Original citation:

Permanent WRAP url: http://wrap.warwick.ac.uk/74456

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. Please see the ‘permanent WRAP url’ above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk
Preterm toddlers’ inhibitory control abilities predict attention regulation and academic achievement at age 8 years

Julia Jaekel, PhD1,2,3, Suna Eryigit-Madzwamuse, PhD4, & Dieter Wolke, PhD, Dr. rer. nat h. c.3,5

1University of Tennessee Knoxville, Department of Child and Family Studies
2Ruhr-University Bochum, Department of Developmental Psychology
3University of Warwick, Department of Psychology
4University of Brighton, Centre for Health Research
5University of Warwick, Warwick Medical School

Corresponding author: Dieter Wolke, Department of Psychology, University of Warwick, Coventry CV4 7AL, United Kingdom, work phone: +44 2476573217, fax: +44 2476524225, D.Wolke@warwick.ac.uk

Short title: Preterm birth, inhibitory control, and academic outcomes

There are no conflicts of interest. There are no prior publications or submissions with any overlapping information, including studies and patients. The manuscript has not been and will not be submitted to any other journal while it is under consideration by The Journal of Pediatrics.

This study was supported by grants PKE24, JUG14, 01EP9504 and 01ER0801 from the German Federal Ministry of Education and Science (BMBF). The contents are solely the responsibility of the authors and do not necessarily represent the official view of the BMBF. The study sponsors had no involvement in (1) study design; (2) the collection, analysis, and interpretation of data; (3) the writing of the report; and (4) the decision to submit the paper for publication. None of the authors have financial relationships to disclose or conflicts of interest to declare. Julia Jaekel wrote the first draft of the manuscript. Each author listed on the manuscript has seen and approved resubmission of this version of the manuscript and takes full responsibility for the manuscript.

Key words: preterm birth; gestational age; inhibitory control; academic achievement; attention regulation; structural equation modeling

List of abbreviations and acronyms: EFs: executive functions; GA: gestational age; BLS: Bavarian Longitudinal Study; SES: socioeconomic status; TRCB: Teser’s Rating of Child Behavior; ICC: intra-class correlation coefficient; CBCL: Child Behavior Checklist; DRT: standard diagnostic writing test; SEM: structural equation modeling; SD: standard deviation
Abstract

Objective. The aim was to test if adverse effects of preterm birth on attention and academic abilities at age 8 years are mediated by children’s inhibitory control abilities.

Study design. 558 children born at 26-41 weeks gestation were studied as part of a prospective geographically defined longitudinal investigation in Germany. Toddlers’ inhibitory control abilities were observed at age 20 months. At 8 years, attention and academic abilities were assessed.

Results. The lower children’s gestational age, the lower their inhibitory control and the more likely they had poor attention regulation and low academic achievement. Adverse effects of preterm birth on attention and academic outcomes were partially mediated by toddlers’ inhibitory control abilities.

Conclusion. These findings of early inhibitory control abilities provide new information about the mechanisms linking preterm birth with long-term attention difficulties and academic underachievement.
Preterm birth increases the risk for attention difficulties [1-4] as well as long-term academic underachievement [3, 5, 6]. Studies have suggested that early self-control abilities (e.g. inhibitory or effortful control) may mediate effects of preterm birth on cognitive outcomes [7, 8] and later achievement [9, 10]. Inhibitory control predicts the development of the executive attention network [11] and is related to children’s executive functions (EFs), high-level cognitive abilities that allow humans to show adaptive, goal-directed behavior in complex situations [12]. In an ever-changing and unpredictable environment, EFs, and self-control in particular, are not only vital to master real-life situations but also predict long-term academic achievement [13-15].

One highly reliable indicator of early self-control is an individual’s ability to inhibit undesirable behaviors, e. g., wait for a treat instead of instantly grabbing it [16]. The inhibition of such behaviors that are driven by emotions has been coined “hot” effortful control. Children’s performance in such emotionally valenced inhibitory tasks assessing has been shown to predict life-long academic attainment and achievement outcomes, even after controlling for cognitive ability and socioeconomic status [17-19].

Few studies on preterm children have specifically addressed potential links between low gestational age at birth, early self-control, and long-term outcomes [20]. A recent study suggested that inhibitory control might predict learning and attention regulation abilities at age six years in preterm children [21]. Others have shown that very preterm children have problems with inhibitory control [8] and that these may be associated with delay of frustration as well as attention and behavior problems in preadolescence [22]. Unknown is whether there is a dose-response effect of low gestational age at birth on inhibitory control in toddlers. If this is the case, inhibitory control abilities may be a functional indicator of the effects of preterm birth on the pathway to later attention and academic outcomes.

The aim of the current study was to test in a large sample of children born across the whole spectrum of gestation whether (1) there are differences in early inhibitory control according to gestational age at birth (GA), and (2) whether adverse effects of preterm birth on attention
regulation and academic achievement at age 8 years are mediated by children’s inhibitory control abilities using structural equation modeling. We hypothesized that (1) gestational age at birth would directly and positively predict inhibitory control at corrected age 20 months and attention regulation and academic achievement abilities at age 8 years while (2) inhibitory control would also directly and positively predict attention regulation and academic achievement, and (3) the impact of gestational age at birth on later outcomes would be mediated by children’s ability to inhibit undesirable behaviors, after statistically controlling for potential confounders (i.e., child sex, neonatal medical risk, and family socioeconomic status at birth).

Methods

Participants

Data were collected as part of the prospective Bavarian Longitudinal Study (BLS)[23]. The BLS is a geographically defined whole-population sample of neonatal at-risk children born in Southern Bavaria (Germany) between January 1985 and March 1986 who required admission to a children’s hospital within the first 10 days of life (N=7505; 10.6% of all live births). Additionally, 916 healthy term control infants (normal postnatal care) were identified at birth from the same hospitals in Bavaria during the same period. Of the initial sample, n=393 children born between 25 and 38 weeks of gestation (randomly drawn within the stratification factors gender, socio-economic background and degree of neonatal risk) and n=165 healthy full-term (39-41 weeks GA) control children were assessed at corrected age 20 months and again at age 8 years. Full details of the sampling criteria and dropout rates are provided elsewhere [23]. Table 1 shows the descriptive characteristics of the final sample according to their GA group status (N=558).

- Insert Table 1 here -

Procedure

Participating parents were approached within 48 hours of the infant’s hospital admission and were included in the study once they had given written consent for their child to participate. Toddlers’
inhibitory control abilities were assessed at 20 months of age corrected for prematurity. At age 8 years, participating children and their mothers were assessed by an interdisciplinary study team for one whole day including neurological assessments (conducted by pediatricians), parent interviews (conducted by psychologists), cognitive assessments and behavior ratings (administered by psychological assistants and the whole team). All raters and assessors were blind to preterm birth status of participating children. Ethical permission for the study was granted by the Ethics committee of the University of Munich Children’s Hospital and the Bavarian Health Council (Landesärztekammer Bayern).

Measures

Gestational age (GA) groups. Gestational age at birth was determined from maternal reports of the last menstrual period and serial ultrasounds during pregnancy. Children were summarized into five GA groups (very preterm: <32 weeks GA; moderately preterm: 32-33 weeks GA; late preterm: 34-36 weeks GA; early term: 37-38 weeks GA; full term 39-41 weeks GA) in order to make findings comparable to other studies [24, 25].

Neonatal medical risk. Infant postnatal complications were assessed with a comprehensive optimality index including 21 items (e.g. intubation, severe anaemia, cerebral haemorrhage) [26].

Family socioeconomic status (SES) at birth. Information was collected through structured parental interviews and computed as a weighted composite score derived from the occupation of the self-identified head of each family (usually the father) together with the highest educational qualification held by either parent [27] into three pre-defined categories of low, medium, and high SES.

Inhibitory control task. At corrected age 20 months, children’s inhibitory control abilities were assessed with a standardized behavioral observation task. At the start of the Raisin Game toddlers were presented with a raisin that was placed under an opaque cup within easy reach. After three training runs during which eating the raisin was allowed after short but increasing time intervals (instant eating, then five and ten seconds waiting time) the actual test run started. Toddlers were
asked to wait for 60 seconds before they could touch and eat the raisin. Waiting time until toddlers touched the raisins was measured with a stopwatch and coded into three categories of inhibitory control abilities: 1=did not wait or waited up to 10 sec (37%), 2=waited between 11 and 59 sec (39%), 3= waited for 60 sec (24%). This categorization was chosen for two reasons, firstly, because participants were roughly equally distributed across the three groups, secondly, because the cut-offs marked a meaningful differentiation of inhibitory behavior (i.e., considering normative reaction times at age 20 months, waiting ≤ 10 sec was classified as not waiting whereas waiting for the entire task interval of 60 sec indicated excellent inhibitory control, toddlers who waited between 11 and 59 sec were classified as intermediate).

Attention regulation at age 8 years. Firstly, child behavior during a challenging cognitive assessment lasting 1 h 20 min was evaluated by psychologists with the Tester’s Rating of Child Behavior (TRCB) Task Orientation index scale (Cronbach’s α=.85; subscale inter-rater reliabilities ICC (*intra-class correlation coefficient*) = .63 to .97) [3]. Secondly, child attention across the whole assessment day was evaluated as a consensus rating by the whole research team (TEAM rating of psychologist, assistant psychologist, and pediatrician, α = .98) [3]. These two attention ratings correlated highly with each other (r=.62, p<0.01) and were thus z-scored and combined into a single scale of attention regulation. Thirdly, mothers’ rated their children’s attention problems as part of the Child Behavior Checklist (CBCL) [28].

Academic achievement: mathematic, reading, and spelling/writing abilities at age 8 years.

Achievement was assessed with standardized tests. Numerical representations and reasoning were measured with a comprehensive mathematic test [29, 30]. Test tasks were presented to children in book form with 79 items assessing numerical estimations, calculation, reasoning, and mental rotation abilities. Item responses were scored for accuracy, and subscale scores were summed into a total Mathematic Test Score. Children’s reading abilities were measured with the Zürich Reading Test [31] and a pseudo-word reading test [32, 33]. Total scores (based on number of errors) correlated highly with each other (r=.74, p<0.001) and were thus combined to create a single, composite Reading Test.
Score. Spelling and writing were assessed with a standard diagnostic test (DRT 2) [34]. Test scores were z-standardized according to the healthy full-term control children’s scores within the sample [35].

Analytic Approach. Data were analyzed with SPSS 22 (Armonk, NY: IBM Corp.) and Mplus 7 (Los Angeles, CA: Muthén & Muthén). Structural Equation Modeling (SEM) was used to test the direct and indirect effects of the categorical variables GA group and inhibitory control on the latent variables attention regulation (combined TRCB and TEAM rating of attention regulation and mother rating of attention problems [CBCL, reverse coded to be entered into the SEM model]) and academic achievement (maths, reading, and writing/spelling tests) abilities at age 8 years. In addition, child sex, neonatal medical risk, and family SES were included as potential confounding variables. Subsequently, we explored whether the effects of early inhibitory control on childhood outcomes were explained by toddlers’ cognitive abilities, assessed with the Griffiths Mental Development Scales [36] at 20 months of corrected age.

Results

Descriptive results showed that children of lower GA groups showed, on average, lower inhibitory control at corrected age 20 months and lower attention regulation and academic achievement abilities at age 8 years (Table 1). Supporting our first hypothesis preterm birth negatively affected children’s inhibitory control abilities ($B = -.25, 95\% CI [.11, .39]$) and directly predicted low attention regulation ($B = .23, 95\% CI [.07, .38]$) and academic achievement ($B = .10, 95\% CI [.03, .17]$) after controlling for all other factors (Table 2 and Figure 1). Our second hypothesis was also supported as a higher ability to inhibit unwanted behaviors predicted better attention regulation ($B = .24, 95\% CI [.07, .41]$) and academic achievement ($B = .10, 95\% CI [.03, .17]$). In other words, one unit of change in inhibitory control (e.g., from “waited between 11 and 59 sec” to “waited for 60 sec”) predicted a 0.25 standard deviation (SD) change in the attention latent factor scores and a 0.19 SD change in academic achievement scores. Moreover, adverse effects of preterm birth on later outcomes were
partly mediated by children’s early inhibitory control abilities (indirect effects: $B=.06, 95\% CI [.01, .11]$ and $B=.03, 95\% CI [.00, .05]$, respectively), thus supporting our third hypothesis. In addition to these main effects, being born female predicted better inhibitory control and attention regulation abilities. Children of high vs. medium/low SES had better inhibitory control, attention regulation and academic scores (see Table 2). Neonatal medical risk had no statistically significant effect on toddlers’ inhibitory control abilities and was dropped from the final SEM model in order to increase model fit. Overall, the model explained 32% of the variance in children’s attention regulation, 20% of the variance in academic achievement, and 10% of the variance in early inhibitory control abilities, respectively. Fit values indicated good statistical model fit ($\chi^2/df=33.85/42; p=.013; CFI=.979; RMSEA=.040$).

Finally, we explored whether the effects of early inhibitory control on childhood outcomes were explained by toddlers’ cognitive abilities. While this was not the case, including cognition into the model did not significantly increase the percentage of explained variance or improve model fit, thus for reasons of statistical sparseness as well as clarity we dropped cognition from the model.

Discussion

This study found that preterm birth negatively affects toddlers’ abilities to inhibit undesirable behaviors as well as later attention regulation and academic achievement. Better inhibitory control at age 20 months predicted better attention regulation and academic achievement at age 8 years. Most importantly, adverse effects of preterm birth on later outcomes were partly mediated by children’s early inhibitory control abilities after statistically controlling for child sex and family SES. Resistance to temptation (i.e., inhibitory control) is a relatively stable individual characteristic that predicts neural activation in fronto-striatal circuitries that integrate motivational and self-control processes [37]. Previous studies showed that preterm children have difficulties with inhibitory control [8] and that these predict later learning and attention problems [21, 22]. Our results suggest a dose-response effect of low gestational age at birth on inhibitory control across the whole GA
spectrum. This new finding of a link between GA, inhibitory control, and later outcomes may represent an important new piece in the puzzle of life-course underachievement after preterm birth. Firstly, an easy 5 min Raisin Game task represents a promising new tool for follow-up assessments after preterm birth. Secondly, the results of this study suggest potential innovative avenue to intervention. Early childhood trainings enhancing self-control may help alleviate long-term achievement problems [38] and research on normal population samples has shown that executive function abilities including self-control can be trained [39]. According to Rose’s public health-oriented approach to preventive medicine shifting the population distribution of a risk factor (i.e. low self-control) prevents more overall burden of disease than targeting only individual people at high risk [40]. However, preterm children may not only have lower inhibitory control abilities than full term children but may also be more vulnerable to environmental influences further decreasing their abilities to inhibit undesirable responses [41, 42]. As our findings apply to the whole GA spectrum of preterm and full term children, it may thus be recommended to adopt a combination of both population and targeted approaches to interventions in order to achieve the highest benefits [43]. It has previously been reported that the relationship between gestational age and academic outcomes is not linear but curvilinear with increasingly stronger effects below 33-36 weeks [25, 35, 44, 45] thus we explored this possibility. Results, however, showed that effects of preterm birth on early inhibition and effects of inhibition on later outcomes were overall not stronger in the more preterm compared with the term groups.

Strengths and limitations. This is the first study to our knowledge that assessed the links between preterm birth, early inhibitory control, and later achievement longitudinally in a large sample of children across the whole GA range. Children’s abilities were assessed by independent raters that were blind to GA group membership. As a direct and standardized measure of early human self-control behavior, the Raisin Game is not only more reliable and objective than questionnaires [16], it also has higher ecological validity than many other experimental paradigms. Such tasks have however been criticized as longer waiting times may not always indicate that a child exerted higher
self-control but also that he or she was simply less tempted by the treat (i.e., raisin) [16] or too shy to reach for the cup. Individual children's preferences and situational affects may have influenced their inhibitory control abilities, i.e., waiting times. We used only one task to measure inhibitory control whereas the use of multiple behavioral tasks assessing different aspects of the underlying construct of inhibition could have improved the reliability of results. Furthermore, for research as well as clinical practice, one could initially offer a selection of different treats (e.g., raisin, chocolate, marshmallow, nibbles) to children and let them choose one in order to overcome individual preferences. Our participants were 20 months old when the task was administered. This is a very young age to test inhibitory control and toddlers were given two training runs to allow them to understand the concept of the “game” they were asked to participate in; these training runs may have positively influenced our participants’ inhibitory control abilities. An additional pitfall of the task was that although behavioral inhibition (i.e., waiting time) was measured in seconds as a continuous variable it was not normally distributed in our sample (ceiling effects as 24% of toddlers waited a whole minute to touch and eat the raisin). As a result, we used a trichotomized variable. One may suggest an operationalization that is more tailored to children’s ages and abilities (i.e. allow longer waiting times) in future studies.

Moreover, we controlled for a number of confounding variables and found that neonatal medical risk and treatment (including surgeries) were not related to toddlers’ inhibitory control abilities in our sample. Preterm individuals often have general cognitive impairments [35, 44, 46] and these are associated with their academic outcomes. Although the relationship between cognitive abilities and achievement was not the focus of this study, we explored whether the effects of early inhibitory control on childhood outcomes were explained by toddlers’ cognitive abilities, assessed with the Griffiths Mental Development Scales [36] at 20 months of corrected age. This alternative model showed that the effects of inhibitory control on later attention and achievement were significant over and above the effects of cognitive abilities; for reasons of statistical sparseness as well as clarity we thus decided to drop cognition from the model.
Conclusion. Adverse effects of preterm birth on later attention regulation and academic achievement are partially mediated by children’s early inhibitory control abilities. These findings provide new information about the mechanisms linking preterm birth with long-term attention difficulties and academic underachievement. The Raisin Game is an easy and effective tool that has good face-validity assessing inhibitory control in young children, takes only five minutes and can be used in clinical practice for routine follow-up assessments after preterm birth in order to identify children at risk of attention and learning problems. Executive function abilities can be trained [39] – thus our findings provide potential avenues to interventions aimed at increasing preterm children’s long-term achievement.
Acknowledgement

We would like to thank all current and former Bavarian Longitudinal Study Group members, paediatricians, psychologists, and research nurses. Special thanks are due to the study participants and their families.
References

[38] Heckman J. Stimulating the young. The American2009.

Table 1.
Descriptive sample characteristics according to gestational age groups

<table>
<thead>
<tr>
<th></th>
<th><32 w<sup>a</sup></th>
<th>32-33 w<sup>a</sup></th>
<th>34-36 w<sup>a</sup></th>
<th>37-38 w<sup>a</sup></th>
<th>39-41 w<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>n=104</td>
<td>n=51</td>
<td>n=126</td>
<td>n=112</td>
<td>n=165</td>
<td></td>
</tr>
<tr>
<td>Gestational age at birth</td>
<td>29.74 (1.53)</td>
<td>32.49 (0.51)</td>
<td>35.07 (0.76)</td>
<td>37.56 (0.50)</td>
<td>40.07 (0.66)</td>
</tr>
<tr>
<td>Birth weight</td>
<td>1391 (353)</td>
<td>1649 (398)</td>
<td>2269 (566)</td>
<td>2796 (495)</td>
<td>3776 (447)</td>
</tr>
<tr>
<td>Child sex (male)</td>
<td>55.8%</td>
<td>39.2%</td>
<td>47.6%</td>
<td>44.6%</td>
<td>47.9%</td>
</tr>
<tr>
<td>Neonatal medical risk score</td>
<td>9.40 (2.57)</td>
<td>8.02 (2.67)</td>
<td>5.25 (2.79)</td>
<td>3.28 (2.74)</td>
<td>0.31 (0.56)</td>
</tr>
<tr>
<td>Cognitive abilities (20 months)</td>
<td>101.65 (7.90)</td>
<td>104.84 (8.10)</td>
<td>105.65 (7.66)</td>
<td>106.88 (5.76)</td>
<td>107.55 (6.42)</td>
</tr>
<tr>
<td>Family SES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>29.8%</td>
<td>27.5%</td>
<td>31.7%</td>
<td>33.0%</td>
<td>26.7%</td>
</tr>
<tr>
<td>medium</td>
<td>41.3%</td>
<td>43.1%</td>
<td>26.2%</td>
<td>27.7%</td>
<td>44.8%</td>
</tr>
<tr>
<td>high</td>
<td>28.8%</td>
<td>29.4%</td>
<td>42.1%</td>
<td>39.3%</td>
<td>28.5%</td>
</tr>
</tbody>
</table>

Inhibitory control (waiting time in seconds) at age 20 months

<table>
<thead>
<tr>
<th></th>
<th>Did not wait/waited ≤10 sec</th>
<th>Waited 11-59 sec</th>
<th>Waited 60 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=104</td>
<td>58.7%</td>
<td>41.2%</td>
<td>34.1%</td>
</tr>
<tr>
<td>n=51</td>
<td>34.1%</td>
<td>34.8%</td>
<td>24.2%</td>
</tr>
<tr>
<td>n=126</td>
<td>36.5%</td>
<td>40.2%</td>
<td>48.5%</td>
</tr>
<tr>
<td>n=112</td>
<td>27.5%</td>
<td>25.0%</td>
<td>27.3%</td>
</tr>
<tr>
<td>n=165</td>
<td>29.4%</td>
<td>27.7%</td>
<td>44.8%</td>
</tr>
</tbody>
</table>

Attention and achievement outcomes at age 8 years

<table>
<thead>
<tr>
<th></th>
<th>CBCL attention problems</th>
<th>Testers’ attention rating</th>
<th>Mathematic Test</th>
<th>Reading Test</th>
<th>Spelling/Writing Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=104</td>
<td>2.78 (2.38)</td>
<td>6.56 (1.23)</td>
<td>-0.41 (0.69)</td>
<td>-0.21 (1.38)</td>
<td>-0.39 (1.08)</td>
</tr>
<tr>
<td>n=51</td>
<td>2.24 (2.23)</td>
<td>6.59 (1.18)</td>
<td>-0.31 (0.79)</td>
<td>-0.36 (1.58)</td>
<td>-0.17 (1.05)</td>
</tr>
<tr>
<td>n=126</td>
<td>1.76 (2.05)</td>
<td>6.94 (1.08)</td>
<td>-0.01 (0.67)</td>
<td>0.24 (0.82)</td>
<td>0.16 (0.96)</td>
</tr>
<tr>
<td>n=112</td>
<td>2.18 (2.09)</td>
<td>6.86 (1.17)</td>
<td>0.02 (0.67)</td>
<td>0.07 (0.75)</td>
<td>-0.07 (1.06)</td>
</tr>
<tr>
<td>n=165</td>
<td>2.01 (2.09)</td>
<td>7.23 (1.05)</td>
<td>0.03 (0.66)</td>
<td>0.14 (0.69)</td>
<td>0.06 (0.94)</td>
</tr>
</tbody>
</table>

*Please note: Data is presented as mean (SD) for continuous variables and percentages (%) for categorical variables; *w^a weeks of gestation*
Table 2. Regression weightsa using structural equation modeling (Figure 1)

<table>
<thead>
<tr>
<th>DIRECT EFFECTS</th>
<th>UNSTANDARDIZED</th>
<th>STANDARDIZED</th>
<th>(B)</th>
<th>(SE)</th>
<th>(LB)</th>
<th>(UB)</th>
<th>(\beta)</th>
<th>(p)-value</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibitory control</td>
<td>0.24</td>
<td>0.07</td>
<td>0.07</td>
<td>0.41</td>
<td>0.25</td>
<td><0.001</td>
<td></td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>Gestational age groupb</td>
<td>0.23</td>
<td>0.06</td>
<td>0.07</td>
<td>0.38</td>
<td>0.22</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES – lowc</td>
<td>0.11</td>
<td>0.13</td>
<td>-0.21</td>
<td>0.44</td>
<td>0.05</td>
<td>0.374</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES – highc</td>
<td>0.61</td>
<td>0.14</td>
<td>0.25</td>
<td>0.97</td>
<td>0.28</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (female)</td>
<td>0.55</td>
<td>0.12</td>
<td>0.23</td>
<td>0.86</td>
<td>0.26</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Achievement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Inhibitory control</td>
<td>0.10</td>
<td>0.03</td>
<td>0.03</td>
<td>0.17</td>
<td>0.19</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age groupb</td>
<td>0.10</td>
<td>0.03</td>
<td>0.03</td>
<td>0.17</td>
<td>0.19</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES – lowc</td>
<td>-0.02</td>
<td>0.06</td>
<td>-0.18</td>
<td>0.13</td>
<td>-0.02</td>
<td>0.663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES – highc</td>
<td>0.34</td>
<td>0.06</td>
<td>0.19</td>
<td>0.49</td>
<td>0.29</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (female)</td>
<td>0.06</td>
<td>0.05</td>
<td>-0.06</td>
<td>0.19</td>
<td>0.06</td>
<td>0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibitory control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>Gestational age groupb</td>
<td>0.25</td>
<td>0.05</td>
<td>0.11</td>
<td>0.39</td>
<td>0.24</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES – lowc</td>
<td>0.05</td>
<td>0.12</td>
<td>-0.26</td>
<td>0.36</td>
<td>0.02</td>
<td>0.680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES – highc</td>
<td>0.29</td>
<td>0.12</td>
<td>-0.01</td>
<td>0.59</td>
<td>0.13</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (female)</td>
<td>0.35</td>
<td>0.10</td>
<td>0.10</td>
<td>0.60</td>
<td>0.17</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age groupb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>SES – lowc</td>
<td>-0.08</td>
<td>0.11</td>
<td>-0.37</td>
<td>0.20</td>
<td>-0.04</td>
<td>0.446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES – highc</td>
<td>-0.06</td>
<td>0.11</td>
<td>-0.34</td>
<td>0.15</td>
<td>-0.03</td>
<td>0.567</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (female)</td>
<td>0.08</td>
<td>0.09</td>
<td>-0.15</td>
<td>0.26</td>
<td>0.04</td>
<td>0.361</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{a}\text{ linear regression results when outcome is continuous such as attention and academic achievement, probit regression results when outcome is categorical such as inhibitory control and gestational age group; } \text{b}\text{ Gestational age groups were very preterm (<32 w GA), moderately preterm (32-33 w GA), late preterm (34-36 w GA), early term (37-38 w GA), and full term (39-41 w GA); } \text{c}\text{ medium SES was the reference category}\)
Figure 1. Structural equation model showing direct and indirect effects of preterm birth and early inhibitory control on attention regulation and academic achievement at age 8 years (N=558). Solid lines represent hypothesized effects, dotted lines represent influences of control variables (standardized regression coefficients), for details please see Table 2.

Model fit:
$\chi^2=33.847$, $df=42$; $p=.013$; $CFI=.979$; $RMSEA=.040$