Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Comparative analysis of two Neisseria gonorrhoeae genome sequences reveals evidence of mobilization of Correia Repeat Enclosed Elements and their role in regulation

Tools
- Tools
+ Tools

Snyder, Lori A. S., Cole, Jeff A and Pallen, Mark J. (2009) Comparative analysis of two Neisseria gonorrhoeae genome sequences reveals evidence of mobilization of Correia Repeat Enclosed Elements and their role in regulation. BMC Genomics, 10 (1). p. 70. doi:10.1186/1471-2164-10-70

An open access version can be found in:
  • PubMed Central
Official URL: http://dx.doi.org/10.1186/1471-2164-10-70

Request Changes to record.

Abstract

Background
The Correia Repeat Enclosed Element (CREE) of the Neisseria spp., with its inverted repeat and conserved core structure, can generate a promoter sequence at either or both ends, can bind IHF, and can bind RNase III and either be cleaved by it or protected by it. As such, the presence of this element can directly control the expression of adjacent genes. Previous work has shown differences in regulation of gene expression between neisserial strains and species due to the presence of a CREE. These interruptions perhaps remove the expression of CREE-associated genes from ancestral neisserial regulatory networks.

Results
Analysis of the chromosomal locations of the CREE in Neisseria gonorrhoeae strain FA1090 and N. gonorrhoeae strain NCCP11945 has revealed that most of the over 120 copies of the element are conserved in location between these genome sequences. However, there are some notable exceptions, including differences in the presence and sequence of CREE 5' of copies of the opacity protein gene opa, differences in the potential to bind IHF, and differences in the potential to be cleaved by RNase III.

Conclusion
The presence of CREE insertions in one strain relative to the other, CREE within a prophage region, and CREE disrupting coding sequences, provide strong evidence of mobility of this element in N. gonorrhoeae. Due to the previously demonstrated role of these elements in altering transcriptional control and the findings from comparing the two gonococcal genome sequences, it is suggested that regulatory differences orchestrated by CREE contribute to the differences between strains and also between the closely related yet clinically distinct species N. gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica.

Item Type: Journal Article
Divisions: Faculty of Medicine > Warwick Medical School > Biomedical Sciences > Microbiology & Infection
Faculty of Medicine > Warwick Medical School
Journal or Publication Title: BMC Genomics
Publisher: BioMed Central Ltd.
ISSN: 1471-2164
Official Date: 2009
Dates:
DateEvent
2009Published
Volume: 10
Number: 1
Page Range: p. 70
DOI: 10.1186/1471-2164-10-70
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access
Open Access Version:
  • PubMed Central

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us