Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Transport in turbulent plasmas at the interface between different levels of description

Tools
- Tools
+ Tools

Carbajal-Gomez, Leopoldo (2015) Transport in turbulent plasmas at the interface between different levels of description. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Gomez_2015.pdf - Submitted Version - Requires a PDF viewer.

Download (6Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b2845625~S1

Request Changes to record.

Abstract

Energetic ion dynamics play an important role in magnetic confinement fusion (MCF) plasmas, as well as in the solar wind. In the former case, energetic ions such as neutral beam injection (NBI) ions and fusion-born alpha-particles, can interact with global modes in tokamak plasmas leading to instabilities that might result in loss of confinement and energy. In the latter case, ion dynamics must be taken into account in order to explain in situ and remote observations of heating of the solar wind, which show the occurrence of anisotropic heating of ions, as well as magnetohydrodynamics turbulence and intermittency
all at the same time.

In this thesis we address two scenarios in plasma physics where ion dynamics play a key role modifying the mass and energy transport in the plasma, specifically, ion cyclotron emission (ICE) in MCF plasmas, and preferential ion heating due to intermittent magnetic fields in the solar wind. ICE results from a radiative instability, probably the magnetoacoustic cyclotron instability (MCI), driven by energetic ions in MCF plasmas. Understanding the underlying physics of ICE is important for the exploitation of ICE as a non-perturbative diagnostic for confined and lost alpha-particles in deuterium-tritium (D-T) plasmas in future thermonuclear fusion reactors [McClements et al., Nucl. Fusion, 55, 043013 (2015); Dendy and McClements, Plasma Phys. Controlled Fusion, 57, 044002 (2015)]. On the other hand, preferential ion heating in the solar wind, observed as the occurrence of an ion beam which drifts along the background magnetic field with a velocity close to the local Alfven speed, is still an open problem. Despite the large amount of studies conducted in this issue, none of them included intermittency self-consistently. Therefore, the relationships between preferential ion heating and intermittency have remained unknown, until now.

We study in detail the previously mentioned scenarios through numerical simulations using the hybrid approximation for the plasma, which treat ions as kinetic particles and electrons as a neutralizing massless fluid. Our hybrid simulations of the MCI confirm predictions of the analytical theory of the MCI, and recover some features of ICE as observed in D-T plasmas in JET. Furthermore, by going deep into the nonlinear stage of the MCI, we recover additional features of ICE which are not predicted by the linear theory of the MCI but are present in the measured ICE signal, resulting in a good match between our simulation results and the measured ICE intensity in JET. On the other hand, we present the first study of preferential ion heating in the fast solar wind including intermittent electromagnetic fields in a self-consistent way. We find that the temporal and spatial dynamics of the mechanisms driving preferential ion heating in our simulations (gyrobunching and ion trapping by the electric field), the ion temperature anisotropy T=T (perpendicular temperature/parallel temperature), and the degree of correlation between velocity and magnetic field fluctuations, show strong dependence on the level of intermittency in the electromagnetic fields.

Item Type: Thesis (PhD)
Subjects: Q Science > QC Physics
Library of Congress Subject Headings (LCSH): Solar wind, Tokamaks, Plasma confinement
Official Date: 2015
Dates:
DateEvent
2015Submitted
Institution: University of Warwick
Theses Department: Department of Physics
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Dendy, R. O. ; Chapman, Sandra C.
Extent: ix, 140 leaves
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us