
The Library
Upstream-radiated rotor-stator interaction noise in mean swirling flow
Tools
UNSPECIFIED (2005) Upstream-radiated rotor-stator interaction noise in mean swirling flow. JOURNAL OF FLUID MECHANICS, 523 . pp. 219-250. doi:10.1017/S0022112004002010 ISSN 0022-1120.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1017/S0022112004002010
Abstract
A major component of the noise in modern aeroengines is rotor-stator interaction noise generated when the wake from the rotating fan impinges on a stator row downstream. An analytically based model for the prediction of upstream-radiated rotor-stator interaction noise is described, and includes the important effect of mean swirling flow on both the rotor wake evolution and the acoustic response. The analytic nature of the model allows for the inclusion of all wake harmonics and enables the response at all blade passing frequencies to be determined.
An asymptotic analysis based on large rotor blade number is used to model the evolution of the rotor wake downstream in a cylindrical duct carrying mean swirling flow. The equations governing the axial evolution of the wake simplify to three coupled first-order differential equations in the interior, while close to the duct walls, a boundary-layer correction is required in order to satisfy the impermeability conditions at the boundaries. At the stator location, the wake is used as input into a local linear cascade model at each radius. The interaction of each wake harmonic gives rise to acoustic waves of multiple azimuthal order which contribute to the pressure field radiated back upstream. This enables the total acoustic response to be determined in terms of cylindrical duct modes in mean swirling flow.
The effect of stator blade geometry (thickness, camber, angle of attack) and rotor-stator separation on the total upstream-radiated noise is determined. Blade geometry is shown to have a significant effect on the noise generated, and increasing the rotor-stator gap can lead to large reductions in noise levels. Asymptotic treatment of the acoustic field, based on large azimuthal order, is also considered and used to identify the dominant contributions to the total pressure field resulting from the rotor-stator interaction. The ray structure of the acoustic modes in swirl is shown to be very different in some cases from that in uniform flow.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | T Technology > TJ Mechanical engineering and machinery Q Science > QC Physics |
||||
Journal or Publication Title: | JOURNAL OF FLUID MECHANICS | ||||
Publisher: | CAMBRIDGE UNIV PRESS | ||||
ISSN: | 0022-1120 | ||||
Official Date: | 25 January 2005 | ||||
Dates: |
|
||||
Volume: | 523 | ||||
Number of Pages: | 32 | ||||
Page Range: | pp. 219-250 | ||||
DOI: | 10.1017/S0022112004002010 | ||||
Publication Status: | Published |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |