References: |
[1] L. Ahlfors. Lectures on Quasi-conformal Maps. Van Nostrand, Princeton, NJ, 1966. [2] B. Branner and J. H. Hubbard. The iteration of cubic polynomials I. Acta Math. 160 (1988), 143–206. [3] B. Branner and J. H. Hubbard. The iteration of cubic polynomials II. Acta Math. 169 (1992), 229–325. [4] P. Buser. Geometry and Spectra of Compact Riemann Surface. Birkhauser, Boston, 1992. [5] L. Carelson and T. Gamelin. Complex Dynamics. Springer, Berlin, 1993. [6] A. Douady and J. H. Hubbard. On the dynamics of polynomial-like mappings. Ann. Sci., Ec. Norm. Sup. 4e Ser. 18 (1985), 287–343. [7] J. Hu. Renormalization, rigidity, and universality in bifurcation theory. Thesis, 1995. [8] J. Hu and C. Tresser. Period doubling, entropy, and renormalization. Fund. Math. 155(3) (1998), 237–249. [9] J. H. Hubbard. Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz. Topological Methods in Modern Mathematics, A Symposium in Honor of John Milnor’s 60th Birthday. Publish or Perish, Boston, MA, 1993. [10] J. Graczyk and G. Swiatek. Generic hyperbolicity in the logistic family. Ann. Math. 146 (1997), 1–52. [11] G. Levin and S. van Strien. Local connectivity of Julia sets of real polynomials. Ann. Math. 147 (1998), 471–541. [12] G. Levin and S. van Strien. Total disconnectedness of the Julia set of real polynomials. Astérisque 261 (2000), xii, 161–172. [13] M. Lyubich. On the Lebesgue measure of the Julia set of a quadratic polynomial. Stony Brook IMS Preprint 1991/10. [14] M. Lyubich. Ergodic theory for smooth one dimensional dynamical systems. Stony Brook IMS Preprint 1991/11. [15] M. Lyubich. Dynamics of quadratic polynomials, I and II. Acta Math. 178 (1997), 185–297. [16] M. Lyubich. Renormalization Ideas in Conformal Dynamics (Current Developments in Mathematics, 1995). International Press, Cambridge, MA, 1994, pp. 155–190. [17] M. Lyubich and J. Milnor. The unimodal Fibonacci maps. J. Amer. Math. Soc. 6 (1993), 425–457. [18] R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational map. Ann. Sci. Ec. Norm. Sup. 16 (1983), 193–217. [19] M. Martens, W. de Melo and S. van Strien. The Julia–Fatou–Sullivan theory in one-dimensional dynamics. Acta Math. 168 (1992), 273–318. [20] C. McMullen. Complex dynamics and renormalization. Annals of Mathematical Studies, Vol. 135, 1996. [21] C. McMullen. Renormalization and 3-manifolds which fiber over the circle. Annals of Mathematical Studies, Vol. 142, 1994. [22] C. McMullen and D. Sullivan. Quasiconformal homeomorphisms and dynamics III: The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135 (1998), 351–395. [23] J. Milnor. Dynamics in one complex variable: introductory lectures. Friedr. Vieweg and Sohn, Braunschweig, 1999. [24] J. Milnor. Local connectivity of Julia sets: expository lectures. The Mandelbrot Set, Theme and Variations (London Mathematical Society Lecture Notes, 274). Cambridge University Press, Cambridge, 2000, pp. 67–116. [25] E. Prado. Ergodicity of conformal measures for unimodal polynomials. Conf. Geom. Dyn. 2 (1998), 29–44. [26] W. Shen. Bounds for one-dimensional maps without inflection critical points. J. Math. Sci. Univ. Tokyo, to appear. [27] M. Shishikura. Unpublished. [28] M. Shishikura. Manuscript, 1998. [29] D. Sullivan. Bounds, quadratic differentials and renormalization conjectures. Amer.Math. Soc. Centennial Publications, Vol. 2, Mathematics into The Twenty-first Century (1988). American Mathematical Society, Providence, RI, 1988. |