Synthesis of Oxetane and Azetidine Containing Spirocycles Related to the 2,5-Diketopiperazine Framework

Jonathan D. Beadle
Nicola H. Powell
Piotr Raubo*
Guy J. Clarkson*
Michael Shipman*

A simple two-step sequence is used to efficiently make novel spirocyclic analogues of the diketopiperazine nucleus. Conjugate addition of chiral α-amino esters to nitroalkenes, generated from oxetan-3-one or N-Boc-azetidin-3-one, followed by nitro group reduction provides, after spontaneous cyclization, the spirocycles in good overall yields. These rigid scaffolds can be functionalized by selective N-alkylations as well as by carbonyl reduction to the corresponding piperazines.

Key words oxetanes, diketopiperazines, spirocycles, peptidomimetics, piperazines

There is much interest in the preparation of spirocyclic heterocycles for use in medicinal chemistry. Important properties of these scaffolds include their inherent rigidity, structural novelty, reduced lipophilicity and greatly increased potential for the precise presentation of pendant functional groups in three-dimensional space. Considerable progress has been made towards the development of general methods for the preparation of such spirocycles, however efficient access to new scaffolds has the potential to open up further regions of chemical space for drug discovery.

The 2,5-diketopiperazine subunit (2,5-DKP, 1) is found in many bioactive natural products and medicinal agents including in the marketed drug, Tadalafil (Scheme 1). As part of an ongoing interest in the preparation of useful oxetane containing frameworks, we sought to examine the feasibility of preparing novel spirocyclic scaffolds related to 2,5-DKPs. Specifically, we targeted the synthesis of 2-hetero-5,8-diazaspiro[3.5]nonan-7-ones (2) wherein one of the C=O bonds is replaced by four-membered oxetane (2a) or azetidine (2b) rings. This was inspired, in part, by the work of Carreira, Rogers-Evans and co-workers who have demonstrated the benefits of carbonyl to oxetane substitution in other common scaffolds used in drug discovery. Moreover, 2 has much potential for derivatization via selective substitution at up to four carbon atoms and two nitrogen atoms (three nitrogens for the azetidine series) of the rigid framework. Thus, they should serve as excellent templates for the precise display of various biological receptor binding groups in three-dimensional space.

Our retrosynthetic strategy to 2 is outlined in Scheme 1. The route involves: conjugate addition of an α-amino ester to highly strained nitroolefin 3 followed by reduction of the resulting nitroalkane 4, and cyclization to the target spirocycle. In this Letter, we report the development of an efficient and general strategy to these new spirocycles, and show how they can serve as useful intermediates en route to spirocyclic piperazines which are themselves of current interest.

We began by examining the conjugate addition of α-amino esters to nitroalkene 3. This element of the work builds on recent communications by us and by Carreira that outline the use of this reaction for the synthesis of oxetane based peptidomimetics. Here, 14 new examples of this conjugate

Scheme 1 Route to 2-hetero-5,8-diazaspiro[3.5]nonan-7-ones (2).
addition chemistry are reported providing 9a-n in moderate to good yields (Scheme 2). For derivatives 9a-i, 3-(nitromethyl)oxetane 6 \((R^1 = H) \) was made in situ from oxetan-3-one \((5) \) and nitromethane prior to addition of the amino ester. Using nucleophiles derived from a variety of proteinogenic amino acids, we are able to make products containing non-polar (Gly, Ala, Val), polar (Ser), aromatic (Phe), acidic (Asp) and basic (Lys) amino acid residues. The use of L-proline methyl ester allowed entry to tertiary amine 9d, whilst access to aryl substitution as in 9h was exemplified using \((R^1 \) phenyl glycin methyl ester. The chemistry was further extended to the synthesis of azetidines 9j and 9k through use of 3-(nitromethylene)azetidine 8 \((R^1 = H) \), made in situ from commercially available N-Boc azetidin-2-one \((7) \). Variation in \(R^1 \) was established through the preparation of 9l-n derived from 6 \((R^1 = \text{Me}^{12} \) or \(Bn^{13} \)) made from nitroethane and 2-phenyl nitroethane respectively.

With access to a variety of oxetane and azetidine modified DKP precursors, we sought to identify suitable conditions for the reduction/cyclization. To explore the impact of the nature of the ester group on this chemistry, methyl ester 10, benzyl ester 11 and tert-butyl ester 9c possessing the same backbone substitution pattern were selected as a test substrates. 14 Controlled reduction of the nitro group of methyl ester 10 was explored under a variety of conditions (Table 1, entries 1-6). In each case, 12a was isolated as a result of spontaneous cyclization of the resulting primary amine with loss of methanol. The use of Raney Ni under an atmosphere of hydrogen proved most effective (Table 1 entry 6). Under these conditions, the DKP analogue 12a was produced in 81% over the two steps. Much lower yields were observed using the corresponding benzyl and tert-butyl esters under these optimized conditions (Table 1, entries 7-8).

With conditions for the reduction/ring closure optimized, the substrate scope of the chemistry was explored (Scheme 3). A wide variety of 2,5-DKP analogues 12a-n were produced in good yields and the reaction tolerates a wide variety of substitution patterns. The structures of (5)-12a and 12j were verified by X-ray crystallography. Unlike 2,5-DKPs which typically adopt flat or puckered boat conformations, 12a adopts an envelope-type structure with the spiro-ring atom projecting out of the plane with the adjacent nitrogen sp²-hybridized (Figure 1). Similar behaviour was seen for 12j in which the carbon substituent is located on the opposite side of the six-membered ring (see Supporting Information). Both enantiomers of 12a were made, and we were able to confirm that no detectable racemization occurs during the reduction/cyclization sequence (see Supporting Information). Disubstituted derivatives such as 12l can be produced in high yield as a diastereomeric mixture.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Me</td>
<td>Zn, AcOH, THF</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Me</td>
<td>Zn, aq. NH₄Cl, EtOH</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>Me</td>
<td>In, HCl, THF/H₂O (1:3)</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>Me</td>
<td>10% Pd/C, H₂, MeOH</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>Me</td>
<td>10% Pd/C, H₂, MeOH</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>Me</td>
<td>Raney Ni, H₂, MeOH</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>Bn</td>
<td>Raney Ni, H₂, MeOH</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>9c</td>
<td>Bu</td>
<td>Raney Ni, H₂, MeOH</td>
<td>0°</td>
</tr>
</tbody>
</table>

* Conducted at RT unless otherwise stated. a Isolated yield after chromatography. b Reduction at 30 °C, then heated at reflux for 24 h. c Major product was the primary amine from reduction of nitro group without concomitant cyclization.

With a variety of oxetane and azetidine modified DKP precursors, we sought to identify suitable conditions for the reduction/cyclization. To explore the impact of the nature of the ester group on this chemistry, methyl ester 10, benzyl ester 11 and tert-butyl ester 9c possessing the same backbone substitution pattern were selected as a test substrates. 14 Controlled reduction of the nitro group of methyl ester 10 was explored under a variety of conditions (Table 1, entries 1-6). In each case, 12a was isolated as a result of spontaneous cyclization of the resulting primary amine with loss of methanol. The use of Raney Ni under an atmosphere of hydrogen proved most effective (Table 1 entry 6). Under these conditions, the DKP analogue 12a was produced in 81% over the two steps. Much lower yields were observed using the corresponding benzyl and tert-butyl esters under these optimized conditions (Table 1, entries 7-8).

With conditions for the reduction/ring closure optimized, the substrate scope of the chemistry was explored (Scheme 3). A wide variety of 2,5-DKP analogues 12a-n were produced in good yields and the reaction tolerates a wide variety of substitution patterns. The structures of (5)-12a and 12j were verified by X-ray crystallography. Unlike 2,5-DKPs which typically adopt flat or puckered boat conformations, 12a adopts an envelope-type structure with the spiro-ring atom projecting out of the plane with the adjacent nitrogen sp²-hybridized (Figure 1). Similar behaviour was seen for 12j in which the carbon substituent is located on the opposite side of the six-membered ring (see Supporting Information). Both enantiomers of 12a were made, and we were able to confirm that no detectable racemization occurs during the reduction/cyclization sequence (see Supporting Information). Disubstituted derivatives such as 12l can be produced in high yield as a diastereomeric mixture.

With a variety of oxetane and azetidine modified DKP precursors, we sought to identify suitable conditions for the reduction/cyclization. To explore the impact of the nature of the ester group on this chemistry, methyl ester 10, benzyl ester 11 and tert-butyl ester 9c possessing the same backbone substitution pattern were selected as a test substrates. 14 Controlled reduction of the nitro group of methyl ester 10 was explored under a variety of conditions (Table 1, entries 1-6). In each case, 12a was isolated as a result of spontaneous cyclization of the resulting primary amine with loss of methanol. The use of Raney Ni under an atmosphere of hydrogen proved most effective (Table 1 entry 6). Under these conditions, the DKP analogue 12a was produced in 81% over the two steps. Much lower yields were observed using the corresponding benzyl and tert-butyl esters under these optimized conditions (Table 1, entries 7-8).
To explore the utility of these novel building blocks, further manipulations of a representative compound, namely 12h, have been undertaken (Scheme 4). For example, selective benzylation of the amide and amine nitrogens of this spirocycle can be achieved by exploiting differences in the nucleophilicity/basicity of these centers. Thus, 13 and 14 could be separately produced in good yields. Reduction of the amide carbonyl to afford the corresponding spirocyclic piperazine 15 was also established. This was best achieved in two steps via the corresponding thioamide as direct hydride reduction using reagents such as LiAlH₄ led to partial opening of the oxetane ring.

In conclusion, we have developed a general and efficient route to new spirocycles related to the medicinally important 2,5-DKP nucleus. Future work will focus on the application of these new scaffolds in drug discovery programmes.

Acknowledgment

We thank AstraZeneca, the EPSRC and the University of Warwick for financial support. The Oxford Diffraction Gemini XRD system for X-ray structure determination was obtained, through the Science City Advanced Materials project: Creating and Characterizing Next Generation Advanced Materials, with support from Advantage West Midlands.

Supporting Information

Experimental procedures and characterization data for all new compounds, copies of ¹H and ¹³C NMR spectra of compounds 9a-n, 12a-n, 13-15 and chiral Pirkle analysis of 12a.

References and Notes

(4) For a comprehensive review, see Borthwick A. D. Chem. Rev. 2012, 112, 3641.

(8) We have previously reported the isolation of 12g as an unwanted by-product in the synthesis of oxetane based peptidomimetics, see ref7.

(9) For other recent work on piperazine synthesis, see Treder, A. P.; Tremblay, M.-C.; Yudin, A. K.; Marsault, E. Org. Lett. 2014, 16, 4674.

(14) The synthesis of 10 and 11 was realized as previously reported, see ref7.

(15) General procedure for nitro reduction and cyclization to 12: The substrate (1 eq) and Raney Ni (1.0 mL, slurry in H2O) in MeOH (10 mL/mmol) were stirred at room temperature under an atmosphere of H2 (balloon) for 16 h. The reaction mixture was filtered through a plug of Celite® eluting with EtOAc. The eluent was concentrated under reduced pressure and the crude product purified by column chromatography. Using this method, (S)-10 (325 mg, 1.32 mmol) gave, after column chromatography (0-10% MeOH in EtOAc), (S)-12a (197 mg, 81%) as white solid. Rf (10% MeOH in EtOAc). 0.31; m.p. 153-158 °C; [α]250° = -118.1 (c 0.10, CH2Cl2); 1H-NMR (300 MHz, CDCl3) δ 6.36 (1H, bs, NHCO), 4.45 (1H, d, J = 7.1 Hz, OCHH), 3.65 (1H, d, J = 11.5, 4.6 Hz, NHCHH), 3.51-3.40 (2H, m, NHCHH, CHPr), 2.34 (1H, m, CHMe), 1.80 (1H, bs, NH), 0.99 (3H, d, J = 7.3 Hz, CH3), 0.91 (3H, d, J = 6.8 Hz, CH3)) ppm; 13C-NMR (75 MHz, CDCl3) δ 170.4 (C), 81.5 (CHO), 54.7 (C), 48.4 (CH), 29.5 (CH), 18.5 (CH), 15.6 (CH), 14.2 (CH).

(16) CCDC 1430502 (12) and 1430503 (12a) contain the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk.