Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

The structure and reactivity of graphene oxide

Tools
- Tools
+ Tools

Thomas, Helen R. (2015) The structure and reactivity of graphene oxide. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Thomas_2015.pdf - Submitted Version - Requires a PDF viewer.

Download (13Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b2846051~S1

Request Changes to record.

Abstract

Graphene oxide (GO) can provide a cost-effective route to a graphene-like material on an industrial scale, but produces an imperfect product. In order to improve the quality of the resultant graphene, unanswered questions regarding the structure and chemical reactivity of GO need to be addressed.

In this thesis, chapters 1 and 2 serve to introduce the field of graphene and graphene oxide research, as well as standard characterisation techniques.

Chapter 3 is concerned with investigating the validity and general applicability of a recently proposed two-component model of GO – the formation of the two components was shown to be largely independent of the oxidation protocol used in the synthesis, and additional characterisation data was presented for both base-washed graphene oxide (bwGO) and oxidation debris (OD). The removal of the OD cleans the GO, revealing its true mono-layer nature and in the process increases the C:O ratio, i.e. a deoxygenation. By contrast, treating GO with hydrazine was found to both remove the debris and reduce (cleaning and deoxygenation) the graphene-like sheets.

In chapter 4, different nucleophiles were used to explore bwGO functionalisation via epoxy ring-opening reactions. Treatment of bwGO with potassium thioacetate, followed by an aqueous work-up, was shown to yield a new thiol functionalised material (GO-SH). As far as is known, this was the first reported example of using a sulfur nucleophile to ring open epoxy groups on GO. The incorporation of malononitrile groups, and the direct grafting of polymer chains to the graphene-like sheets was also demonstrated.

The thiol groups on GO-SH are amendable to further chemistry and in chapter 5 this reactivity is exploited with alkylation, thiol-ene click and sultone ring-opening reactions. Au(I) and Pd(II) metallo-organic complexes were also prepared, and gold deposition experiments were carried out, demonstrating that GO-SH has a strong affinity for AuNPs. These CMGs have varying solubility and improved thermal stability.

Chapter 6 concludes the work covered in this thesis, and full experimental details can be found in chapter 7.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QD Chemistry
Library of Congress Subject Headings (LCSH): Graphene
Official Date: July 2015
Dates:
DateEvent
July 2015Submitted
Institution: University of Warwick
Theses Department: Department of Chemistry
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Rourte, Jonanthan
Sponsors: Engineering and Physical Sciences Research Council
Extent: xxx, 197 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us