to identify the

cover with linear optimization to identify the optimal portfolio, superior out of sample performance

is attainable. We finally conclude in Section 5.

2. Fréchet Bound for a Regular Cover

For a non-overlapping cover, the Fréchet class of distributions ΘE is nonempty if and only if each

θr for r ∈ R is a valid distribution. Feasibility is ensured in this case by simply using a product
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measure on the marginal distributions. However for an arbitrary cover with overlap, the feasibility

problem is itself known to be non-trivial. Honeyman et al. (1980) showed that for a general cover

the problem of determining if there exists a multivariate joint distribution with the given marginals

as projections is NP-complete. For an overlapping cover, the existence of a joint distribution clearly

implies the pairwise consistency of the multivariate marginals:

projJr∩Js(θr) = projJr∩Js(θs), ∀ r 6= s.

The reverse however need not be true, namely consistency does not imply the existence of joint

distribution. Vorob’ev (1962) provided a simple counterexample to show this for the cover E =

{{1,2},{2,3},{1,3}} (see Table 1). In this example, there is no possible joint distribution for

Table 1 Example where consistency of the bivariate marginals does not imply feasibility of a trivariate

distribution.

c̃1 c̃2 Probability

0 0 0.5

1 1 0.5

c̃2 c̃3 Probability

0 0 0.5

1 1 0.5

c̃3 c̃1 Probability

0 1 0.5

1 0 0.5

(c̃1, c̃2, c̃3) even though the two-dimensional distributions of (c̃1, c̃2), (c̃2, c̃3) and (c̃3, c̃1) are con-

sistent on the overlapping elements. This brings us to the following definition of a regular or a

decomposable cover (see Vorob’ev (1962), Kellerer (1964)).

Definition 2. A cover structure for which the consistency of the multivariate marginals is suffi-

cient to ensure that ΘE is nonempty is referred to as a regular cover (or decomposable cover). A

cover that is not regular is referred to as an irregular cover.

While in general, there is no simple sufficient condition to test if ΘE is nonempty (see Kellerer

(1991)), for regular covers the necessary and sufficient condition is to test the pairwise consistency

of all the multivariate marginals.
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2.1. Regular Cover

A regular cover is characterizable by several equivalent graph theoretic properties. We review some

of the key properties using terminology from graphs and hypergraphs (see Berge (1976)) next.

Associated with a cover is a hypergraph H(N ,E) with a set of vertices N and a set of hyperedges E

that form the set of nonempty subsets of N . The graph G(H) associated with the hypergraph H is

a graph with the same set of vertices as H and an edge between every vertex pair that lies in some

hyperedge. Then the following four properties: (a), (b), (c) and (d) have shown to be equivalent to

each other (see Beeri et al. (1983) and Lauritzen et al. (1984)).

(a) The cover E on the set N is regular:

For a regular cover, every pairwise consistent set of multivariate marginals is also globally

consistent, namely there exists a joint distribution with the given multivariate marginals as

projections.

(b) The hypergraph H(N ,E) is acyclic:

A hypergraph H is acyclic if all the vertices of H can be deleted by repeatedly applying the

following two operations: (1) Delete a vertex that occurs in only one hyperedge, (2) Delete

an hyperedge that is contained in another hyperedge.

(c) The hypergraph H(N ,E) is conformal and chordal:

A clique of a graph G is a set of pairwise adjacent vertices. A hypergraph H is conformal if

every clique in G(H) is contained in an hyperedge of H. A graph G is chordal if every cycle

of four or more vertices has at least a chord (an edge connecting two non-adjacent vertices in

the cycle). A hypergraph H is chordal if its graph G(H) is chordal.

(d) The cover E on the set N satisfies the running intersection property (RIP):

A cover E satisfies the RIP, if the elements of E can be ordered such that:

∀ r ∈R\{1}, ∃σr ∈R : 1≤ σr < r and Jr ∩
(
r−1
∪
t=1
Jt
)
⊆Jσr . (9)
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Associated with the RIP in (9), define the parameters:

σr , min

{
i∈R

∣∣∣∣ Jr ∩(r−1
∪
t=1
Jt
)
⊆Ji

}
, ∀ r ∈R\{1},

Kr , Jr ∩
(
r−1
∪
t=1
Jt
)
, ∀ r ∈R\{1}.

(10)

A feasible joint distribution can be constructed in this case using conditional independence

as follows (see Kellerer (1964) and Jiroušek (1991)):

θ(c) = θ1(c1)× θ2(c2)

projK2
(θ2(c2))

× · · ·× θR(cR)

projKR(θR(cR))
, ∀c. (11)

Any one of the four properties: (a), (b), (c) or (d) is verifiable efficiently and in particular linear

time algorithms have been developed to test for these properties (see Rose et al. (2004) and Tarjan

and Yannakakis (1984)). Examples of irregular and regular covers are provided in Figure 1. Covers
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Figure 1 Examples of three different covers with their hypergraph and graph representations. (a) E =

{{1,2,3},{2,3,4},{3,4,5},{4,5,1}} is an irregular cover. (b) E = {{1,2,3},{1,2,4},{1,2,5}} is a regu-

lar cover. (c) E = {{1,2,3},{2,3,4},{3,4,5}} is a regular cover. In (a), H is not acyclic. Though G(H) is

chordal, H is not conformal since the clique {1,2,4} is not contained in E . In (b) and (c), H is acyclic,

H is conformal and chordal and the RIP is satisfied. In (b), σ2 = 1, σ3 = 1, K2 = {1,2}, K3 = {1,2}. In

(c), σ2 = 1, σ3 = 2, K2 = {2,3}, K3 = {3,4}.
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(b) and (c) in Figure 1 correspond to star and series covers, both of which are regular covers. A

joint distribution for the star cover in Figure 1(b) is constructed as follows:

θ(c) = θ{1,2,3}(c1, c2, c3)×
θ{1,2,4}(c1, c2, c4)

θ{1,2}(c1, c2)
×
θ{1,2,5}(c1, c2, c5)

θ{1,2}(c1, c2)
, ∀c, (12)

or equivalently:

θ(c) = θ{1,2}(c1, c2)× θ{3|1,2}(c3|c1, c2)× θ{4|1,2}(c4|c1, c2)× θ{5|1,2}(c5|c1, c2), ∀c, (13)

where θ{r|1,2}(cr|c1, c2) is the conditional distribution of cr given c1 and c2. Similarly a joint distri-

bution for the series cover in Figure 1(c) is constructed as follows:

θ(c) = θ{1,2,3}(c1, c2, c3)×
θ{2,3,4}(c2, c3, c4)

θ{2,3}(c2, c3)
×
θ{3,4,5}(c3, c4, c5)

θ{3,4}(c3, c4)
, ∀c, (14)

or equivalently:

θ(c) = θ{1}(c1)× θ{2,3|1}(c2, c3|c1)× θ{4|2,3}(c4|c2, c3)× θ{5|3,4}(c5|c3, c4), ∀c. (15)

Properties of regular covers have been previously exploited in developing efficient database rep-

resentation schemes (see Beeri et al. (1983)), in approximating high-dimensional probability dis-

tributions (see Chow and Liu (1968)), in developing tractable semidefinite relaxations in sparse

polynomial optimization problems (see Lasserre (2006)) and in developing efficient inference algo-

rithms in probabilistic graphical models (see Wainwright and Jordan (2008)). In this paper, we use

the structure of regular covers in distributionally robust optimization problems. From this point

onwards, we assume that the following condition is satisfied.

Assumption 1. The cover E is regular with the elements satisfying the RIP property in (9) and

the multivariate marginal distributions {θr}r∈R are consistent.

In Section 4, we describe a data-driven approach that uses historical return data to generate regular

covers with consistent marginal distributions. The following lemma provides a simpler condition

to test the consistency of multivariate marginal distributions for regular covers.
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Lemma 1. Given a regular cover E, the following condition is necessary and sufficient to ensure

consistency among the marginal distributions:

projKr(θr) = projKr(θσr), ∀ r ∈R\{1} :Kr 6= ∅.

Proof. Using the RIP condition in (9), we have for all r ∈R\{1},

Jr ∩
(
r−1
∪
t=1
Jt
)
⊆Jσr ⇐⇒ Jr ∩

(
r−1
∪
t=1
Jt
)
⊆Jσr ∩Jr,

⇐⇒ Jr ∩Jt ⊆Jσr ∩Jr, ∀ t= 1, . . . , r− 1.

This indicates that all the pairwise intersections for a regular cover are included in a set of R−

1 intersections. Thus verifying consistency can be restricted to these pairs. Since, Jσr ∩ Jr =(
r−1
∪
t=1
Jt
)
∩Jr =Kr, the result is proved. �

Lemma 1 implies that for regular covers, the feasibility of the Fréchet class of distributions

can be ensured with O(R) consistency requirements as opposed to O(R2) pairwise consistency

requirements.

2.2. A New Fréchet Upper Bound

In this section, we compute the upper bound ME(ϕ) for ϕ(c̃) = maxj∈M (c̃Taj + bj) for regular

covers with consistent multivariate marginals. Our main theorem provides a linear optimization

formulation to compute the Fréchet upper bound for discrete distributions. Towards this, we define

a N -dimensional vector η that allows us to express a linear function in c̃ as separable functions

with respect to the cover E . Define the ith component of η as follows:

ηi ,
1∑

r∈R

I{i∈Jr}
, ∀ i∈N ,

where I{i∈Jr}= 1 if i ∈ Jr and 0 otherwise. For example, in the simple star cover, this reduces

to:

η=

(
1

N − 1
,1, . . . ,1

)T
,
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and in the simple series cover, this reduces to:

η=

(
1,

1

2
,
1

2
, . . . ,

1

2
,1

)T
.

Then, c̃Ta=
∑

r∈R c̃
T
r (ηr ◦ar) where ηr and ar are sub-vectors formed by the elements of η and

a in Jr and ◦ is the Hadamard (entry-wise) product operator. Finally, let Cr denote the finite set

of support values of the sub-vector c̃r and Cr = size(Cr).

Theorem 1. Given a regular cover E and a consistent set {θr}r∈R of discrete marginal distribu-

tions with finite support, let MP
E (ϕ) be the optimal value to the primal linear program:

max
ϑj,r(.),λj

∑
j∈M

∑
r∈R

∑
cr∈Cr

cTr (ηr ◦ajr) ·ϑj,r(cr) +
∑
j∈M

bjλj

s.t. (Nonnegativity of measure):

ϑj,r(cr)≥ 0, ∀cr ∈ Cr,∀ r ∈R, ∀ j ∈M,

(Multivariate marginal requirement):∑
j∈M

ϑj,r(cr) = θr(cr), ∀cr ∈ Cr,∀ r ∈R,

(Probability of jth term attaining maximum):∑
cr∈Cr

ϑj,r(cr) = λj, ∀ r ∈R,∀ j ∈M,

(Consistency requirement):∑
hr∈Cr :projKr (hr)=cKr

ϑj,r(hr) =
∑

hσr∈Bσr :projKr (hσr )=cKr

ϑj,σr(hσr), ∀cKr ∈ CKr ,

∀ r ∈R\{1} :Kr 6= ∅,∀ j ∈M,

(16)

where the decision variables are the nonnegative measures ϑj,r(cr) and λj for cr ∈ Cr, r ∈R, j ∈M.

Then the Fréchet bound ME(ϕ) = maxθ∈ΘE Eθ
[
maxj∈M(c̃Taj + bj)

]
is equal to MP

E (ϕ).
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Proof. We first show that MP
E (ϕ) is a valid upper bound of ME(ϕ). For any joint distribution

θ ∈ΘE , the expected value in (2) can be expressed as follows:

Eθ [ϕ(c̃)] = Eθ

[
max
j∈M

(∑
r∈R

c̃Tr (ηr ◦ajr) + bj

)]

=
∑
j∈M

Eθ

[∑
r∈R

c̃Tr (ηr ◦ajr) + bj
∣∣ the jth term is max

]
Pθ (the jth term is max)

=
∑
j∈M

∑
r∈R

∑
cr∈Cr

cTr (ηr ◦ajr) ·Pθ (c̃r = cr, the jth term is max)+

∑
j∈M

bjPθ (the jth term is max)

=
∑
j∈M

∑
r∈R

∑
cr∈Cr

cTr (ηr ◦ajr) ·ϑj,r(cr) +
∑
j∈M

bjλj,

where the decision variables are the measures ϑj,r(cr) and λj defined as follows:

ϑj,r(cr) = Pθ (c̃r = cr, the jth term is max) ,

λj = Pθ (the jth term is max) .

Thus ϑj,r(cr) ≥ 0 which corresponds to the nonnegativity of measure requirement. Note that if

the function value ϕ(c) has multiple terms attaining the maximum for some value of c, one can

arbitrarily choose any one of them without changing the expected value, for example, the term

with the minimum index. Hence, for all cr ∈ Cr and r ∈R,

∑
j∈M

ϑj,r(cr) = Pθ (c̃r = cr)

= θr(cr),

which corresponds to the given multivariate marginal requirement. In addition, for all r ∈R and

j ∈M,

∑
cr∈Cr

ϑj,r(cr) = Pθ (the jth term is max)

= λj,

which corresponds to the probability of the jth term attaining the maximum. From Lemma 1,

consistency of the measures ϑj,r(.) for a given term j is guaranteed by equality of the projections

of the measures:

projKr(ϑj,r) = projKr(ϑj,σr).
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In terms of the decision variables, this corresponds to the last set of constraints in (16). Thus, for

any distribution θ ∈ΘE , all the constraints in (16) are satisfied, which implies MP
E (ϕ) is an upper

bound:

MP
E (ϕ)≥ME(ϕ) = max

θ∈ΘE
Eθ [ϕ(c̃)] .

We next prove that the bound is tight. Observe that the linear program (16) is bounded and

feasible implying that the optimal objective value is attained. Consider an optimal solution of

problem (16) denoted by ϑ∗j,r(cr) and λ∗j . We have:

∑
j∈M

λ∗j =
∑
j∈M

∑
cr∈Cr

ϑ∗j,r(cr)

=
∑
cr∈Cr

θr(cr)

= 1.

In addition, λ∗j ≥ 0 for all j ∈ M. Thus λ∗ is a probability vector. We now construct a joint

distribution θ∗ for c̃ based on ϑ∗j,r(cr) and λ∗j as follows:

(a) Choose term j ∈M with probability λ∗j .

(b) For each r ∈R, assign a measure θ∗j,r(cr) for cr ∈ Cr where θ∗j,r(cr) = ϑ∗j,r(cr)/λ
∗
j . Note that

if λ∗j = 0, we simply drop that index.

(c) Choose a feasible joint distribution in the Fréchet class of distributions θ∗j ∈ΘE(θ
∗
j,1, . . . , θ

∗
j,R)

and generate c̃ with distribution θ∗j .

It is clear that θ∗j,r is a valid and consistent probability measure for c̃r, r ∈R, since (ϑ∗j,r(cr), λ
∗
j )

is a feasible solution to problem (16). Hence, ΘE(θ
∗
j,1, . . . , θ

∗
j,R) 6= ∅ since the cover is regular, which

implies the existence of a joint distribution θ∗j for all j ∈M. For all r ∈ R, the probability of c̃r

taking the value cr is:

∑
j∈M

λ∗j ·
ϑ∗j,r(cr)

λ∗j
=
∑
j∈M

ϑ∗j,r(cr)

= θr(cr).
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Thus, we have θ∗ ∈ΘE . Hence the following inequality holds:

Eθ∗j

[
max
k∈M

(∑
r∈R

c̃Tr (ηr ◦akr) + bk

)]
≥ Eθ∗j

[∑
r∈R

c̃Tr (ηr ◦ajr) + bj

]
=
∑
r∈R

Eθ∗j
[
c̃Tr (ηr ◦ajr) + bj

]
=
∑
r∈R

1

λ∗j

∑
cr∈Cr

cTr (ηr ◦ajr) ·ϑ∗j,r(cr) + bj,

where the first inequality is obtained by simply choosing the jth term in the function for θ∗j . Then

we have a lower bound since:

Eθ∗

[
max
k∈M

(∑
r∈R

c̃Tr (ηr ◦akr) + bk

)]
=
∑
j∈M

λ∗j ·Eθ∗j

[
max
k∈M

(∑
r∈R

c̃Tr (ηr ◦akr) + bk

)]

≥
∑
j∈M

λ∗j

[∑
r∈R

1

λ∗j

∑
cr∈Cr

cTr (ηr ◦ajr) ·ϑ∗j,r(cr) + bj

]
=
∑
j∈M

∑
r∈R

∑
cr∈Cr

cTr (ηr ◦ajr) ·ϑ∗j,r(cr) + bjλ
∗
j

= MP
E (ϕ).

Hence

ME(ϕ) = max
θ∈ΘE

Eθ
[
max
j∈M

(
aTj c̃+ bj

)]
≥Eθ∗

[
max
j∈M

(
aTj c̃+ bj

)]
≥MP

E (ϕ).

Together, we have ME(ϕ) =MP
E (ϕ). �

Several remarks about the theorem and its proof are in order:

(a) The proof of Theorem 1 is inspired from the proofs in Bertsimas et al. (2006) and Natara-

jan et al. (2009b) for univariate marginals and Doan and Natarajan (2012) for non-

overlapping multivariate marginals. Theorem 1 extends these results to overlapping multivari-

ate marginals. The main generalization is that we incorporate a new set of linear constraints

that guarantee the consistency of the distributions and thereby the existence of a joint dis-

tribution that attains the bound for overlapping regular covers.

(b) The conditionally independent distribution in (11) is a feasible distribution in the set ΘE . This

distribution maximizes the Shannon entropy among all the measures θ ∈ ΘE (see Jiroušek
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(1991)). Theorem 1 provides an alternate distribution in the set ΘE that maximizes the

expected value of a piecewise linear convex function of the random vector.

(c) The representation of the split vector η is not unique. In particular, we can define values

ηri ≥ 0, such that
∑

r∈R η
r
i = 1 and ηri = 0 if i 6∈ Jr for all r ∈ R and i ∈ N . For example,

instead of splitting variables equally among all the relevant subsets, we can set η
r(i)
i = 1 for

all i∈N , where r(i) = min{r : i∈Jr}. This does not affect the result of Theorem 1.

(d) A total of
∑

r∈RCr probabilities are specified as an input to the linear optimization problem

where Cr is the support of each sub-vector c̃r. The total number of decision variables in the

primal linear program in Theorem 1 is M
∑

r∈RCr +M , and the total number of constraints

is M
∑

r∈RCr +RM +
∑

r∈RCr +M
∑

r∈R\{1}CKr . Hence the size of the linear program is

polynomially bounded in the parameters N , M , R and the maximum support size maxr∈RCr.

If the marginals are constructed from historical data, as in the numerical experiments in

Section 4, the maximum support size is bounded by the number of data samples. With the

number of data samples in the order of hundred, we will demonstrate in the numerical section

that the linear program (16) can be solved efficiently.

(e) It is possible for the maximum support size maxr∈RCr to be exponential in the number of

random variables N . For example, if the entire joint distribution is given, up to KN probabili-

ties might need to be specified where K is the maximum number of values that any individual

random variable takes. In this case, if the size of the subsets are restricted to be O(log(N)),

then maxr∈RCr ≤KO(log(N)) and is polynomially bounded in N . The size of the linear pro-

gram is then polynomially bounded in the parameters N , M , R and K (the maximum number

of support points of any univariate marginal). In general, if the size of the subsets is small

enough as compared to N , solving the linear program (16) to compute Fréchet bounds would

be more efficient than computing the expected value (2) given the complete joint distribution

of up to KN probabilities.

We conclude this section by showing that the result in Doan and Natarajan (2012) for general

partitions can be derived from the result of Theorem 1 for general covers. By assigning dual
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variables fr(cr), dj,r and gj,r (cKr) to the equalities in formulation (16), the dual linear program is

formulated as follows:

MD
E (ϕ) = min

fr(·),gj,r(·),dj,r

∑
r∈R

∑
cr∈Cr

fr(cr)θr(cr)

s.t. fr(cr)≥ cTr (ηr ◦ajr)− dj,r− gj,r (cKr) +
∑

t>r:σt=r

gj,t (cKt) , ∀cr ∈ Cr,

∀ r ∈R,∀ j ∈M,∑
r∈R

dj,r + bj = 0, ∀ j ∈M,

(17)

where we define K1 = ∅, and for r ∈R, if Kr = ∅, we define c̃Kr = 0, and gj,r (0) = 0, for all j ∈M.

Formulation (17) can be concisely rewritten as:

MD
E (ϕ) = min

gj,r(·),dj,r

∑
r∈R

Eθr

[
max
j∈M

(
c̃Tr (ηr ◦ajr)− dj,r− gj,r (c̃Kr) +

∑
t>r:σt=r

gj,t (c̃Kt)

)]

s.t.
∑
r∈R

dj,r + bj = 0, ∀ j ∈M,

(18)

Linear programming duality implies that ME(ϕ) =MD
E (ϕ). For a general partition, the dual vari-

ables gj,r (cKr) correspond to the marginal consistency constraints in the primal problem (16).

When E is a partition, the marginal consistency constraints are not present and hence the corre-

sponding dual variables are deleted. Thus formulation (17) for the partition case reduces to:

min
dj,r

∑
r∈R

Eθr
[
max
j∈M

(
c̃Tr ajr − dj,r

)]
s.t.

∑
r∈R

dj,r + bj = 0, ∀ j ∈M,

(19)

which is equivalent to the non-overlapping marginal formulation in Doan and Natarajan (2012).

2.3. Connected Regular Covers: Star and Series Case

In this section, we simplify the Fréchet bound for a class of covers with a special structure that we

term as connected regular covers.

Definition 3. A cover E is said to be connected if for any s, t∈R, s 6= t, there exists a sequence

r1, r2, . . . , rm ∈R with r1 = s and rm = t such that Jrj ∩Jrj+1
6= ∅ for all j = 1, . . . ,m− 1.
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It is clear that partitions are not connected covers. The simple star and series covers are examples

of connected covers. The next lemma characterizes the connectedness of regular covers.

Lemma 2. A regular cover E is connected if and only if Kr 6= ∅ for all r ∈R\{1}.

The proof of the Lemma is provided in the Appendix. This characterization of connected regular

covers allows us to slightly simplify the formulation to compute ME(ϕ).

Proposition 1. Given a connected regular cover E and a consistent set {θr}r∈R of discrete

marginal distributions with finite support, let MPC
E (ϕ) be the optimal value to the primal linear

program:

max
ϑj,r(.)

∑
j∈M

∑
r∈R

∑
cr∈Cr

(
cTr (ηr ◦ajr) + ρrbj

)
·ϑj,r(cr)

s.t. (Nonnegativity of measure):

ϑj,r(cr)≥ 0, ∀cr ∈ Cr,∀ r ∈R,∀ j ∈M,

(Multivariate marginal requirement):∑
j∈M

ϑj,r(cr) = θr(cr), ∀cr ∈ Cr,∀ r ∈R,

(Consistency requirement):∑
hr∈Cr : projKr (hr)=cKr

ϑj,r(hr) =
∑

hσr∈Cσr : projKr (hσr )=cKr

ϑj,σr(hσr), ∀cKr ∈ CKr ,

∀ r ∈R\{1},∀ j ∈M,

(20)

where ρr are arbitrary constants that satisfy
∑

r∈R ρr = 1 and the decision variables

are the measures ϑj,r(cr) for cr ∈ Cr, r ∈ R, j ∈ M. Then the Fréchet bound ME(ϕ) =

maxθ∈ΘE Eθ
[
maxj∈M (c̃Taj + bj)

]
is equal to MPC

E (ϕ).

Proof. We claim that the constraints:∑
cr∈Cr

ϑj,r(cr) = λj, ∀ r ∈R,∀ j ∈M,

in (16) are redundant if the regular cover E is connected. From Lemma 2, Kr 6= ∅ for all r ∈ R.

Using the last set of constraints in (16) (or (20)), we obtain the following equalities:∑
cr∈Cr

ϑj,r(cr) =
∑
cs∈Cs

ϑj,s(cs), ∀ r, s∈R, r 6= s, ∀ j ∈M.
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Thus, we can drop the decision variables λj, by replacing
∑

j∈M bjλj by∑
j∈M

∑
r∈R

∑
cr∈Cr ρrbjϑj,r(cr) in the objective given that

∑
r∈R ρr = 1. Thus for connected

regular covers, (20) is equivalent to (16) and it implies that in this case, ME(ϕ) =MPC
E (ϕ). �

The problem (20) has fewer variables and lesser constraints as compared to (16), which also

allows us to simplify its dual formulation by remove the corresponding set of dual variables. The

dual formulation is written as follows:

MDC
E (ϕ) = min

gj,r(·)

∑
r∈R

Eθr

[
max
j∈M

(
c̃Tr (ηr ◦ajr)− gj,r (c̃Kr) +

∑
t>r:σt=r

gj,t (c̃Kt) + ρrbj

)]
. (21)

To illustrate this formulation, we consider two simple examples of the Fréchet bound for star and

series covers.

Series cover: For the simple series cover, we have R=N −1 and σr = r−1 for all r= 2, ...,N −1.

Letting ρr = 1/(N − 1) for all r ∈R, we can reformulate (21) as:

min
gj,r(.)

Eθ{1,2}

[
max
j∈M

(
c̃1aj1

+
c̃2aj2

2
+ gj,2 (c̃2) +

bj
N − 1

)]
+

N−2∑
r=2

Eθ{r,r+1}

[
max
j∈M

(
c̃rajr

2
+
c̃r+1ajr+1

2
− gj,r (c̃r) + gj,r+1 (c̃r+1) +

bj
N − 1

)]
+

Eθ{N−1,N}

[
max
j∈M

(
c̃NajN +

c̃N−1ajN−1

2
− gj,N−1 (c̃N−1) +

bj
N − 1

)]
.

(22)

Star cover: For the simple star cover, we have R=N − 1 and σr = 1 for all r= 2, . . . ,N − 1. The

dual Fréchet bound for the star cover is reformulated from (21) as follows:

min
gj,r(.)

Eθ{1,2}

[
max
j∈M

(
c̃2aj2 + c̃1aj1

+
N−1∑
r=2

gj,r (c̃1) + bj

)]
+
N−1∑
r=2

Eθ{1,r+1}

[
max
j∈M

(
c̃r+1ajr+1

− gj,r (c̃1)
)]
.

We define a new set of decision variables as follows:

gj,1 (c1) =−
N−1∑
r=2

gj,r (c1)− c1aj1
− bj, ∀ c1 ∈ C1,∀ j ∈M.

The formulation then reduces to:

min
gj,r(.)

N−1∑
r=1

Eθ{1,r+1}

[
max
j∈M

(
c̃r+1ajr+1

− gj,r (c̃1)
)]

s.t.
N−1∑
r=1

gj,r (c1) =−c1aj1
− bj, ∀ c1 ∈ C1,∀ j ∈M.

(23)



Doan, Li, and Natarajan: Overlapping Dependency in Portfolio Optimization
Article submitted to Operations Research; manuscript no. OPRE-2013-05-231 21

Conditioning with respect to the marginal distribution of c̃1 as in Puccetti and Rüschendorf (2012)

and using the dual representation for the partition case in (19), we obtain an equivalent formulation:

Eθ{1}

{
sup

θ∈Θ{{2|1},...,{N|1}}

Eθ
[
max
j∈M

(
c̃Taj + bj

) ∣∣∣c̃1

]}
.

For a fixed c̃1 = c1, the inner problem is the Fréchet bound where θ belongs to the Fréchet class

defined by the conditional marginal distributions. Thus, the Fréchet bound for the star cover is

equivalent to:

Eθ{1}

{
sup

θ∈Θ{{2|1},...,{N|1}}

Eθ
[
ϕ(c̃)

∣∣∣c̃1

]}
,

which indicates that it is reduces to the computation of Fréchet bounds with a simple partition. A

similar observation has been made by Puccetti and Rüschendorf (2012) for more general objective

functions.

3. Bounds for CVaR and VaR

In this section, we evaluate new Fréchet bounds for the CVaR and VaR measures.

3.1. CVaR Bound

The worst case CVaR with respect to the Fréchet class of distributions for α ∈ (0,1) is defined as

(see Natarajan et al. (2009a) and Zhu and Fukushima (2009)):

WCVaRΘE
α

(
c̃Tx

)
, sup

θ∈ΘE

CVaRθ
α

(
c̃Tx

)
= sup

θ∈ΘE

min
β∈<

(
β+

1

1−α
Eθ
[(
c̃Tx−β

)+
])

.

(24)

Since the multivariate marginal distributions {θr}r∈R are assumed to be discrete with finite support,

the expected value is finite and the supremum is attained by a joint distribution. Interchanging

the minimum and maximum in the worst-case CVaR formulation and from the convexity of the

objective function with respect to β and linearity with respect to the measure θ, we get:

WCVaRΘE
α

(
c̃Tx

)
= min

β∈<

(
β+

1

1−α
max
θ∈ΘE

Eθ
[(
c̃Tx−β

)+
])

. (25)

Thus, in order to compute the upper bound on the CVaR, we need to compute an upper bound on

the expected value Eθ
[(
c̃Tx−β

)+
]
. We provide a simple example to illustrate the computation

of the expected value next.
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3.1.1. Example Consider a sum of N random variables. We compute the Fréchet upper

bound:

max
θ∈ΘE

Eθ

(∑
i∈N

c̃i−β

)+
 (26)

and compare it with expected value under the maximum entropy (ME) distribution in (11):

EME

(∑
i∈N

c̃i−β

)+
 .

Consider the bivariate uniform discrete distributions provided in Table 2 for a simple series cover

with N = 4. The maximum-entropy distribution in this case is the independent uniform distribution

with PME(c) = 1/16 for all c∈ {0,1}4.

Table 2 Consistent bivariate marginals for simple series cover with E = {{1,2},{2,3},{3,4}}.

c̃1 c̃2 Probability

0 0 0.25

0 1 0.25

1 0 0.25

1 1 0.25

c̃2 c̃3 Probability

0 0 0.25

0 1 0.25

1 0 0.25

1 1 0.25

c̃3 c̃4 Probability

0 0 0.25

0 1 0.25

1 0 0.25

1 1 0.25
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In order to compute the upper bound, we apply Proposition 1 with M = 2, a1 = e, b1 = −β,

a2 = 0 and b2 = 0. The primal linear program for (26) is formulated as follows:

max
ϑr(·)

∑
(v,w)∈{0,1}2

((
v+

w

2
− β

3

)
·ϑ{1,2}(v,w) +

(
v

2
+
w

2
− β

3

)
·ϑ{2,3}(v,w)

)
+

∑
(v,w)∈{0,1}2

(
v

2
+w− β

3

)
·ϑ{3,4}(v,w)

s.t. (Nonnegativity of measure):

ϑ{1,2}(v,w), ϑ{2,3}(v,w), ϑ{3,4}(v,w)≥ 0, ∀ (v,w)∈ {0,1}2,

(Multivariate marginal requirement):

ϑ{1,2}(v,w)≤ 0.25, ∀ (v,w)∈ {0,1}2,

ϑ{2,3}(v,w)≤ 0.25, ∀ (v,w)∈ {0,1}2,

ϑ{3,4}(v,w)≤ 0.25, ∀ (v,w)∈ {0,1}2,

(Consistency requirement):

ϑ{2,3}(0,0) +ϑ{2,3}(0,1) = ϑ{1,2}(0,0) +ϑ{1,2}(1,0),

ϑ{2,3}(1,0) +ϑ{2,3}(1,1) = ϑ{1,2}(0,1) +ϑ{1,2}(1,1),

ϑ{3,4}(0,0) +ϑ{3,4}(0,1) = ϑ{2,3}(0,0) +ϑ{2,3}(1,0),

ϑ{3,4}(1,0) +ϑ{3,4}(1,1) = ϑ{2,3}(0,1) +ϑ{2,3}(1,1),

(27)

Since the support of
∑

i∈N c̃i is restricted in {0,1,2,3,4}, we vary β in [0,4]. Figure 2 provides

a comparison of the bounds. The Fréchet bound provides an upper bound on the expected value

with respect to the maximum-entropy distribution.

We next incorporate the bound to provide an explicit formulation for the Fréchet bound of

CVaR. Applying the dual formulation, the worst-case CVaR bound is computed as follows:

WCVaRΘE
α

(∑
i∈N

c̃i

)
= min

gr(.),β

β+
1

1−α
∑
r∈R

Eθr

(c̃Tr ηr− gr (c̃Kr) +
∑

t>r:σt=r

gt (c̃Kt)−
β

R

)+
 .

(28)
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Figure 2 Comparison between the Fréchet bound and the maximum entropy distribution

For the distributional information in Table 2, we can reformulate (28) with additional decision

variables as a linear program:

min
gr(.),β,zr(.)

β+
1

4(1−α)

∑
(v,w)∈{0,1}2

(
z{1,2}(v,w) + z{2,3}(v,w) + z{3,4}(v,w)

)
s.t. z{1,2}(v,w)− g{2,3}(w)≥ v+

w

2
− β

3
, ∀ (v,w)∈ {0,1}2,

z{2,3}(v,w) + g{2,3}(v)− g{3,4}(w)≥ v

2
+
w

2
− β

3
, ∀ (v,w)∈ {0,1}2,

z{3,4}(v,w) + g{3,4}(v)≥ v

2
+w− β

3
, ∀ (v,w)∈ {0,1}2,

z{1,2}(v,w), z{2,3}(v,w), z{3,4}(v,w)≥ 0, ∀ (v,w)∈ {0,1}2.

(29)

3.2. VaR Bound

The VaR for a portfolio for α∈ (0,1) is defined as:

VaRθ
α

(
c̃Tx

)
, inf

{
z ∈< : Pθ

(
c̃Tx≤ z

)
≥ α

}
.

Hence, we have the following equivalence:

VaRθ
α

(
c̃Tx

)
≤ z ⇔ Pθ

(
c̃Tx≤ z

)
≥ α,
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which implies that z is an upper bound of VaRθ
α

(
c̃Tx

)
, if and only if α is a lower bound of the

cumulative distribution function Pθ
(
c̃Tx≤ z

)
. Since CVaR dominates VaR (see Rockafellar and

Uryasev (2002)), we can use CVaR to derive lower bounds of the cumulative distribution function

value. Given a Fréchet class ΘE of distributions, the worst-case VaR is defined as follows:

WVaRΘE
α (c̃Tx) , inf

{
z ∈< : inf

θ∈ΘE
Pθ
(
c̃Tx≤ z

)
≥ α

}
. (30)

Since WVaRΘE
α (c̃Tx) = sup

θ∈ΘE

VaRθ
α(x), this implies WVaRΘE

α (c̃Tx)≤WCVaRΘE
α (c̃Tx).

3.2.1. Example In the following example, we provide a lower bound on the cumulative dis-

tribution function of the sum of random variables Pθ
(∑

i∈N c̃i ≤ z
)

using CVaR approximations.

Observe that,

WVaRΘE
α

(∑
i∈N

c̃i

)
≤ z ⇔ inf

θ∈ΘE
Pθ

(∑
i∈N

c̃i ≤ z

)
≥ α,

The Fréchet bounds are related as follows:

inf
θ∈ΘE

Pθ

(∑
i∈N

c̃i < z

)
≤ inf

θ∈ΘE
Pθ

(∑
i∈N

c̃i ≤ z

)
≤ inf

θ∈ΘE
Pθ

(∑
i∈N

c̃i ≤ z+ ε

)
for all ε > 0.

Since WCVaR is an upper bound on WVaR, we first compute the WCVaR bound and then use

numerical inversion to find a lower bound on the cumulative distribution function. For the series

cover, we compute the worst-case CVaR as follows:

WCVaRΘE
α

(∑
i∈N

c̃i

)
= min

gi(.),β
β+

1

1−α

(
Eθ{1,2}

[(
c̃1 +

c̃2

2
+ g2 (c̃2)− β

N − 1

)+
]

+

N−2∑
i=2

Eθ{i,i+1}

[(
c̃i + c̃i+1

2
− gi (c̃i) + gi+1 (c̃i+1)− β

N − 1

)+
]

+

Eθ{N−1,N}

[(
c̃N−1

2
+ c̃N − gN−1 (c̃N−1)− β

N − 1

)+
])

.

(31)

For the numerical experiment, we construct bivariate marginal distributions for the simple series

cover by using the independent copula and identical uniform univariate marginals in [0,1]. Then

Fi(ci) = ci for all ci ∈ [0,1] and the joint distribution for two random variables is is Fi,i+1(ci, ci+1) =

cici+1 for all (ci, ci+1) ∈ [0,1]2 with i= 1, . . . ,N − 1. Clearly the set of these bivariate marginals is

consistent. Given these continuous marginals, the problem in (31) is an infinite-dimensional linear
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optimization problem. To compute WCVaR, we use a discretization of the distribution function

to compute upper and lower bounds. Consider a discrete distribution F̂ω approximation of F with

M -points as in Embrechts and Puccetti (2010):

F̂ω ,
1

M

∑
j∈M

I{x≥ ωj},

where ω = {ω1, ..., ωM} is the set of M jump points. Let qj =
j

M
for j = 0, . . . ,M and define two

sets of jump points ω= {q1, . . . , qM} and ω= {q0, . . . , qM−1}. Clearly, F̂ω and F̂ω provide lower and

upper bounds for F . The discretized bivariate marginal distributions are constructed from the cor-

responding discretized univariate marginals using the independent copula. Let WCVaR
ΘE
α (
∑

i∈N c̃i)

and WCVaRΘE
α (
∑

i∈N c̃i) denote the worst case CVaR bounds with respect to the discretized

marginals respectively. Then, WCVaRΘE
α (
∑

i∈N c̃i)≤WCVaRΘE
α

(∑
i∈N c̃i

)
≤WCVaR

ΘE
α (
∑

i∈N c̃i).

The upper and lower bounds are computed from the linear optimization problem in (31).

Embrechts and Puccetti (2010) proposed a lower bound of the cumulative distribution function

of the sum of random variables using the standard bound in (8) with variable splitting. In order

to compute this bound, one needs to calculate Fy(d) = P
(
c̃1 + c̃2

2
≤ d
)

and Fz(d) = P
(
c̃1
2

+ c̃2
2
≤ d
)
.

In our example, this reduces to:

Fy(d) =



0, d < 0,

d2, 0≤ d< 1/2,

d− 1/4, 1/2≤ d< 1,

−d2 + 3d− 5/4, 1≤ d< 3/2,

1, d≥ 3/2,

and Fz(d) =



0, d < 0,

2d2, 0≤ d< 1/2,

−2d2 + 4d− 1, 1/2≤ d< 1,

1, d≥ 1.

Note that F−y (d) = Fy(d) and F−z (d) = Fz(d) given continuous distributions. The lower bound in

Embrechts and Puccetti (2010) (referred to as the reduced standard bound (RSB)) is computed as

follows:

RSB(x) = max

{
sup

d∈<N−2

[
Fy(d1) +Fy

(
x−

N−2∑
i=1

di

)
+
N−2∑
i=2

Fz(di)

]
− (N − 2),0

}
. (32)
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The objective function in the inner maximization problem in (32) is unfortunately not concave,

making it challenging to find optimal solutions for the optimization problem. To solve this problem,

we use a numerical procedure outlined in the Appendix. In our computations, we set M = 50 and

compute the new series CVaR based bounds (SECB). The two bounds on the cumulative distribu-

tion function SECB+(x) and SECB−(x) are evaluated by taking the inverse of WCVaR
ΘE
α (
∑

i∈N c̃i)

and WCVaRΘE
α (
∑

i∈N c̃i), respectively. Figure 3 shows the three bounds, RSB(x), SECB+(x), and

SECB−(x), for N = 4 and N = 6. Observe that SECB+(x) and SECB−(x) are fairly close to each

other. Since the actual CVaR bound lies the between the two curves, the discrete approximation

with M = 50 for CVaR bounds is reasonably good in this example. It is also clear that our proposed

approximation significantly improves on the existing reduced standard bound.

4. Robust Portfolio Optimization

In this section, we implement the distributionally robust portfolio optimization approach in two

financial datasets and compare it with the sample based approach. Consider a portfolio of N

assets and let ξ̃ be the random return vector of the assets. The random loss of ith asset is then

simply c̃i = −ξ̃i. Given a feasible asset allocation x ∈ X , the computation of CVaR of the joint

portfolio requires the distribution of the random return vector c̃. Assume that we have access to

historical data of a finite set of samples from the financial market denoted by the set C. The sample

distribution θ assigns a probability of 1/C to each sample vector in C. The optimal sample-based

allocation with the minimum CVaR is obtained by solving:

min
β∈<,x∈X

(
β+

1

(1−α)C

∑
c∈C

[(
cTx−β

)+
])

, (33)

which is representable as a linear program. However, the out of sample performance of such a

approach is not necessarily good due to the possibility that the out of sample distribution is different

from the in-sample distribution. Using simulated data, Lim et al. (2011) have shown that the CVaR

measure with sample-based optimization results in fragile portfolios that are often unreliable due

to estimation errors. The approach we adopt in this paper is to use historical data to extract the
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Figure 3 Different bounds of the cumulative distribution function of the sum of random variables with the simple

series cover

stable dependencies among the random losses and only incorporate this reliable information into

the optimization model. Given historical data, we construct a Fréchet class of distributions ΘE and
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solve the following distributional robust optimization problem:

min
x∈X

max
θ∈ΘE

CVaRθ
α(c̃Tx). (34)

Using the dual representation in (28), the distributional robust portfolio optimization problem is

formulated as:

min
gr(.),β,x

β+
1

1−α
∑
r∈R

Eθr

(c̃Tr (ηr ◦xr)− gr (c̃Kr) +
∑

t>r:σt=r

gt (c̃Kt)−
β

R

)+


s.t. x∈X .

(35)

If X is a polyhedron and the multivariate marginal support set of c̃r is Cr with each sub-vector in

the set equally likely, problem (35) is solvable as a linear optimization problem:

min
gr(.),β,x,zr(.)

β+
1

1−α
∑
r∈R

∑
cr∈Cr

zr(cr)

Cr

s.t. zr(cr) + gr (cKr)−
∑

t>r:σt=r

gt (cKt)≥ cTr (ηr ◦xr)−
β

R
, ∀cr ∈ Cr,∀ r ∈R,

zr(cr)≥ 0, ∀cr ∈ Cr,∀ r ∈R,

x∈X .

(36)

Next, we discuss a data-driven approach to construct the Fréchet class of distributions of asset

returns ΘE .

4.1. Construction of Regular Covers

In the context of distributionally robust optimization, the dependency structure of the random

variables is often incorporated using moment information. Some of the common classes of dis-

tributions employed in the financial literature are distributions with first and second moment

information (see for example, El Ghaoui et al. (2003), Natarajan et al. (2009a), and Delage and Ye

(2010)) and multivariate normal distributions with parameter uncertainty in the mean and covari-

ance matrix (see Garlappi et al. (2007)). The resulting optimization formulations are tractable

conic programs. Our approach is to use a Fréchet class of distributions with possibly overlapping

marginals to capture information of dependencies among the random parameters. An important
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aspect of such an approach is to identify the cover structure E to balance over-fitting the data and

getting overly conservative solutions due to lack of information. In order to construct the cover E ,

we use time-dependent correlation information of the asset returns.

Our underlying assumption in identifying the cover is that we include pairs of assets in the same

subset if the changes in correlation between the two assets over time is minimal. We propose the

following two step data-driven approach to identify the regular cover:

Step 1: Split the historical data into two sets of equal size and construct the sampling dis-

tributions P1 and P2 for the asset returns from these two sets. For each pair of assets (i, j), we

compute ∆ρi,j = |ρP1i,j − ρ
P2
i,j|, where ρQi,j is the correlation of the losses of two assets i and j for the

distribution Q. The simplest choice of correlation is the common Pearson correlation coefficient

but other correlation measures could also be chosen. The objective is to identify the pairs (i, j)

of assets with small values of ∆ρi,j. Under the assumption that the stable dependency structure

is captured by pairs with minimal change in correlation over time, these pairs of assets should be

included in the same subset. There are different ways to identify such pairs of assets. In this paper,

we implement two such approaches:

(a) Minimum spanning tree approach (MST): Use ∆ρi,j as the weight for the edge (i, j)

in a complete graph of N vertices. Find the minimum spanning tree in this graph and keep all N−1

pairs of assets which define the tree. The choice of the minimum spanning tree implies that pairs

with small changes in correlation coefficients over time are likely to be selected. The MST approach

is inspired from the Chow-Liu method (Chow and Liu (1968)) which provides a second-order

product approximation of a joint probability distribution using the mutual information measure

and the spanning tree algorithm. We employ a similar method but use changes in the correlation

coefficients as the cost terms.

(b) Edge budgeting based approach (EB): Remove all the pairs except for a fraction

ra ∈ [0,1] of the total number of N(N − 1)/2 pairs with the smallest values of ∆ρi,j. Clearly, if

ra = 0, no pair will be selected. On the other hand, if ra = 1, we keep all the pairs. The parameter

ra allows us to control the number of pairs of assets to be selected.
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Step 2: Construct an undirected graph G where the set of nodes is the set of assets, and the set

of edges is the pairs of assets selected in Step 1. If the graph G is chordal then one can construct

a regular cover E efficiently. A linear time lexicographic breadth-first search (L-BFS) algorithm is

used to determine whether a graph is chordal and to construct the regular cover E (see Rose et al.

(2004) and Tarjan and Yannakakis (1984)).

For MST approach, the graph is a tree and hence chordal. The resulting cover E has N − 1

two-element subsets corresponding to individual selected pairs. The MST cover can be viewed as a

generalization of the simple star and simple series covers. In general, the resulting graph from EB

approach is not chordal. If the graph G is not chordal, one adds in a set of additional edges, which

are called fill-in edges, to make the graph chordal. Even though the problem of finding the fill-in

with the minimum number of edges is NP-complete (see Yannakakis (1981)), there are efficient

algorithms to find fill-ins with reasonably small number of edges (see for example, Huang and Dar-

wiche (1996) and Natanzon et al. (2000)). In our experiments, we use the minweightElimOrder

function in PMTK3, a Matlab toolkit for probabilistic modeling (see Dunham and Murphy (2012)),

which is based on a fill-in algorithm developed by Huang and Darwiche (1996). One can then

construct a regular cover E from the modified chordal graph using the L-BFS algorithm. Note that

this data-driven approach of identifying regular covers is only heuristic. When we use fill-in edges,

there will pairs of assets with larger change in correlation over time included in the cover. We will

show in Section 4 some examples of how many fill-in edges are needed for the regular covers and

how changes in correlation over time of these additional pairs of assets are compared with those of

original ones.

Given a regular cover E , the marginals are constructed from historical data. Financial data is

however non-stationary. While one could use the original sampling marginals if sufficient stationary

historical data is available, in our experiments we found that it was difficult to get a nontrivial

Fréchet class of distribution with the data of a few hundred days. To tackle this issue, we round

the samples to ensure that the Fréchet class of distributions is non-trivial. The approach we adopt
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is to cluster the historical data of each asset return into several clusters and to replace the data

within each cluster by the respective cluster mean. The marginals with the rounded samples are

then used in the optimization approach. Under this construction, the mean of the rounded samples

remains the same as that of original ones. Another benefit is that the size of supports of marginal

distributions is reduced and this reduces the computational time to solve the problems. In the

next section, we investigate the effects of the rounding procedure as well as the effects of using

dependence structures in numerical experiments with real financial market data.

4.2. Dataset 1: Fama-French Portfolio

Given the volatility of financial markets, investors re-balance their portfolios periodically. We solve

the portfolio optimization problem in each period under the assumption that historical daily return

data of assets from the last two periods are available and are used to estimate distributions of daily

returns in the current period. We allow for short selling and consider the following set of allowable

allocations:

X =
{
x∈<n : eTx= 1,µTx≥ µt

}
,

where e is the vector of all ones, µt is the target return and µ is the expected return vector of

all assets. Given the Fréchet class of distributions obtained either from the MST or EB approach,

we solve (36) to find the portfolio allocation in each period. In order to evaluate results obtained

from the distributionally robust optimization approach, we compare the results with two other

approaches:

1. Sample-based approach (SB): The original sample distribution is used and the allocation

is computed by solving the problem (33).

2. Rounded-sampled-based approach (RSB): The rounded sample distribution is used in

(33) instead of the original sample distribution. This strategy serves as a control to validate that

the effect of the rounding procedure is not drastic.

The first data set we analyze consists of historical daily returns of an industry portfolio obtained

from the Fama & French data library (French and Fama (2013)). The portfolio consists of NYSE,
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AMEX and NASDAQ stocks classified by industry. This include industries such as finance, health,

textiles, food and machinery. A total of 4400 observations of daily return data were available in

a period spanning approximately 15 years before the financial crisis, from August 18, 1989 to

February 1, 2007. Consider an investor who plans to invest in the portfolio with N = 49 risky

assets. He would like to minimize the risk of his investment, while guaranteeing a certain level of

average return by choosing an appropriate trading strategy. The investor re-balances his portfolio

every 200 days. We divide the 4400 samples into 22 periods, with each period consisting of 200

days. The investor starts his investment from the beginning of the third period. From then on, at

the beginning of each period, the investor uses the portfolio return data of the last two periods to

make the decision on the portfolio allocation for the current period.

In the experiments, we cluster the return data into 10 clusters. We use the R package

Ckmeans.1d.1p, which is based on a k-means clustering dynamic programming algorithm in one

dimension (see Wang and Song (2011)). The target return µt is varied between 0.04% and 0.08%.

For each target return, we apply the four trading strategies for 20 periods. We then compute the

aggregate out of sample mean and out of sample CVaR. The out of sample efficient frontier is

constructed by varying the target return. The numerical tests were conducted in 64-bit Matlab

2011a with the CVX solver (see CVX Research Inc. (2012)).
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Figure 4 Out-of-sample efficient frontiers of different strategies with α= 0.95



Doan, Li, and Natarajan: Overlapping Dependency in Portfolio Optimization
34 Article submitted to Operations Research; manuscript no. OPRE-2013-05-231

The graph on the left in Figure 4 shows the out of sample efficient frontiers of the EB trading

strategy for different values of the parameter ra when α= 0.95. If ra = 0, the EB strategy uses only

univariate marginals and in this example, its efficient frontier is worse than that of the EB strategy

for other small values of ra. This is to be expected since we use no dependency information from the

financial market in this case. As ra increases, the performance of the EB strategy improves, and the

best efficient frontier is achieved around ra = 0.15. The performance then gradually deteriorates as

ra continues to increase to 1. This result indicates that by using only partial dependency information

it is possible to enhance the performance of the trading strategy in the out of sample data. The

graph on the right in Figure 4 shows the efficient frontiers of the four different strategies. The

EB strategy is plotted for the optimum value ra = 0.15. We can see that optimal EB and MST

strategies are the better performing strategies in comparison to SB and RSB.

A well-known phenomenon in financial data is that the estimation of the out of sample mean is

inaccurate (see Merton (1980)). The out of sample means are between 0.03% and 0.055%, while

the target returns are between 0.04% and 0.08%. We conduct an experiment directly using the

out of sample mean data in the optimization formulation. While clearly impractical, this serves

to check the effect of the inaccuracies in the estimation of the mean return on the comparative

performance of the different strategies. Figure 5 shows that in this case the EB strategy is the best

performing strategy while the MST strategy does not perform as well. From these experiments, we

conclude that the optimal EB strategy achieves the best performance in this dataset. Note that our

approach is completely data-driven from identifying the cover to computing the optimal portfolio.

4.2.1. Robustness Tests In this section, we test the robustness of the results, by implement-

ing the distributional robust optimization model with a few modifications.

1. In the first test, we vary the CVaR parameter α. The results with α = 0.9 are displayed

in Figure 6. The best EB strategy is obtained around ra = 0.1. Similar to the results obtained

with α= 0.95, the performance of EB and MST are better than sample-based approaches and the

efficient frontiers of SB and RSB are fairly close to each other.
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Figure 5 Out-of-sample efficient frontiers of different strategies with α= 0.95 and out of sample mean fixed
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Figure 6 Out-of-sample efficient frontiers of different trading strategies with α= 0.9

2. In the second test, we evaluate the effects of the rounding procedure by repeating the experi-

ment with 20 support points. The results are displayed in Figure 7. From the figure, it is clear that

one reaches a similar conclusion regarding the effectiveness of the optimal EB and MST approach

and the closeness between efficient frontiers of SB and RSB strategies.

We also ran the numerical experiments with 40 support points and average computational times

of all models are reported in Table 3. Given the fixed number of historical data (M = 400), com-

putational times of the sample-based approaches does not depend on the number K of support

points of (univariate) marginal distributions. The effect of K on computational time is prominent
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Figure 7 Out-of-sample efficient frontiers of different trading strategies with 20 supports and α= 0.95

for the univariate marginal (EB with ra = 0.00) and MST approach while it is much less for the

general EB approach.

3. In the third test, we verify the results by using a nonparametric correlation measure in

generating the cover. We make use of the Kendall tau rank correlation measure (see Kendall (1938)

and Embrechts et al. (2002)). Given a set of n observations

(v1,w1), (v2,w2), . . . , (vT ,wT ),

we call a pair (i, j) concordant if vi ≥ vj,wi ≥ wj or vi ≤ vj,wi ≤ wj; otherwise, the pair is called

disconcordant. The Kendall tau is defined as:

τ =
2(Tcon−Tdis)
T (T − 1)

,

where Tcon is the number of concordant pairs and Tdis is the number of disconcordant pairs.

Then −1 ≤ τ ≤ 1 with τ = 1 if the agreement between the rankings is perfect and τ = −1 if the

disagreement between the two rankings is perfect. The results displayed in Figure 8 where coeff

corresponds to the Pearson correlation coefficient and tau corresponds to Kendall tau correlation.
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Approach K Variable number Constraint number
Computational time

(sec)

SB/RSB

(EB ra = 1.00)

10 850 402 1.12

20 - - -

40 - - -

Univariate marginal

(EB ra = 0.00)

10 1078 492 1.32

20 2058 982 2.64

40 4018 1962 5.20

EB ra = 0.15

10 31879 11302 82.84

20 36535 12854 102.07

40 39215 13702 106.11

MST

10 6373 2905 15.12

20 17665 8316 49.00

40 32391 15209 98.95

Table 3 Computational times with different numbers of support points

We observe that the insights are similar as before, namely the optimal EB and MST strategies

cases outperform the SB and RSB approaches significantly.

4. In the final test, we ran the numerical experiments for two additional time intervals: the time

interval from August 21, 2006 to August 10,2010, which covers the recent financial crisis, and the

after-crisis time interval from October 23, 2009 to July 31, 2014. Note that the first two periods of

200 days each in these time intervals are only used as historical data while decisions are made from

the third period onwards. The efficient frontiers of the four different strategies, which include the

EB approach with the best value of the parameter ra, are plotted in Figure 9. The EB approach

again performs better than other approaches in both time interval, which is consistent with other

settings. The MST approach is very good in terms of out-of-sample return for the after-crisis time

interval but not for the crisis one. The best values of ra for the EB approach are 0.75 and 0.55 for
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Figure 8 Out-of-sample efficiency frontier of different correlation measures with 10 supports and α= 0.95

the crisis and after-crisis periods, respectively. It seems more dependence information is needed in

these periods, especially the crisis periods.

We conclude this section by showing an example of resulting cover from the EB strategy. In

this example, almost all of 48 two-element subsets of MST cover appears in the subsets of EB

cover. This implies that there is greater dependence information assumed in the EB approach in

comparison to the MST approach. The EB cover in this example has 37 subsets, with the largest

subsets consisting of 13 elements. The top diagram in Figure 10 shows the first four subsets of this

particular cover while the bottom diagram shows the fourth subset and five additional ones. Note

that the cover structure is already much more complicated than the tree structure of the MST

cover. In this example, there are original 176 edges obtained from Step 1 of the EB approach. Using

the fill-in algorithm developed by Huang and Darwiche (1996), we add 84 additional edges in Step

2 to generate a regular cover. The distribution of ∆ρi,j of all edges (i, j) is shows in Figure 11 as

well that of additional edges. When we vary the value of ra, the number of additional edges needed

is also varied with respect to the number of original edges and the number of remaining edges.

Figure 12 shows the relationship between these numbers. With respect to the number of original
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Figure 9 Out-of-sample efficient frontiers of different trading strategies for crisis and after-crisis periods
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edges, we need to add more edges when ra is small. Figure 13 shows the distributions of difference

of correlation when ra = 0.15 for two cases with smallest and largest numbers of additional edges.

It demonstrates the fill-in heuristic is reasonable in several cases while there are still cases in which

we need to add a large number of additional edges with larger difference in correlation to make the

cover regular.
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Figure 11 Distributions of difference in correlation

4.3. Dataset 2: Index Fund Portfolio

The second data set we analyze is from the OR-library (see Beasley (1990)). This data set was

originally used for index tracking with the S&P100 index and 98 stocks. A detailed description of

the data set can be found in Canakgoz and Beasley (2009). The data provides weekly stock prices,

together with the index price, from March 1992 to September 1997, collected from DATASTREAM.

The price data is transformed into return data using
pi+1−pi

pi
where pi is the price on day i. Since

the portfolio consists of an index and the individual stocks, in addition to the previous approaches

we make use of the simple star cover for comparison purposes where the index forms the common

star element. We group the 280 data points into 4 periods. The decision maker makes a decision
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Figure 12 Comparison between the number of additional edges with that of original edges and remaining edges

at each period based on last two periods.The results are displayed in Figure 14. From the results,

we find that the star cover (STAR) dominates the univariate marginal model, i.e., EB with ra = 0,

as well as SB and RSB significantly. However the best EB strategy (with ra = 0.02 in this case) is

even better than the STAR strategy. This suggests that the additional effort of finding a regular

cover is useful in obtaining better out of sample performance. Note that the value of ra is very

small for the best EB strategy in this case which implies a weak dependence structure is assumed.

5. Conclusion

In this paper, we make use of the graph theoretic - running intersection property to develop a

linear program to compute Fréchet bounds on random portfolio risks. The formulation is shown to

be efficiently solvable for the discrete distribution case. New robust bounds on CVaR and VaR of

the joint portfolio with overlapping multivariate marginal distribution information are provided.
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Figure 13 Distributions of difference in correlation with smallest and largest numbers of additional edges
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Based on the tight and efficiently solvable bounds, we propose a novel data-driven robust portfolio

optimization model. This model identifies the overlapping cover structure by computing the changes

in correlation over time. In conjunction with a linear optimization model, we show that the results

help improve on the performance of sample based approaches.

We mention a couple of areas of possible future research. Firstly, while we restrict our attention

to applications in robust portfolio optimization, the bounds proposed in this paper are much

more general. Studying the implication of these bounds in areas such as queueing and inventory

models is a natural extension. Secondly, we restrict our attention in this paper to regular covers

with consistent set of marginals. Finding bounds when the cover is irregular or the marginals are

inconsistent are open questions.

Appendix A: Proof of Lemma 2

⇒. Since the cover is connected, for all r ∈R\{1}, there exists a sequence s1 = r, s2, . . . , sm = r−1

that links r to r − 1. If s2 < r, we have: Kr = Jr ∩
(
r−1
∪
t=1
Jt
)
⊇ Jr ∩ Js2 6= ∅. If s2 > r, there exist

three consecutive indices in the sequence such that sj−1 < sj and sj > sj+1. We have: Jsj−1
∩Jsj 6= ∅

and Jsj+1
∩Jsj 6= ∅. Since E satisfies the RIP, we have Jσsj ⊇Jsj ∩Jσsj =Ksj =Jsj ∩

(
sj−1

∪
t=1
Jt
)
⊇

Jsj ∩
(
Jsj−1

∪Jsj+1

)
, thus:

Jσsj ⊇ Jsj ∩Jsj−1

Jσsj ⊇ Jsj ∩Jsj+1
.

Taking the intersection of Jsj−1
and Jsj+1

on both sides respectively, we have:

Jσsj ∩Jsj−1
⊇Jsj ∩Jsj−1

6= ∅
Jσsj ∩Jsj+1

⊇Jsj ∩Jsj+1
6= ∅.

Thus we can replace sj with σsj in the sequence, with σsj < sj. Continuing on doing the process,

we can find a sequence with s2 < r.

⇐. We shall prove by induction on R. When R = 2, if K2 = J1 ∩ J2 6= ∅, the cover is obviously

connected. Suppose the statement is true for R= k, let us consider R= k+ 1. Since Kr 6= ∅ for all

r = 2, . . . , k, the subsets J1, . . . ,Jk are connected. Since Kk+1 6= 0, Jk+1 ∩ Jσk+1
6= ∅. Thus for all

r= 2, . . . , k, there exists a sequence linking r with k+ 1 via σk+1.
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Appendix B: Algorithm for Numerical Example in Section 3.2.1

Note that if there exists i= 1, . . . ,N − 2 such that di ≤ 0, the inequality H(d;x)≤ 0 always holds

since Fy and Fz are cumulative distribution functions. Thus we can restrict the feasible region to

the positive orthant, di > 0 for all i = 1, . . . ,N − 2. Similarly, we only need to consider solutions

that satisfies dN−1 = x−
N−2∑
i=1

di > 0. Note that Fy and Fz are both continuously differentiable in

(0,+∞). Consider the first-order necessary optimality conditions, ∇H(d;x) = 0:

F ′y(d1) = F ′y

(
x−

N−2∑
i=1

di

)
= F ′z(di), i= 2, . . . ,N − 2. (37)

In order to solve this system of equations, we need the derivative F ′y and F ′z:

F ′y(d) =


2d, 0<d< 1/2,
1, 1/2≤ d< 1,
−2d+ 3, 1≤ d< 3/2,
0, d≥ 3/2,

and F ′z(d) =

 4d, 0<d< 1/2,
−4d+ 4, 1/2≤ d< 1,
0, d≥ 1.

We then need to consider (37) three distinct cases with F ′y(d1) = 0, 0<F ′y(d1)< 1, and F ′y(d1) = 1.

1. F ′y(d1) = 0: Since d1 > 0, we have d1 ≥ 3/2. Similarly, we have di ≥ 1 for all i= 2, . . . ,N − 2

and finally, d1 = x−
N−2∑
i=1

di > 3/2. This case happens only when x=
N−1∑
i=1

d1 ≥ (N − 3) + 2× 3

2
=N ,

which is the trivial case with RBS(x) = 1 since
∑
i∈N

c̃i <N almost surely.

2. 0<F ′y(d1)< 1: Let z = F ′y(d1)/4, we have z ∈ (0,1/4) and F ′y(2z) = F ′y(d1). Given the formula-

tion of F ′y(d), we can easily show that d1 ∈ {2z,3/2−2z}. Similarly, we have: dN−1 ∈ {2z,3/2−2z}.
Now consider di, i= 2, . . . ,N − 2, we have F ′z(z) = F ′z(1− z) = F ′z(di). Thus di ∈ {z,1− z} for all

i= 2, . . . ,N − 2. Let k be the number of decision variables among di, i= 2, . . . ,N − 2 that take the

value of z. We have: k can take any value from 0 to N −3. Similarly, let l be the number of decision

variables among {d1, dN−1} that take the value of 2z, l = 0,1,2. Using the constraint
N−1∑
i=1

di = x,

we obtain the following equation on z:

(N − k− 3l/2)− (N + 1− 2k− 4l)z = x.

If this equation results in a solution z ∈ (0,1/4), we achieve a set of solutions d of the original

problem which satisfy the first-order optimality condition (37). It means we would need to consider

3(N − 2) possible value pairs of (k, l) and check the feasibility of z to find all potential candidates

of the optimal solution for this case.

3. F ′y(d1) = 1: In this case, we have d1 ∈ [1/2,1] and so is dN−1. For i = 2, . . . ,N − 2, we have

di ∈ {1/4,3/4}. Similarly to the previous case, we let k be the number of decision variables among

di, i= 2, . . . ,N − 2 that take the value of 1/4, we then have:

(3N − 9− 2k)/4 + d1 + dN−1 = x.
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In addition, the objective value in this case can be computed as

H(d;x) = d1 + dN−1− 1/2 + kFz(1/4) + (N − 3− k)Fz(3/4)− (N − 2).

Thus, we just need to check whether y = d1 + dN−1 = x− (3N − 9− 2k)/4 belong to the interval

[1,2]. We need to perform this feasibility check for N − 2 different values of k.

Following the analysis of these cases, we can find the optimal solution among all potential candi-

dates, which will help us compute the standard bound RSB(x).
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