Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Stereolithography for 3D photoelasticity

Tools
- Tools
+ Tools

Cooke, W., Tomlinson, R. A., Gibbons, Gregory John and Calvert, G. C. (2006) Stereolithography for 3D photoelasticity. In: Photomechanics 2006, Loughborough University, 9-12 Jul 2006

[img]
Preview
PDF
WRAP_SLA Photomechanics2006_.pdf - Requires a PDF viewer.

Download (553Kb) | Preview

Request Changes to record.

Abstract

Recently, the use of photoelasticity has become more widespread due to the development of digital methods of fringe analysis [1] that allow a significant reduction in the time taken to achieve a stress map for any given model, particularly when only fractional fringe orders are displayed. However, in order for the full potential of the photoelastic method to be realised, a technique for rapidly producing complex 3-dimensional photoelastic models must be developed. Stereolithography is one so-called ‘rapid-prototype’ method that works by building a laminar model from a tank of photo-curing resin. A perforated metal plate is submerged in the liquid resin to a depth of typically around 0.1mm. A laser then traces the shape of the first layer of the component onto the plate, curing a thin layer of the resin. The plate is lowered by 0.1mm, and a further layer of resin cured by the laser. By this method, complex structures may be ‘laid-up’ in a matter of hours.

Previous studies concerned with the use of stereolithography for the production of photoelastic models [2] have noted that unacceptable levels of residual birefringence and stress have remained in the photoelastic model even after conventional annealing methods. Thus the use of such methods has been limited. If the stereolithographic method were developed for photoelasticity, one possible area of interest would be the design and analysis of orthopedic implants.

This paper outlines a series of studies looking at the requirements of photoelastic materials for three-dimensional stress analysis.

Item Type: Conference Item (Paper)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Science, Engineering and Medicine > Engineering > WMG (Formerly the Warwick Manufacturing Group)
Library of Congress Subject Headings (LCSH): Photoelasticity
Official Date: 2006
Dates:
DateEvent
2006Completion
Status: Peer Reviewed
Publication Status: Published
Conference Paper Type: Paper
Title of Event: Photomechanics 2006
Type of Event: Conference
Location of Event: Loughborough University
Date(s) of Event: 9-12 Jul 2006

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us