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Abstract Transcription at individual genes in single cells is often pulsatile and stochastic. A key
question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a
challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots
of gene expression state. We have used imaging of reporter gene expression to track transcription
in living pituitary tissue. We integrated live-cell imaging data with statistical modelling for
quantitative real-time estimation of the timing of switching between transcriptional states across a
whole tissue. Multiple levels of transcription rate were identified, indicating that gene expression is
not a simple binary `on-off' process. Immature tissue displayed shorter durations of high-expressing
states than the adult. In adult pituitary tissue, direct cell contacts involving gap junctions allowed
local spatial coordination of prolactin gene expression. Our findings identify how heterogeneous
transcriptional dynamics of single cells may contribute to overall tissue behaviour.
DOI: 10.7554/eLife.08494.001

Introduction
Gene expression in single living cells is often pulsatile and heterogeneous between cells
(Sanchez and Golding, 2013 ; Coulon et al., 2013 ). In a complex three-dimensional (3D) tissue,
dynamic and heterogeneous single cell behaviour gives rise to the overall tissue-level gene expres-
sion state and determines the ability of the tissue to respond appropriately to acute and chronic
stimuli. Transcriptional bursting, defined by periods of RNA synthesis followed by usually longer
silent periods, occurs at many genes with characteristic gene-specific timing ( Suter et al., 2011 ).
These dynamics have been proposed to be influenced by intrinsic factors that appear stochastic and
extrinsic factors that reflect the state of the cell. Thus far, the key to identifying these processes has
been single cell analysis (Raj and van Oudenaarden, 2009 ; Spiller et al., 2010 ). In situ hybridisation
techniques have revealed non-equivalent activity at gene alleles within individual cells
(Wijgerde et al., 1995 ; Raj et al., 2006 ), but only provide snap-shot measurements of activity. The
analysis of gene expression in single living cells using real-time direct RNA imaging systems confirms
these pulsatile kinetics (Chubb et al., 2006 ; Larson et al., 2013 ; Martin et al., 2013 ). However,
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direct RNA analysis is technically challenging and relatively low throughput, even over short time
periods. An alternative is the use of reporter gene analysis. Whilst being indirect, this can be com-
bined with mathematical modelling ( Suter et al., 2011 ; Harper et al., 2011 ) to give a quantitative
description of the dynamics of single cell gene expression.

The pituitary gland is an excellent model system in which to address how dynamic changes in
gene activity are regulated in vivo. The gland is composed of multiple cell lineages that are regu-
lated by external signalling inputs from the hypothalamus and circulation ( Featherstone et al.,
2012 ), as well as through complex paracrine signalling within the gland ( Denef, 2008 ). The spatial
positioning of cells is organised with cell networks facilitating the propagation of signals across the
gland (Le Tissier et al., 2012 ; Mollard et al., 2012 ). The distinct cell types of the pituitary secrete
specific hormones in an organised manner in response to developmental and environmental cues,
which has proved to be a useful model system for investigating pituitary-tissue-specific and regu-
lated gene transcription dynamics ( Featherstone et al., 2012 ). Prolactin (PRL) is an important pitui-
tary-derived hormone with multiple functions that is secreted from pituitary lactotrophic cells and
controlled in a complex way in response to both acute and long-term signals ( Featherstone et al.,
2012 ; Ben-Jonathan et al., 2008 ). The human PRL (hPRL) gene displays bursting activity in cell lines
and primary cells, with variable periods of active and inactive transcriptional states, including a
refractory period in the inactive state ( Harper et al., 2011 ). For hPRL, the dynamics observed in dis-
persed cells are compatible with a binary mathematical model in which there is an 'off' and an 'on'
state together with a preparatory or 'primed' state. The transcription machinery transitions between
these states as off ± primed ± on ± off, with the time in each state exponentially distributed
(Suter et al., 2011 ; Harper et al., 2011 ). We call this the telegraph process with priming.

eLife digest Although humans have thousands of genes, only a fraction of these are
expressed in any given cell. Each cell type expresses only the genes that are relevant to its particular
job or that are necessary for general cell maintenance. Even these genes are not expressed all the
time: most cells express genes in bursts, and the cells that make up a tissue produce these bursts at
different times. This makes it easier for the tissue to respond to new conditions.

The pituitary gland, found at the base of the brain, is often studied to investigate changes in
gene expression. The pituitary gland is found in all animals that have a backbone, and it makes and
releases many different hormones. For example, one type of pituitary cell expresses the gene that
encodes a hormone called prolactin. This hormone has a range of roles, including stimulating milk
production and regulating fertility in mammals. The coordinated production of prolactin by pituitary
cells is important for reproduction, but it is not clear how (or whether) individual prolactin-producing
cells in the gland communicate to coordinate bursting patterns of expression of the prolactin gene.

Featherstone et al. marked the prolactin-encoding gene in the pituitary cells of rats with a gene
that encodes a fluorescent protein; this enabled the gene's activity to be observed in thin slices of
living tissue using a microscope. Mathematical models were then used to analyse the recorded
expression patterns.

The results showed that in a single cell, the bursts of expression of the prolactin gene are
randomly timed. This means that although the expression activity of an individual cell is
unpredictable, the overall activity of a group of cells can be precisely determined. The model also
showed that cells coordinate when they express the prolactin gene to a greater extent with their
near neighbours than with cells that are further away in the tissue. Featherstone et al. found that this
coordination depends on structures (called gap junctions) that connect the cells and allow signalling
between them, and this tissue organisation is established during early development.

The mechanisms underlying the timing of the bursts remain to be discovered. The timing for the
prolactin gene seems to be dominated by a minimum delay that must occur before the next burst
can be reactivated. Future challenges also include determining whether coordinated gene
expression occurs in other tissues and whether this coordination is disrupted in disease.
DOI: 10.7554/eLife.08494.002
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Quantitative imaging of hPRL reporter gene expression ( Spiller et al., 2010 ) has been used to
describe PRL gene activity in different physiological states of the pituitary gland
(Featherstone et al., 2011 ; Harper et al., 2010 ). Here, we employ a new mathematical and statisti-
cal model to estimate not only the timing but also different levels of transcriptional activity. This pro-
vides a quantitative framework by which to explore temporal and spatial PRL gene expression in
single cells within the anterior pituitary gland. We show that shorter durations of activity occur at
high transcription rates in immature pituitary glands compared to the adult pituitary; however, we
were unable to detect differences in the distribution of transcription rates in different pituitary
states. These results suggest that dynamics of gene activity may have a common mechanistic basis in
tissues and single cells at all stages of development, which are directly regulated by the develop-
mental state of the tissue. Moreover, these dynamics demonstrate that transcription does not occur
as a simple binary 'on-off' process with a single transcription rate in the 'on' state.

In this study we also investigated how the spatial organisation of lactotroph cells within the pitui-
tary affect the transcription dynamics of the hPRL gene. Transcription activity was coordinated
between closely localised cells within the adult gland, but in developing pituitaries this transcrip-
tional coordination was not evident, potentially due to an immature network of cellular communica-
tion. Perturbation of cell communication in the adult gland through trypsin-mediated digestion of
extracellular proteins or pharmacological inhibition of intercellular gap junctions reduced transcrip-
tional coordination between cells. These studies provide insight into how transcription dynamics
throughout development and adult life relate to the state and structure of a complex and physiologi-
cally important tissue.

Results

Patterns of prolactin gene transcription activity in adult pituitary tissue
To quantify PRL gene transcription dynamics within living pituitary tissue, we used transgenic rats
that contain a destabilised EGFP (d2EGFP) reporter gene expressed under the control of the hPRL
gene locus (hPRL-d2EGFP) (Semprini et al., 2009 ). Imaging analyses were initially performed on
adult male pituitary slices (300 mm coronal sections) (as depicted in Figure 1A ) for up to 48 hr in
basal culture medium, with fluorescence measured from all actively transcribing cells within a field of
approximately 100 cells. Tissue slices were subsequently stimulated with forskolin (5 mM), inducing at
least a twofold increase in signal, showing that tissue slices remain viable in culture for long periods
(Figure 1B ). Cells showed differing profiles of fluorescence activity during the imaging period
(Figure 1C ). Generally cells increased hPRL-d2EGFP reporter gene expression, with the mean fluo-
rescence activity reaching maximal levels at approximately 24 hr, potentially due to the removal of
the pituitary from the inhibitory effects of hypothalamic dopamine ( Harper et al., 2010 ). Autocorre-
lation analyses did not identify a regular homogeneous period, and fluorescence activity showed a
clear deviation from a white noise process ( Figure 1D ). Further quantitative analysis using a stochas-
tic switch model (described in [ Hey et al., 2015 ]) uncovered a clear statistical structure indicating a
pulsatile transcriptional behaviour compatible with a pulsed telegraph process. The mathematical
analysis of this is addressed in the modelling studies described below. Overall, we found that PRL
transcription is dynamic within individual cells, with heterogeneous activity across the cell
population.

Characterisation of prolactin gene transcription dynamics in adult
pituitary glands
The measurement of fluorescent protein activity by confocal microscopy enables the quantification
of real-time gene transcription dynamics through mathematical modelling. The original transcription
rate of the reporter gene is determined by considering the contribution of mRNA translation rates
and mRNA and protein degradation rates to the observed fluorescent protein activity. Binary model-
ling of PRL transcription dynamics using this approach identified important parameters of gene activ-
ity, including a refractory period in the 'off' state ( Harper et al., 2011 ). We have extended this
approach through the development of a stochastic switch model ( Hey et al., 2015 ), which enables
the inference of different levels of transcription rate as well as the timing of switches between differ-
ent levels of activity. The model uses a reversible jump Markov chain Monte Carlo ( Green, 1995 )
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algorithm to produce a probability distribution over all possible transcriptional profiles for each cell.
Post-processing of this distribution enables the extraction of a number of candidate transcriptional
profiles, each with an associated probability of occurrence (as depicted in Figure 2A ). Consequently,
the transcriptional analysis for each cell is a weighted analysis of all possible transcriptional profiles
taking into account the probability of occurrence of each profile (further details of the processing of
the data and algorithm output are given in 'Materials and methods'). The fit of the model was tested
through calculation of recursive residuals as a way of comparing the prediction from the model and
the observed data (for more information see Appendix G of [ Hey et al., 2015 ]). These showed no
departure from the model assumptions, indicating that the stochastic switch model fitted the data
well.

We applied the stochastic switch model to the time-lapse fluorescence imaging data to under-
stand the switches in hPRL gene expression in the intact tissue and investigate whether multiple lev-
els of transcriptional rate were employed during phases of active transcription. The model also
estimates the timings of switches between statistically different transcriptional states. The fluores-
cence data were processed to ensure that they were linear and quantitative as described in

Figure 1. Patterns of prolactin gene transcription activity in pituitary tissue. ( A) Schematic of the reporter construct and experimental approach used. (B)
Images of d2EGFP expression in lactotroph cells of adult male pituitary tissue during a 46-hr imaging period, in basal culture media, and a subsequent
18-hr imaging period following stimulation with forskolin (FSK). Images shown are a maximum intensity projection of a z-stack over 242 mm. Bar
represents 100mm. (C) Graph of d2EGFP fluorescence (average intensity, arbitrary units) from 20 individual cells (representative of 101 cells analysed,
from one experiment) from adult male pituitary tissue. The black line represents the mean activity from all the cells analysed. The dark blue line
represents the background fluorescence intensity (mean from five areas). (D) Autocorrelation analysis of d2EGFP fluorescence intensity from cells shown
in (C), with the 95% confidence interval representing a white noise process shown between black lines. Data are representative of three independent
experiments. For validation of single cell imaging see Figure 1Ðfigure supplement 1 . d2EGFP, destabilised EGFP.
DOI: 10.7554/eLife.08494.003
The following figure supplement is available for figure 1:

Figure supplement 1. Validation of single cell imaging.

DOI: 10.7554/eLife.08494.004
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Figure 2Ðfigure supplement 1 . In adult pituitary tissue, we found that the majority of cells switch
between different levels of PRL gene transcription rate up to two times within the 46-hr imaging
period (Figure 2B ), consistent with the autocorrelation analysis. The transcription rates displayed by
individual cells showed a continuous range of activity and were not restricted to simple binary on-off
behaviour (Figure 2C ). Durations of activity varied with different transcription rates ( Figure 2D ), and
switches in activity were heterogeneous in both their timing and amplitude ( Figure 2E ).

Figure 2. Characterisation of prolactin transcription dynamics. (A) i) Schematic of the parameters (translation rate, mRNA and protein degradation
rates) used by the stochastic switch model to back-calculate to the original transcription rate, b(t), of the reporter construct. For each fluorescence time
series, there exist several mutually exclusive possible transcriptional profiles based on the sampled switch times. ii) The graph shows the relationship
between the measured fluorescence activity (blue) and possible switch times (red, dashed lines represent ± 1.96 SD). iii) The four possible profiles
associated with the estimation of two transcriptional switches are shown along with their predicted probability of occurrence. ( B±E) Characterisation of
transcription rate activity of the reporter construct in cells maintained within adult pituitary tissue. ( B) The number of switches in transcriptional states
estimated during the imaging time-course. The frequency of switches is weighted by the probability of occurrence of each profile. Data are represented
as the mean + SD from three independent experiments. ( C) Distribution of the frequency of transcription rates estimated from fluorescence activity,
with a weighted density calculated from all possible transcriptional profiles for each cell. The cumulative distribution of transcription rates from three
independent experiments is shown in Figure 7B . (D) The duration of transcriptional states, with the caveat that the duration is the minimum duration as
complete periods of activity were not detectable for most states. Transcription rates were binned into deciles and the associated minimum durations
calculated. Boxplots are calculated by random sampling of the weighted transcription rate distributions for each cell. There is some evidence for longer
durations at mid-range transcriptional rates (4th±8th decile), although longer observation windows may yield further trends. Data shown were pooled
from three independent experiments. Boxplots represent the median and interquartile range (IQR), with whiskers drawn 1.5xIQR away from the lower
and upper quartile. (E) Heatmap of cell transcription rate patterns ordered by the timing of the first switch event. A single transcriptional profile was
selected at random for each cell taking into account the probability of occurrence. Data shown in (C) and (E) are from a single experiment on adult
pituitary, representative of three independent experiments. SD, standard deviation.
DOI: 10.7554/eLife.08494.005
The following figure supplement is available for figure 2:

Figure supplement 1. Processing of fluorescence time-series prior to transcription rate estimation.

DOI: 10.7554/eLife.08494.006
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Spatial organisation of prolactin transcription activity in adult pituitary
A key aim was to establish the extent and mechanism of cell communication in the control of PRL
gene expression in pituitary tissue. We characterised the organisation of lactotroph cells in pituitary
tissue and found it to be indistinguishable from a random distribution ( Figure 3A ). This does not
preclude the presence of direct communication, or of an organised interaction network, between
the cells (as previously described [Hodson et al., 2012 ]). We assessed the level of correlation
between the fluorescence profiles of individual cells. The increase in PRL gene transcription
observed in adult pituitary tissue enabled us to investigate whether cells would coordinate their
activity in response to a release from the dopaminergic inhibition that would have occurred in vivo.
Similar activity would be expected in vivo when changes in dopaminergic tone facilitate PRL expres-
sion and secretion, such as during circadian regulation and lactation ( Ben-Jonathan and Hnasko,
2001 ; Romano et al., 2013 ; Le Tissier et al., 2015 ). For any two cells, we calculated the correlation
between their fluorescence activity over the time-series as described in Figure 3B . Correlation was
calculated as a function of the distance between individual cells, and showed that cells within
approximately 35 mm (estimates from all datasets were 25±35 mm) of each other were more corre-
lated than cells located further apart. The level of correlation over short distances was also signifi-
cantly greater than the correlation profile obtained when fluorescence profiles were randomised
between the cells, but the positioning information was maintained ( Figure 3B ). This pattern of spa-
tial correlation was not an artefact caused by limitations in image resolution or signal saturation ( Fig-
ure 3Ðfigure supplement 1A,B ). Spatial correlation of transcription was maintained when the
number of cell pairs in each bin was normalised, indicating that this was not an artefact caused by
small numbers of cells in the analysis (Figure 3Ðfigure supplement 1C ). Spatial correlation also per-
sisted throughout the time-course, indicating that coordination of PRL transcription was an ongoing
process and not just a transient phenomenon facilitated by cellular stimulation ( Figure 3Ðfigure
supplement 1D ).

The range over which cells would be able to coordinate their transcription activity profiles
through a cellular network structure was assessed. We found that cells connected directly, as defined
by a threshold distance, had the greatest correlation in activity ( Figure 3Ðfigure supplement 2 ),
but also that cells connected together via a potential cellular network structure were more corre-
lated than cells that were unconnected ( Figure 3C ). Overall, these data suggest that the mechanism
by which lactotroph cells coordinate their functional activity may propagate across the pituitary
through a cellular network.

We analysed the timing and direction (up or down) of switches in transcription rate between cells,
determined using the stochastic switch model. We tested the hypothesis that cells positioned close
together, and that switch activity in the same direction, would do so more synchronously than cells
located further apart (scenarios and analysis illustrated in Figure 4 ). Cells located closer together
had a tendency to switch activity within a smaller time interval, but only if they switched activity in
the same direction (Figure 4B,C ).

Patterns of prolactin gene transcription activity and spatial
coordination in developing pituitaries
We investigated the involvement of signalling through cell junctions in the coordination of PRL tran-
scription. We tested the hypothesis that the lower lactotroph cell density in developing pituitary tis-
sue would provide less opportunity for cell junction signalling and thereby result in less
transcriptional coordination between cells. We characterised the potential for cell junction signalling
in E18.5 and P1.5 pituitaries by immunofluorescence (Figure 5A,B ) and electron microscopy
(Figure 5C±K ). Clustering of lactotroph cells increased in P1.5 pituitaries compared to E18.5 pituitar-
ies (Figure 5B,D and G ). In the P1.5 pituitary gland lactotroph cells preferentially made contacts
with other lactotroph cells, whereas in the E18.5 pituitary gland lactotroph cells were mainly isolated
from each other (Figure 5D,G ). We specifically determined the presence of gap junctions and adhe-
rens junctions between lactotroph cells, as these have been implicated in the organisation and func-
tion of cell networks in the adult pituitary gland ( Morand et al., 1996 ; Chauvet et al., 2009 ;
Kikuchi et al., 2006 ). In E18.5 pituitaries, only a small number of adherens junctions could be
detected ( Figure 5E ) and the expression levels of the adherens junction proteins (E-, N-cadherin and
b-catenin) were very low. E-, N-cadherin, and b-catenin were more abundantly expressed in P1.5
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Figure 3. Spatial organisation of transcription activity in pituitary tissue. (A) Assessment of the spatial distribution of lactotroph cells with PRL gene
transcriptional activity. i) The median position of the cells over the time-course along with the field or convex hull occupied by the cells. ii) Ripley's k
function was used to test whether the cellular distribution was random. The observed distribution (K obs (r)) deviates from the theoretical prediction
(Ktheo (r)) in the short r range due to the finite size of the cells, above which the cell distribution is found to be indistinguishable from random and within
the 95% confidence interval (Klo (r) ± Khi (r)). (B) Correlation vs distance analysis of cells from adult male pituitary tissue. The correlation between two

time series xi and yi measured at N times is defined as N � 1 PN

iˆ 1
xiyi . i) The distribution of distances between cell pairs. Correlation vs distance plots ii) all

cell data and iii) cell pairs within 50 mm; indicate that proximally located cells have more similar activity than cells located further apart. The median and
90% confidence interval (CI) are shown along with the profile obtained from the 90% confidence interval of randomised of cellular transcription
patterns. The range shown indicates the distances over which the randomised data were significantly greater (paired t-test, p<0.001) to the non-
randomised data. (C) Analysis of correlation mediated by a potential lactotroph cell network in adult male pituitary tissue. i) Cell connectivity map with
cells classified as connected or unconnected according to the threshold distance used. Connections between cells at a single time point are portrayed.
ii) Correlation was calculated between connected (red) and unconnected cells (black) in parallel with randomised data. iii) The number of connected

Figure 3 continued on next page
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pituitaries than in E18.5 pituitaries ( Figure 5B ), which coincided with increased numbers of adherens
junctions as well as gap junctions and tight junctions ( Figure 5E,H ). In addition to the presence of
visually normal junctions (Figure 5I,J ), we also detected abnormal junctions where cadherin expres-
sion at the membrane could be detected but the characteristic thickening of the membrane was
absent (Figure 5K ). These data indicate that, although the potential for communication between lac-
totroph cells increases during development, cell junction communication in P1.5 pituitaries may still
be immature or atypical of the communication that occurs in the adult gland.

Profiles of hPRL-d2EGFP reporter gene activity in developing pituitaries were different to those
seen in the adult pituitary. In E18.5 pituitaries, d2EGFP signal was initially very low, but showed a

Figure 3 continued

and unconnected cell pairs at various threshold distances. Connected cells were more correlated in their transcription activity than unconnected cells.
Cell connectivity in ii)-iii) are based on median cell distances across the time-course to take into account cell movement. Data shown are representative
of three independent experiments. PRL, prolactin.
DOI: 10.7554/eLife.08494.007
The following figure supplements are available for figure 3:

Figure supplement 1. Characterisation of spatial organisation of prolactin transcription activity.

DOI: 10.7554/eLife.08494.008

Figure supplement 2. Correlation of transcription profiles within a cellular network structure.

DOI: 10.7554/eLife.08494.009

Figure 4. Spatial organisation of stochastic switch model derived prolactin transcription dynamics. ( A) Schematic outlining the hypothesis that was used
to assess the spatial organisation of PRL transcription dynamics. The hypothesis was that two cells located closer together will tend to switch
transcription in the same direction with more synchronous timing than cells that are located further apart. Moreover, a similar co-ordination in the
timing of switches will not be observed if switches occur in the opposite direction. Comparisons are made to the index cell (black). Red denotes cells
that switch transcription rate in the same direction, blue denotes cells that switch transcription rate in the opposite direction. T1 is the time interval
between cells located within 30 mm (and dashed lines) and T2 is the time interval between cells located more than 30 mm apart (and solid lines). (B)
Graph showing boxplots of switch timing intervals in cells that switch in the same direction and cells that switch in different directions, binned by the
distance between cells. A rising trend is seen in the time interval between transcription rate switch events in cells that switch activity in the same
direction (red), but not in cells that switch activity in the opposite direction (blue). Specifically, the median time interval between switch events is
smallest in cells that are located within 30 mm and that switch activity in the same direction. Cumulative distributions and significance testing of these
differences are shown in (C). All pairwise switches are considered. Boxplots represent the median and interquartile range (IQR), with whiskers drawn
1.5xIQR away from the lower and upper quartile. (C) The cumulative distribution of the time interval between switch events shows that cells within
30 mm that switch activity in the same direction (red dashed line) do so within a smaller time frame than cells located greater than 30 mm apart (red
solid line), the unsorted population (black) and cells that switch activity in opposite directions (blue dashed and blue solid lines) (confirmed by
significant p-value <0.01 of Kolmogorov-Smirnov tests). These were calculated by sampling at random, a pair of possible transcriptional profiles for
each pair of cells. Data shown were pooled from three independent experiments.
DOI: 10.7554/eLife.08494.010
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Figure 5. Characterisation of cell signalling potential in immature pituitary glands. ( A, B) Immunofluorescence
analysis of lactotroph cell connectivity in developing pituitaries. ( A) Immunofluorescence images show co-
expression of luciferase antibody (green), used to identify lactotroph cells, with PRL, N-Cadherin, E-Cadherin, and
b-catenin (red) in paraffin-embedded sections from P1.5 PRL-Luc49 rats. Nuclei were counterstained with DAPI
(blue). Right: 8x crop images. Bars in images represent 50mm. (B) Table showing the proportion of lactotroph cell
clustering in E18.5 and P1.5 pituitary tissue and the level of co-expression of the luciferase protein and the protein
of interest indicated, counted from immunofluorescence images. ( C±K) Electron microscopy analysis of lactotroph
cell connectivity in E18.5 (C-E) and P1.5 (F-K) pituitaries. (C, F) Representative image of two luciferase positive cells
detected through immunogold labelling of luciferase antibody. Bars represent 1 mm. (D, G) Graph of the number
of cells contacting an individual luciferase-positive cell. Undiff, undifferentiated cell. Luc, luciferase-expressing cell.
FS, folliculostellate cell. PRL, lactotroph. GH, somatotroph. LH, gonadotroph. (E, H) Graph quantifying the
different types of cell junctions present between luciferase-positive cells. Data in D-E and G-H are represented as

Figure 5 continued on next page
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sustained increase leading to a greater number of cells being detected at the end of the imaging
period (Figure 6A,B ). In P1.5 pituitaries, we again detected pulsatile transcription, with signal
increasing after approximately 20 hr of imaging ( Figure 6E,F ). Autocorrelation analysis of hPRL-
d2EGFP fluorescence profiles from both E18.5 and P1.5 pituitaries indicated that the majority of
cells showed only a single episode of PRL transcription with no dominant period being evident ( Fig-
ure 6Ðfigure supplement 1 ). Spatial correlation analyses of fluorescence activity, showed that PRL
transcribing lactotroph cells in developing pituitaries were more sparsely distributed in comparison
to adult pituitaries ( Figure 6C,G ), as expected, and that the correlation between closely localised
cells was reduced in comparison to the correlation profiles detected in adult tissues ( Figure 3B and
6D,H ).

Comparison of prolactin gene transcription dynamics between
developing and adult pituitary tissue
Analysis of fluorescence imaging profiles using the stochastic switch model was used to infer the
underlying hPRL transcription dynamics in single cells at different stages of pituitary development.
The transcriptional switch data (using data from cells as shown in Figure 2A iii) were visualised for all
cells in each tissue sample (Figure 7A ). Inspection of these data suggested that periods of active
transcription tend to be of longer duration in adult compared to immature tissue. Direct analyses
found no evidence for changes in the distribution of transcription rates at different stages of devel-
opment (Figure 7B and Figure 7Ðfigure supplement 2A ), even when transcription rates were
grouped into low and active states ( Figure 7Ðfigure supplement 1A and Figure 7Ðfigure supple-
ment 2B ). However, the number of switches between different rates of activity appeared to be lower
in cells in P1.5 pituitary tissue compared to in adult and E18.5 tissues ( Figure 7C ). We also found
that pulses of transcription in the highest quartile of transcription rates in E18.5 tissues were clearly
of shorter duration than those in the bottom 75%, and in comparison to durations of activity in P1.5
and adult tissue (Figure 7D and Figure 7Ðfigure supplement 2A ). This was also apparent when
transcription rates were divided into low and active states and indicates that transcription occurs in a
more pulsatile manner in embryonic pituitaries than in more mature tissues ( Figure 7Ðfigure sup-
plement 1B and Figure 7Ðfigure supplement 2B ). Where there was more than one switch (and
thus the full duration of an interswitch transcriptional state could be determined), the time to the
next switch was shorter in immature tissue compared to adult tissue ( Figure 7E ). These data indicate
that transcription dynamics are more stable in the adult tissue. No evidence was obtained for spatial
coordination of transcription rates in developing pituitaries ( Figure 7Ðfigure supplement 3 ).

Cell communication facilitates spatial coordination of prolactin gene
transcription patterns
We next investigated the role of cell junctions in the spatial coordination of transcription in adult
pituitary tissue. Trypsin was used as a non-specific protease to digest extracellular proteins and
thereby abolish outside-in cell signalling, without tissue disaggregation so that cells were maintained
in a tissue environment. Trypsin reduced protein levels of adherens junction proteins E- and N-Cad-
herin and the gap junction protein Connexin 43, whilst b-catenin, an intracellular component of
adherens junctions was unaffected (Figure 8Ðfigure supplement 1 ). Fluorescence profiles of hPRL
gene expression from cells in trypsin-treated tissue showed an overall increase in expression levels
during the time-course, as did control tissue ( Figure 8A ). Lactotroph cells in trypsin-treated tissue
appeared less connected and had a greater intercellular distance than lactotroph cells in untreated

Figure 5 continued

mean + SEM. (I, J) Electron micrograph of a visually normal adherens junction (AdJ), a visually normal tight
junction (TJ) and a visually normal gap junction (GJ) in P1.5 pituitaries. Bars represent 200 nm. (K) Electron
micrograph of an abnormal adherens junction in P1.5 pituitary. Bar represents 200 nm. Information and validation
of antibodies used are presented in Figure 5Ðfigure supplement 1 . SEM, standard error of the mean.
DOI: 10.7554/eLife.08494.011
The following figure supplement is available for figure 5:

Figure supplement 1. Description and validation of antibodies used.

DOI: 10.7554/eLife.08494.012
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Figure 6. Patterns and spatial organisation of prolactin gene transcription activity in immature pituitary tissue. ( A, B) Activity of the hPRL-d2EGFP
reporter construct in single cells in E18.5 pituitary tissue over 46 hr. (A) Images of d2EGFP expression in lactotroph cells in E18.5-day-old pituitary tissue
(male). (B) Fluorescence profiles from 20 individual cells, representative of 136 cells analysed (average intensity, arbitrary units). The black line represents
the mean average activity from all the cells analysed (136 cells), the dark blue line represents the background fluorescence intensity (mean from five
areas). (C, D) Spatial correlation between fluorescence profiles of PRL transcription activity is reduced in E18.5 pituitary tissue in comparison to adult
tissue. (C) The distribution of cell pairs in E18.5 tissue is compared to the adult cellular distribution. ( D) Correlation vs distance plots show no large
differences between randomised and non-randomised data over short cell-to-cell distances. ( E, F) Activity of the hPRL-d2EGFP reporter construct in
single cells in P1.5 pituitary tissue over 46 hr. (E) Images of d2EGFP expression in lactotroph cells in P1.5-day-old pituitary tissue (female). (F)
Fluorescence profiles from 20 individual cells, representative of 115 cells analysed. Lines are coloured as in (A) with the mean representing the activity
from all cells analysed. (G, H) Spatial correlation between fluorescence profiles of PRL transcription activity was reduced in P1.5 pituitary tissue in
comparison to adult tissue. (G) The distribution of cell pairs in P1.5 tissue is compared to the adult cellular distribution. ( H) Correlation vs distance plots
show no large differences between randomised and non-randomised data over short cell-to-cell distances. Correlation vs distance plots are shown as
described in Figure 3B . Images shown are maximum intensity projections of zstacks (E18.5: 165mm; P1.5: 196mm). Bar in images represents 100mm.
E18.5 (181 cells) and P1.5 (217 cells) data shown were taken from two independent representative experiments. hPRL, human prolactin.
DOI: 10.7554/eLife.08494.013
The following figure supplements are available for figure 6:

Figure supplement 1. Autocorrelation analysis of fluorescence profiles from developing pituitary tissue.

DOI: 10.7554/eLife.08494.014

Figure supplement 2. Comparison of prolactin transcription activity in adult pituitary tissue in different medium.

DOI: 10.7554/eLife.08494.015
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tissue (Figure 8B,C ). Spatio-temporal analyses showed a reduction in correlation between the fluo-
rescence profiles of closely localised cells (Figure 8D ), indicating that cell communication is impor-
tant for the coordination of PRL transcription dynamics between lactotroph cells in pituitary tissue.

We assessed the transcription response of cells exposed to gap ju nction inhibitors (18alpha-glycyrrhe-
tinic acid, AGA, and palmitoleic acid, PA [ Juszczak and Swiergiel, 2009 ]). Real-time luminometry on
pituitary primary cell cultures showed little change in transcript ion activity at the population level
(Figure 8E ). Fluorescence profiles of hPRL-d2EGFP reporter gene activity in AGA-treated tissue were
similar to fluorescence profiles measured in untreated tissue ( Figure 8A,F ) indicating that the gap junc-
tion inhibitor AGA had no effect on PRL gene transcription dynamics. AGA a lso had no effect on the spa-
tial distribution of the reporter-gene-expressing cells ( Figure 8G ). However, correlation between closely
localised cells was reduced (Figure 8H ), indicating a decrease in the coordination of PRL transcription
between cells. Overall, these data indicate that cellular communication , at least in part through gap junc-
tions facilitates the coordination of transcriptional activity betwee n lactotroph cells.

Discussion
Quantitative studies of transcription dynamics have added new le vels of complexity to our understanding
of gene expression and its regulation. Direct RNA counting techniqu es (MS2, or RNA-FISH) and the
imaging of indirect fluorescence and luminescence reporter gene exp ression has shown that mammalian
gene expression is often pulsatile (or 'bursty') with different gen es showing varying characteristics of
activity (Sanchez and Golding, 2013 ; Coulon et al., 2013 ; Suter et al., 2011 ; Spiller et al., 2010 ). These
studies, performed in single cell systems, raise the question as to how apparently uncoordinated and het-
erogeneous dynamics enable integrated tissue-level responses to phys iological stimuli. We have
assessed PRL transcription dynamics within pituitary tissue, utilising newly derived mathematical models
to define transcription activity. Cells displayed a continuous distribut ion of transcription rates with het-
erogeneous patterns of activity across the cell population. Embryon ic pituitary glands displayed shorter
durations of high transcription rates compared to adult pituitary tiss ue, which could reflect epigenetic
changes during tissue development. We also characterised the spatia l organisation of PRL gene expres-
sion within lactotroph cells of the pituitary gland and found evidence for the local coordination of tran-
scription dynamics that is potentially mediated by intercellular sig nalling providing insights into how
transcriptional timing is organised in tissue systems.

Over the past decade, efforts have been made to mathematically model transcription activity to
provide a better mechanistic understanding of gene regulation ( Sanchez et al., 2013 ; Larson et al.,
2009 ). Poissonian distributions of mRNA production, where mRNAs are produced in random, uncor-
related events, have been described (Zenklusen et al., 2008 ; So et al., 2011 ). However, the prevail-
ing model for mammalian transcription dynamics is the Random Telegraph Model, which describes
'bursty' gene expression, where the gene exists in two states, either 'on' or 'off', with transcripts
produced at a defined rate in the 'on' period ( Larson et al., 2009 ; Peccoud and Ycart, 1995 ). Using
binary modelling, we and others have shown that there is a refractory period in the 'off' state, but
not in the 'on' state, indicating that there are significant differences between the kinetics of gene
activation and inactivation ( Suter et al., 2011 ; Harper et al., 2011 ). Binary modelling of transcrip-
tion dynamics is likely to represent an oversimplification of the true transcription process. Therefore,
we developed a stochastic switch model, which allowed us to estimate transcription rates at differing
levels and defined the timing of switches between different rates ( Hey et al., 2015 ). This model
enabled us to characterise transcription activity in cells maintained in tissue, where individual tran-
scriptional states were sustained for long periods and complete cycles of activity were not often
detected. Using the stochastic switch model, we found a continuous distribution of transcription
rates, that is differential 'on' states, across the cell population, with heterogeneous timing in tran-
scriptional switches between cells. This heterogeneity in transcriptional activity is likely to result from
intrinsic factors previously shown to influence PRL transcription (Harper et al., 2011 ), together with
extrinsic factors, which include the specialisation of lactotroph cells into distinct subtypes
(Christian et al., 2007 ).

To understand the role of stochastic transcriptional processes in tissue biology, it is important to
determine how the properties of transcription dynamics are modulated to facilitate changes in gene
expression under different physiological states. Modelling of transcriptional activity using a random
telegraph process has suggested that levels of gene expression can be controlled through digital
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Figure 7. Comparison of prolactin transcription dynamics in different pituitary states. ( A) The stochastic switch model enables comparison of
transcription dynamics in different pituitary states. Example plots of transcription rates estimated using the stochastic switch model. Analyses of
populations of cells are shown from different states of pituitary tissue development. Each cell is associated with a single transcriptional profile obtained
by random sampling of all the possible profiles for that cell (shown as in Figure 2A iii, with transcription rate and switch timings depicted). Data shown
were from a single experiment representative of independent experiments (i: E18.5 n = 181 cells, ii: P1.5 n = 217 cells, iii: Adult n = 305 cells). (B±E)
Characterisation of transcription dynamics estimated using the stochastic switch model. (B) The cumulative distribution function of the frequency of
different transcription rates was estimated using a weighted kernel. No clear difference between pituitary developmental states was evident. ( C)
Weighted histogram of the number of switches for each developmental state. Data, pooled from independent experiments, show the mean + SD,
calculated by weighting the number of switches in each profile by the probability of occurrence. P1.5 has significantly fewer switches to Adult and E18.5
(p<0.01 Mann-Whitney U test of the pooled distributions). ( D) The duration of transcription rates for each tissue state. Transcription rates were binned
into quartiles, with the first three lower quartiles grouped together (<75) as one bin and the highest quartile as the other bin (>75). The duration of
transcriptional states was calculated for each bin. The duration represents the minimum duration spent in each transcriptional state, as not all
transcriptional states were completely observed within the time-frame of the imaging experiment. Both E18.5 datasets showed a significant difference
in the duration spent in low transcriptional states (lower 3 quartiles) to high transcriptional states (upper quartile) as did one P1.5 dataset and two Adult
datasets. Moreover, the duration spent in the upper quartile of the E18.5 (pooled data) was significantly different to the duration spent in the upper
quartile of either the pooled data of P1.5 or Adult. Significance was assessed through the distribution of the p-values calculated from a Mann-Whitney
bootstrap (Figure 7Ðfigure supplement 2 ). Boxplots were calculated by a random sampling of the weighted transcription rate distributions and the
associated durations. (E) The graph shows a kernel density estimate of the time between any two switches using data from panel D, for cells that
displayed more than one switch so that the total duration spent in a single transcriptional state was estimated. The inter-switch time in the adult tissues

Figure 7 continued on next page
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responses where the burst frequency or duration is altered, but not the transcription rate
(Larson et al., 2013 ). Similarly, digital responses in transcription activity have been detected in sin-
gle cell systems where the probability that cells are recruited to an expressing population changes
under different conditions ( Chubb et al., 2006 ; Walters et al., 1995 ; Kar et al., 2012 ). In contrast,
different kinetic transcriptional responses including changes to transcription rate and durations of
'on' activity have been found for the connective tissue growth factor ( ctgf ) gene in response to dif-
ferent stimuli ( Molina et al., 2013 ), and for housekeeping genes in Dictyostelium (Muramoto et al.,
2012 ). Overall, the total level of transcription in a given pulse will depend not only on the length of
the pulse but also on the rate of transcription during the pulse. Different rates of transcription will
depend on levels of RNA polymerase II loading, which may be controlled by different chromatin and
promoter states. We observed a continuous distribution of transcription rates within cell populations,
indicating that different levels of activity are attainable. However, at the population level similar dis-
tributions of activity were detected in all developmental states analysed. Thus, differences in tran-
scription rate contribute to heterogeneous activity at the population level and may be important in
maintaining tissue function. In different developmental states, we found changes in the duration of
high transcription rates between embryonic and more mature pituitary glands, indicative of a more
pulsatile activity in immature tissues. Thus, changes to the duration of activity appear more promi-
nent in facilitating changes in the level of gene expression than changes to transcription rate.

Transcriptional stochasticity within cellular populations may be advantageous in maintaining
population fitness to changing environments ( Thattai, 2004 ), or facilitate cell fate choices
(Chang et al., 2008 ; Wernet et al., 2006 ). However, the role of stochastic gene expression in
tissue systems where integrated responses to physiological demand are required is less clear. It
has been proposed that heterogeneous responses may facilitate robust tissue-level responses and
potentially avoid inappropriate amplification of signals through feedback mechanisms
(Paszek et al., 2010 ). In contrast, mechanisms to reduce expression level heterogeneity have
been described in processes such as patterning and specification in other species ( Little et al.,
2013 ; Raj et al., 2010 ). A recent study used single-molecule RNA-FISH at single points in time
to define bursting transcriptional behaviour in fixed liver tissue and identified polyploidy as a
mechanism to reduce intrinsic variability between cells ( Bahar Halpern et al., 2015 ). The pituitary
gland is an excellent model system in which to investigate cellular population responses to physi-
ological signals. The gland is composed of multiple cell types that are spatially organised within
the pituitary, several of which have been suggested to form interdigitated cellular networks
(Le Tissier et al., 2012 ; Mollard et al., 2012 ; Hodson et al., 2012 ; Fauquier et al., 2001 ;
Bonnefont et al., 2005 ). Lactotroph cells coordinate their calcium signalling in basal physiological
states and more substantially during increased demand such as lactation (Hodson et al., 2012 ).
In this study, we have provided a quantitative analysis of lactotroph cell connectivity and shown
that PRL transcription is coordinated between lactotroph cells over short distances (25 ±35 mm)
and propagated through a network structure. Transcriptional coordination was actively facilitated
by intercellular signalling, and we have shown that this could be via juxtacrine signalling including
gap junctions. Intercellular signalling has been shown to be important for coordinating other
oscillatory systems such as the circadian clock in the suprachiasmatic nucleus (Liu et al., 2007 ),
the somite segmentation clock ( Horikawa et al., 2006 ; Masamizu et al., 2006 ), and electrical
coupling of and insulin secretion from pancreatic b cells (Smolen et al., 1993 ).

Figure 7 continued

is longer than the inter switch times of either the E18.5 or P1.5 tissues. E18.5 = orange, P1.5 = red, Adult = black. All boxplots represent the median
and interquartile range (IQR), with whiskers drawn 1.5xIQR away from the lower and upper quartile. SD, standard deviation.
DOI: 10.7554/eLife.08494.016
The following figure supplements are available for figure 7:

Figure supplement 1. Characterisation of prolactin transcription dynamics.

DOI: 10.7554/eLife.08494.017

Figure supplement 2. Significance testing of transcriptional state durations.

DOI: 10.7554/eLife.08494.018

Figure supplement 3. Spatial organisation of transcription switch profiles in developing pituitaries.

DOI: 10.7554/eLife.08494.019
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Figure 8. Cell communication influences the spatial organisation of prolactin transcription dynamics. ( A) Comparison of fluorescence profiles of hPRL-
d2EGFP reporter gene activity from individual cells in control and trypsin-treated tissue. Cells in trypsin-treated tissue appeared less synchronised over
time, but still showed an overall rise in activity as shown by the mean activity (black). The level of background fluorescence is shown in dark blue (mean
from five areas). (B±D) Spatial correlation between fluorescence profiles of hPRL transcription activity is reduced in trypsin-treated tissue. (B) Images of
cells within control and trypsin-treated tissue show that the distribution of cells and contacts between d2EGFP-expressing cells appeared altered
following trypsin treatment. Bar represents 100 mm. (C) The intercellular distance between cells from control and trypsin-treated tissue was calculated as
the median distance over the fluorescence imaging time-course (shown in A). (D) Correlation vs distance analyses showed a reduction in the difference
between non-randomised and randomised data in trypsin-treated tissue compared to control, indicating a reduction in the spatial influence on
transcription. (E±H) Inhibitors of gap junction signalling were used to assess whether juxtacrine signalling is influential in coordinating PRL transcription
activity. (E) Real-time luminescence activity from populations of cells in primary cultures show that gap junction inhibitors (18 a-glycyrrhetinic acid, AGA,
and palmitoleic acid, PA) had little effect on overall PRL gene expression. Forskolin (FSK) was used as a positive control. (F) Fluorescence profiles of
single cells in AGA treated tissue. Data are represented as described in (A). Transcription activity increased during the time-course (mean activity,
black), similarly to control tissue (A). (G) The intercellular distance between cells from control and AGA-treated tissue was calculated as the median
distance over the fluorescence imaging time-course (shown in A,F). (H) Correlation vs distance analyses showed a reduction in the difference between

Figure 8 continued on next page
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The global picture that arises is that transcription is highly stochastic but has some coordination of
bursting at distances up to approximately 35 mm in adult pituitary tissue, but not at greater distances.
In contrast there was no coordination at any intercellular distance in earlier developmental states. The
limited short distance coordination between lactotroph cells in the adult tissue is not sufficiently
strong to lose the key characteristic of cell-to-cell heterogeneity. However, it can be hypothesised
that the global system of short range cell-to-cell communication may stabilise longer term changes in
the expression level of the tissue, such as those associated with the oestrus cycle or lactation. Thus far
the gland as a whole prolactin transcription is essentially random in that for the vast majority of cell
pairs, the temporal pattern of their transcription is uncoordinated. Therefore, the law of large num-
bers guarantees stable long-term results in terms of the global response.

Our work addresses how an endocrine tissue, such as the pituitary gland, generates a controlled
output from a diverse set of intermingled cell types. The acute, medium, and long-term outputs of
endocrine cells must be regulated across different time scales and to diverse environmental signals,
while achieving accurate control of hormone expression. A key question has been whether cells
behave similarly to each other or whether they operate in a heterogeneous autonomous fashion. Pre-
vious data have suggested the latter in isolated cells and cell lines. Our data now indicate that devel-
oping adult tissue structure exerts a coordinating effect on cell behaviour (see Figure 9A ). Our
observation that cells display multi-state transcriptional behaviour ('off', 'primed' and 'on' at various
levels; outlined in Figure 9A ), as opposed to simple binary 'on'/'off' behaviour, is suggestive of mech-
anisms that tune the overall output from the gland through the generation of graded responses.
Changes in the duration of particular transcription states, as we observed with shorter 'on' periods in
immature pituitary glands, also help to refine the overall output from the gland. A simulation
(Figure 9B ) shows how decreasing the duration of the 'primed' period allows a population of cells to
switch to a new stable state of mRNA production. Such modification of activity may facilitate the dif-
ferentiation of the tissue response without a risk of overshooting behaviour. This offers a new mecha-
nism to explain how tissues integrate different signals with varying durations into appropriate
responses. Examples of dynamic control of the pituitary gland include the acute suppression or activa-
tion by hypothalamic regulators, circadian response, and long-term behavioural changes through
development, puberty, pregnancy, and ageing.

In summary, the results presented provide a quantitative framework of cellular transcriptional
activity within living tissue. We demonstrate that there is local transcriptional coordination between
prolactin-expressing cells in adult, but not in developing pituitary tissue. We have described quanti-
tative analyses of transcription kinetics in different developmental states of the pituitary gland. In all
states, we showed that transcription occurs at different levels of activity separated by statistically
definable switches. We also detected changes in transcription dynamics between different stages of
pituitary development. In the adult tissue, the cells show longer lived active states, associated with
an altered environment in which there is greater cell-to-cell connectivity. We have identified poten-
tial mechanisms by which the combined dynamics of single cells within a tissue may achieve both
acute and long-term functional adaptation of the expression of secreted regulatory proteins.

Materials and methods

Animals
Animal studies were performed under UK Home Office License and subject to local ethical committee
review. The generation and characterisation of Fischer 344 transgenic rats with the luciferase (PRL-
Luc49) or destabilised GFP (PRL-d2eGFP455) reporter genes under the control of the hPRL locus has

Figure 8 continued

non-randomised and randomised fluorescence profiles in AGA treated tissue compared to control tissue indicating a reduction in the spatial
coordination of transcription. Correlation vs distance plots are shown as described in Figure 3B .
DOI: 10.7554/eLife.08494.020
The following figure supplement is available for figure 8:

Figure supplement 1. Effect of trypsin on cell junction proteins.

DOI: 10.7554/eLife.08494.021
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been described previously (Semprini et al., 2009 ). The BAC transgenes are integrated into the
genome at a single site with high copy number in the PRL-Luc49 line and low copy number ( � 5) in the
PRL-d2eGFP455 line (Harper et al., 2010 ; Semprini et al., 2009 ). Animals were housed in humidity-
(50 ± 10% ) and temperature- (20 ± 1ÊC) controlled conditions in a 12 hr light:dark cycle with food (rat
and mouse standard diet; Special Diet Services, Witham, UK) and water ad libitum. Timed matings

Figure 9. Multi-state transcription dynamics achieve robust tissue level responses. (A) Organised cell networks and gap junction cell-cell signalling in
adult pituitary glands (lower panels), but not in immature pituitary glands (upper panels), leads to local correlation of transcription between cells. Across
a large population of cells transcription dynamics are essentially random and uncoordinated. Multi-state transcription dynamics ('off', 'primed' and 'on'
at various levels) contribute to transcriptional heterogeneity between cells as the time spent in each state is exponentially distributed. The schematic
indicates putative regional signalling and signalling gradients across the pituitary, for example from hypothalamic dopamine (DA) and systemic
estradiol (E2). Segments of pituitary tissue are represented with lactotroph cells (red) connected via gap junctions (black rectangles). Examples of single
cell transcription profiles (left plots) and their relation to multi-state transcription dynamics (right plots), with 'off', 'primed' (dashed lines) and different
levels of transcription in the 'on' state are shown. (B) Simulation of the telegraph model with priming demonstrates how decreasing the 'primedº period
(at the dashed line) gives rise to a rapid robust response across a population of cells showing heterogeneous activity. The simulation was performed on
fluorescence profiles from 100 cells, with the mean of these responses shown (black line) along with 5 representative cell responses (coloured lines).
DOI: 10.7554/eLife.08494.022
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were set-up with transgenic males and wild-type females with the detection of a vaginal plug the
morning after mating considered as E0.5. Animals were genotyped using DNA extracted from ear
biopsies (adults) or tail biopsies (fetal and neonates). Young animals were sexed using PCR conditions
described in (Featherstone et al., 2011 ). Genotyping was performed on PRL-Luc49 DNA as
described in (Featherstone et al., 2011 ). Genotyping of PRL-d2eGFP455 DNA was performed with
the same conditions as for PRL-Luc49 DNA but with d2eGFP primers substituted for luciferase pri-
mers; d2eGFP forward, 5'-GACGACGGCAACTACAAGAAC -3' and d2eGFP reverse, 5'-ACTCCAG-
CAGCACCATGTGAT -3'. Animals were sacrificed by a schedule 1 method (exposure to a rising
concentration of CO 2 followed by cervical dislocation) followed by resection of pituitary glands.

Preparation and culture of pituitary tissue
Coronal slices of adult pituitary glands (300 mm) were cultured on 0.4- mm filter stages (Greiner Bio-
One, UK) in 35-mm glass-coverslip-based dishes with access to air and medium (DMEM + 4.5 g/l glu-
cose, 10% (v/v) FBS, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM
ultraglutamine) (Figure 1A ). Whole pituitary glands from fetal (E18.5) (n = 2) or neonatal (P1.5)
(n = 2) animals were treated as described in (Featherstone et al., 2011 ) except that luciferin was
omitted from the medium and pituitaries were cultured on filter stages as described above. Adult
pituitary tissue was either untreated (n = 3), treated with Trypsin (0.1% (w/v) Trypsin (Sigma UK),
0.0045% (w/v) DNase I, 0.325% (w/v) BSA in HBSS) (n = 2), or AGA (20mM in 10% FBS medium)
(n = 2) for 2 hr at 37ÊC prior to imaging.

Fluorescence confocal imaging of pituitary tissue
Pituitaries were imaged using Carl Zeiss laser scanning confocal microscopes (LSM): Pascal, 710 and
780, maintained at 37ÊC in PeCon XL incubators (PeCon, Germany) with a humidified atmosphere of
95% air and 5% CO2 and with a Fluar 10X magnification 0.5 NA objective. Excitation of d2EGFP was
performed using an argon ion laser at 488 nm with emitted light captured through appropriate fil-
ters or a selected portion of the spectrum. All imaging was acquired as z-stacks with images cap-
tured in 15 min intervals for 48 hr in basal culture medium and then for 24 hr following forskolin
stimulation (Adult: 5 mM or Immature Pituitaries: 1 mM). Fluorescence from tissues was analysed as
maximum intensity projections using ZEN 2010b (Zeiss, UK) or CellTracker software (http://www2.
warwick.ac.uk/fac/sci/systemsbiology/staff/bretschneider/celltracker/).

Analysis of imaging data
Spatio-temporal analyses were performed by measuring the fluorescence intensity from all cells within
an area, encompassing approximately 100 cells. The area analysed was always taken from the lateral
edge of the pituitary to minimise differences between cellular activities that may exist across the gland.
Regions of interest were drawn around cells and mean intensity data collected using CellTracker soft -
ware. Cell areas analysed were consistent with the size of a typical eukaryotic cell (Figure 1Ðfigure sup-
plement 1 ). Matlab R2014a software (MathWorks, UK) including Bioinformatics and Statistical
toolboxes, or the R programming language (www.r-project.org) were used for mathematical analys es. In
all analyses, the positioning of cells was taken as the median x,y coordinates of the centroid. The spatial
distribution of cells was tested using a 2D Poission process and Ripley's K function ( Ripley, 1976 ). Corre-
lation analyses of transcription patterns from fluorescence data were performed in two ways: eithe r
using the Euclidean distance between cells or by a network analysis. Correlation based on the Euclidea n
distance was performed in two parts. In the first part, cell pairs were partitioned into bins acco rding to
the distance between the cells starting at 5 mm with 5 mm intervals. Correlation analysis was performed
99 times for each bin, with n cell pairs sampled with replacement, and with the 5 and 95 percentiles
reported. In the second part, n time-series are randomly permuted while the spatial information is unal-
tered following which correlation coefficients are calculated as described above. A paired t-test was
used to identify significant differences between space-time correlations from randomised and non-r and-
omised data. Network correlation analysis was performed similarly to Euclidean distance correla tion
analyses except that cell pairs were divided into two bins, connected and unconnected, which was
defined in a network approach as follows. Cells were assumed to be circular with the same diamet er (D).
If the distance between two cells was smaller than D, they are considered to be connected. Furthermor e
cell connectivity is transitive so that if cells a and b are connected and so are cells b and c, then ce lls a
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and c are considered to be connected being part of a cell cluster, even if separated by a distance grea ter
than D. Analysis is performed with a varying D.

The inference of transcription rates from fluorescence data using the stochastic switch model was
performed as described ( Hey et al., 2015 ), using the following stochastic reaction network:

; �!
b…t†

mRNA

mRNA �!
dm ;

mRNA �!
a

mRNA ‡ Protein

Protein �!
dp

; …�†

where dm and dp denote the degradation rates of reporter mRNA and reporter protein respectively,
a denotes the rate of translation and b(t) denotes the time varying rate of transcription. Specifically,
the transcription function is given by,

b…t† ˆ b i for t 2 ‰si� 1;si†for i ˆ 1; :::;K;

where K is the number of transcriptional switches, occurring at times s1; s2; :::; sK and
b1; b2; :::; bK are the corresponding transcriptional rates. We impose no restriction to the form
of the transcriptional levels but note that the conventional binary switch behaviour can be seen as a
specific example where b i ˆ bLOW if the gene is inactive in the time period ‰si� 1; si† or b i ˆ

bHIGH if the gene is active.
Assuming light intensity measurements are related to reporter pr otein levels through the equation,

Y…t† ˆ k P…t† ‡ "…t†;
"…t†~N…0;s 2†;

inference is performed through the linear noise approximation to the system in (*) to obtain the poste-
rior transcriptional function for each single cell. To ensure model identifiability, we impose informative
prior distributions about the degradation parameters, obtained from independent experiments as
described in (FinkenstaÈdt et al., 2013 ). In addition, we specify a hierarchical framework over each
dataset, as individual parameters are unlikely to change substantially. We confirmed that the degrada-
tion parameters in tissue samples were similar to estimates obtained using cell lines.

In order to estimate both the number and positioning of transcriptional switches, we employ a
reversible jump Markov chain Monte Carlo (MCMC) algorithm ( Green, 1995 ). Consequently, the
posterior distribution consists of all possible transcriptional profiles. In order to extract the informa-
tion regarding the estimated transcriptional dynamics, the posterior samples go through a post-
processing procedure outlined below:

1. First, we fit a parametric model to the marginal posterior switch distribution (as described in
[Jenkins et al., 2013 ]). Specifically, a Gaussian mixture model is fitted to the marginal poste-
rior distribution of the possible switch times.

2. Since this marginal model does not take into account the co-occurrence of switches, we then
extract all possible sub-models. For example, if the marginal posterior has two possible switch
positions (as shown in Figure 2A ) the sub-models will consist of a zero switch model, two
mutually exclusive one switch models and the two switch model. Counting the frequency with
which each of the sub-models was sampled in the MCMC, we can associate a weight or proba-
bility to each sub-model.

Thus, this post-processing procedure associates each single cell to a set of mutually exclusive
transcriptional profiles. The analysis presented in the main paper has been calculated from the set of
all possible transcriptional profiles, weighted by their probability of occurrence. Data of d2EGFP
fluorescence measured in single cells and subsequent stochastic switch modelling of transcription
activity have been deposited in the Dryad data repository ( Featherstone et al., 2015 )

Immunofluorescence of immature pituitary glands
Immunofluorescence was performed on Prl-Luc49 immature pituitary glands maintained in situ to
enable sectioning in the coronal orientation. Prl-Luc49 rats were used in immunofluorescence and
electron microscopy analyses as multiple copies of the Prl-Luciferase transgene enabled the
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detection of low expressing PRL cells. Exposed pituitaries were fixed in Bouin's solution (Sigma, UK)
for 24 hr, washed with water and 70% ethanol and then embedded in wax and 5- mm sections cut
and mounted onto poly-L-lysine slides (Thermo Fisher, UK). Immunofluorescence staining was per-
formed as previously described ( Semprini et al., 2009 ) except that slides were pretreated with 3%
(v/v) H2O2, in methanol for 30 min following antigen retrieval. Pituitaries were stained with mouse
anti-luciferase (P. pyralis) antibody (Life Technologies, UK); co-stained either with: mouse anti- ACTH
(Abcam, UK), goat anti-Pit1 (Santa Cruz, UK), rabbit anti- PRL (R51, A McNeilly, Edinburgh, UK),
mouse anti-E-Cadherin (BD Biosciences, UK), rabbit anti- N-Cadherin (Calbiochem, UK), mouse anti-
b-Catenin (BD Biosciences, UK) and counterstained with DAPI. Briefly, all slides were blocked with
blocking buffer (10% (v/v) donkey serum, 5% BSA (w/v) in PBS) and stained with primary antibody in
blocking buffer at 4 ÊC overnight. The primary antibody was detected with anti-mouse-HRP
(Vector Labs, UK) and Tyramide Signal Amplification- FITC (PerkinElmer, UK). Slides were boiled in
sodium citrate (10 mM pH6) for 2 min and left to stand in hot buffer for 30 min before sequentially
blocking with biotin, streptavidin (Vector Labs, UK) and blocking buffer and application of second
primary antibodies at 4 ÊC, overnight. Detection of the second primary antibodies was with either
anti- rabbit biotin, anti- goat biotin, or anti-mouse biotin (Vector Labs, UK) and subsequently with
streptavidin- alexa546 (Life Technologies, UK). Specificity of antibody labelling was confirmed in neg-
ative control sections in which the primary antibody was replaced with the appropriate non-immune
serum. Slides were examined and images taken using a Zeiss Excitor confocal microscope with Fluar
20X magnification 0.75 NA objective. For each developmental stage three pituitaries were analysed
(two males and one female were analysed from two independent litters) with co-localisation between
antibodies counted across at least one whole pituitary slice. No sexual dimorphism was detected.

Electron microscopy of developing pituitary glands
Electron microscopy was performed on dissected immature pituitaries, which were processed and
immunogold-labelled as previously described ( Abel et al., 2013 ). Briefly, the tissue was con-
trasted with uranyl acetate (2% (w/v) in distilled water), dehydrated in methanol and embedded
in LR Gold resin. Ultrathin sections (50±80 nm) were prepared using a Reichart-Jung ultracut
microtome and mounted on nickel grids (Agar Scientific, UK). For identification of adherens junc-
tions, sections were immunogold-labelled for E-cadherin (mouse anti- E-Cadherin: BD Biosciences,
UK) or b-catenin (mouse anti-b-catenin: BD Biosciences, UK). In order to identify lactotroph cells,
sections were immunogold labelled for PRL (rabbit anti- PRL R51: A McNeilly, Edinburgh, UK)
and to identify luciferase-positive cells, sections were immunogold labelled for luciferase (mouse
anti-luciferase: LifeTechnologies, UK). Sections were counterstained with lead citrate and uranyl
acetate and examined on a JOEL 1010 transmission electron microscope (JOEL USA, USA). Spec-
ificity of antibody labelling was confirmed in negative control sections in which the primary anti-
body was replaced with the appropriate non-immune serum. For each pituitary (n = 3), 10
luciferase-immunogold labelled cells were identified and the adjacent cells and intercellular junc-
tions identified on the basis of morphological criteria and counted.

Primary cultures and live-cell luminometry
Primary cultures of adult female pituitary glands were prepared as described ( Featherstone et al.,
2011 ). Cells were resuspended in medium (DMEM + 4.5 g/l glucose, 10% FBS, 1 mM sodium pyru-
vate, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM ultraglutamine) and plated (1 � 105/
well) in white plastic 96-well plates pre-treated with poly-L-Lysine at. Cells were allowed to recover for
24 hr (37ÊC, 5% CO2) after which the medium was replaced with serum-deprived medium (DMEM +
4.5 g/l glucose, 0.25% (w/v) BSA, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 mg/ml streptomycin
and 2 mM ultraglutamine) supplemented with 1 mM luciferin (Biosynth, Switzerland) and cells were
incubated for a further 24 hr (37 ÊC, 5% CO2). Cells were then treated with either: DMSO (control),
20 mM a-glycyrrhetinic acid (Sigma, UK), 50 mM Palmitoleic acid (Sigma, UK), or 5 mM forskolin (Sigma,
UK). Cell responses were measured using the FLUOstar Omega CO2- and temperature-controlled
luminometer plate reader (BMG Labtech) with photon counts collected for 10s per well every 15 min
for 24 hr. Three independent cultures were analysed with 3-4 replicates per treatment group.

Featherstone et al. eLife 2016;5:e08494. DOI: 10.7554/eLife.08494 20 of 25

Research article Cell biology Computational and systems biology



Analysis of pituitary slice luminescence activity using photon multiplier
tubes
Pituitary tissue slices from Prl-Luc49 adult male rats were prepared as described in 'Preparation and
culture of pituitary tissue'. Slices were cultured on filter stages in 35-mm dishes in either FBS supple-
mented recording medium (DMEM + 4.5 g/l glucose, 10% (v/v) FBS, 1 mM sodium pyruvate, 100 U/
ml penicillin, 100 mg/ml streptomycin, and 2 mM ultraglutamine, 10 mM HEPES, 1 mM luciferin) or rat
serum supplemented recording medium (DMEM and F12, 50% (v/v) serum from sacrificed animal,
100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM ultraglutamine, 10 mM HEPES, 1 mM luciferin) in a
closed system at 37ÊC, to show that differences in transcriptional activity seen between adult and
immature tissues was not due to the medium used ( Figure 6Ðfigure supplement 2 ). Biolumines-
cence emissions were recorded by photon multiplier assemblies (Hamamatsu Photonics, UK) with
counts collected over a 1-min period. The mean and standard deviation were calculated from data
collected over hourly periods. Two independent adult male rat pituitaries were analysed with each
condition performed in triplicate.

Western blotting
Pituitary tissue slices were prepared and either untreated or treated with trypsin for 2 hr at 37 ÊC,
as described in 'Preparation and culture of pituitary tissue'. Slices were washed three times in
medium (DMEM + 4.5 g/l glucose, 10% (v/v) FBS, 1 mM sodium pyruvate, 100 U/ml penicillin,
100 mg/ml streptomycin and 2 mM ultraglutamine) and then cultured on filter stages as described
previously at 37ÊC, 5% CO2 for either 0, 24, or 48 hr. Slices were lysed in RIPA buffer (50 mM
Tris-HCl pH8, 150 mM NaCl, 1% (v/v) Nonidet P40, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v)
SDS) with Complete Mini EDTA-free Protease Inhibitors (Roche, UK). Three independent cultures
of trypsin-treated and untreated tissue were analysed by western blot. Lysates prepared from cell
lines or whole tissue samples were generated by lysis in RIPA buffer with Complete Mini EDTA-
free Protease Inhibitors (Roche, UK) following washing with cold HBSS. All samples were sub-
jected to SDS-PAGE (10%) before transfer to nitrocellulose membrane. Primary antibodies (rabbit
anti- a-tubulin (Proteintech, UK), mouse anti-E-Cadherin (BD Biosciences, UK), mouse anti-b-cate-
nin (BD Biosciences, UK), rabbit anti-N-Cadherin (Calbiochem, UK), mouse anti-connexin43 (Santa
Cruz Biotechnology, USA) were applied overnight at 4 ÊC in blocking buffer (Tris buffered saline,
5% (w/v) dried milk, 0.1% (v/v) Tween20), and species-specific horseradish peroxidase conjugated
secondary antibodies (GE Healthcare, UK) were applied for 1 hr at room temperature. Staining
was detected with Clarity Western ECL Substrate (Biorad) using Biomax XAR film (Kodak, UK).
Protein levels were standardised to a-tubulin expression following quantification of protein
expression by determining the relative band size using ImageJ software. For further information
on antibodies used see Figure 5Ðfigure supplement 1 .
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