Design of a Piezoelectric Actuated Microgripper with a Three-Stage Flexure-Based Amplification

Fujun Wang, Cunman Liang, Yanling Tian, Member, IEEE, Xingyu Zhao, and Dawei Zhang

Abstract—This paper presents a novel microgripper mechanism for micro manipulation and assembly. The microgripper is driven by a piezoelectric actuator, and a three-stage flexure-based amplification has been designed to achieve large jaw displacements. The kinematic, static and dynamic models of the microgripper have been established and optimized considering the crucial parameters that determine the characteristics of the microgripper. Finite element analysis (FEA) was conducted to evaluate the characteristics of the microgripper, and wire Electro Discharge Machining (EDM) technique was utilized to fabricate the monolithic structure of the microgripper mechanism. Experimental tests were carried out to investigate the performance of the microgripper and the results show that the microgripper can grasp micro objects with a maximum jaw motion stroke of 190 µm corresponding to the 100 V applied voltage. It has an amplification ratio of 22.8 and working mode frequency of 953 Hz.

Index Terms—Microgripper, Flexure-based amplification, Modeling, Optimization design

I. INTRODUCTION

RECENTLY the trend towards miniaturizing products such as Micro-Electro-Mechanical System (MEMS) has stimulated extensive research on automated micro manipulation and assembly techniques [1]-[6], and the development of miniaturized system for manipulating and assembling micro objects has become a great challenge for the precision engineering future [7]. Compared with other contact and contactless micro manipulation and assembly techniques, such as optical, electrostatic, Bernoulli, ultrasonic and magnetic, microgrippers are more preferred, because of their ability to grasp different shaped objects with high precision and low cost [8]. They have many applications in microelectronics, material science, biology and tissue engineering and etc [9]. As a result, it is necessary to develop novel microgrippers with high performance to satisfy the stringent performance requirements of modern micro manipulation and assemble operations.

Several studies have been reported on the design of microgrippers with different specifications. Among the research, two major components during design process, namely actuation principles and displacement transmission mechanisms, have been commonly emphasized [10]. The development of novel actuation principles improves the gripper performance, and there are four major actuation techniques typically used in micro grasping operations. Beyeler et al. [11] and Chen et al. [12] designed electrostatic comb actuated MEMS microgrippers with a motion stroke of more than 100 µm. However, the electrostatic grippers can usually generate small grasping forces. Kim et al. [13] and Chronis et al. [14] presented electrothermal microgrippers, but the electrothermal actuators have the drawbacks of high operation temperature, nonlinear movement and low sensitivity. Shaped memory alloy actuators have been utilized by Kohl at al.[15] and Roch at al. [16] for microgrippers, but short lifetime, hysteresis and high response time limit their further applications. Due to the inherent advantages such as high force output to weight ratio, fast response and zero backlash, piezoelectric(PZT) actuators have been widely used in precision positioning system and microgrippers [17]-[19], and good performance can be achieved with proper control of such kinds of piezoelectric actuated systems [20]-[22].

As a critical component of microgrippers, displacement transmission mechanism (DTM) has an important effect on the microgripper characteristics. Because the output displacement of the actuator is small, it is usually amplified by DTMs [23]. Several PZT actuated microgrippers with different DTMs have been developed. Sun et al. [24] and Zubir et al. [25] designed piezoelectric driven compliant-based microgrippers for micromanipulation, both of which had low amplification ratios and thus the jaw displacements were confined. A monolithic compliant PZT driven microgripper was designed by Wang et al. [26], and a larger displacement amplification ratio was achieved. However, the microgripper dynamic characteristics were not presented. To improve the efficiency and quality of micro manipulation and assembly, this paper presents the design, modeling, optimization, fabrication and experimental test of a novel piezoelectric actuated microgripper with a three-stage flexure-based amplification.
The rest of the paper is organized as follows: Section II introduces the microgripper mechanism. In section III, the modeling and optimization design are carried out. Then the microgripper characteristics are analyzed in section IV. After that the experiments are presented in Section V to investigate the performance of the developed microgripper. Finally, Section VI concludes this paper.

II. MECHANISM OF THE MICROGRIPPER

Figure 1 shows the mechanism of the piezoelectric actuated flexure-based microgripper consisting of a stack piezoelectric ceramic actuator (SPCA), a pair of grasping jaws, a preload bolt, a base and a displacement transmission mechanism. In order to get large jaw displacements, the DTM is designed as a three-stage flexure-based amplification including a homothetic bridge type mechanism and two leverage mechanisms. Right circular flexure hinges are more precise in keeping the positions of the rotation centers compared to the others, so they are selected for the flexure-based amplification [26]. The SPCA is connected with the DTM by the preload bolt at one end of the SPCA, and the preload force to the SPCA can be adjusted through the bolt. Both of the grasping jaws are fixed on the base, and the microgripper is designed symmetrically along the longitudinal axis of piezoelectric actuator to avoid shear force and bending torque acting on the piezoelectric actuator.

The motion transmission is realized through the three-stage amplification. The homothetic bridge-type mechanism is composed of the connecting rod mechanisms (A-B-C-D; A’-B’-C’-D’); based on the double-notch right circular flexure hinges. In order to obtain a large amplification ratio, there are two leverage mechanisms (E-F-G and E’-F’-G’; H-I and H’-I’) at each side of the microgripper also based on the double-notch right circular flexure hinges. Using the three-stage amplification, large jaw displacements can be achieved under a small displacement of the piezoelectric actuator. In order to grasp an object, a voltage should be applied to the SPCA to make it expand which will push the homothetic bridge-type mechanism (A-B-C-D; A’-B’-C’-D’); then the homothetic bridge-type mechanism will pull the leverage mechanisms (E-F-G and E’-F’-G’; H-I and H’-I’), causing the grasping jaws to close to grasp the manipulated objects. After power is switched off, the SPCA retracts to its initial position, causing the grasping jaws to open and release the manipulated objects.

III. MODELING AND OPTIMIZATION DESIGN

A. Kinematic modeling

Assuming that: 1) the elastic deformations of the microgripper only occur at the flexure hinges and the other components are considered as rigid bodies, and 2) the flexure hinge deformations are assumed to be pure bending and the rotational angle is small (generally less than 1°) without any expansion and contraction deformations [24], [27]. According to the Pseudo Rigid Body Model (PRBM) approach, the equivalent model of the piezoelectric actuated microgripper can be achieved and shown in Fig. 2, where \(i (i = A, B... I) \) denotes the rotational centers of flexure hinges, and \(d_{in} \) and \(d_{out} \) are the input displacement from the SPCA and the output displacement of the grasping jaw, respectively.

A-B-C-D-E-F is equivalent to a six-bar linkage mechanism and F-G-H-I is considered as a four-bar linkage mechanism as shown in Fig. 2(b). In the six-bar linkage mechanism, the linkages AB, BC, CD and FE have the initial angular positions of \(\varphi_1, \varphi_2, \varphi_3, \) and \(\varphi_4 \), respectively. \(L_i (i = AB, BC,..., AF) \) are the lengths of the linkages, \(S \) is the initial displacement of point D, \(\alpha \) is the angle between linkages BC and BE, and the linkage AF has the angle \(\beta \) from the x-axis positive direction. Based on the geometric and motion relationships, the following equations can be gotten:

\[
\begin{align*}
I_{AB}e^{i\omega_1} + I_{BE}e^{i(\varphi_1+\alpha)} &= I_{FE}e^{i\omega_4} + I_{AB}e^{i\omega_4} \\
I_{AB}e^{i\omega_2} + I_{BC}e^{i\varphi_2} + I_{CD}e^{i\omega_4} &= Se^{i\omega_4} \\
S \end{align*}
\]

Differentiating Eqs (1) and (2) with respect to time, yields

\[
\begin{align*}
I_{AB}e^{i\omega_1} + I_{BE}e^{i\varphi_1} + I_{BC}e^{i\omega_2} + I_{CD}e^{i\omega_4} &= I_{FE}e^{i\omega_4} + I_{AB}e^{i\omega_4} \\
I_{AB}e^{i\omega_2} + I_{BC}e^{i\omega_1} + I_{CD}e^{i\omega_4} &= Se^{i\omega_4} \\
S \end{align*}
\]

where \(\alpha = \arctan \left(2L_4 / L_{BC} \right) \).

Let the real and imaginary parts be equal, respectively, and thus the following equations can be obtained:

\[
\begin{align*}
I_{AB} \sin \varphi_1 + I_{BE} \sin (\varphi_1 + \alpha) &= I_{FE} \sin \varphi_4 \\
I_{AB} \cos \varphi_1 + I_{BE} \cos (\varphi_1 + \alpha) &= I_{FE} \cos \varphi_4
\end{align*}
\]
\[I_{ab} \omega_1 \sin \phi_1 + I_{bc} \omega_2 \sin \phi_2 + I_{cd} \omega_3 \sin \phi_3 = 0 \]
(7)

\[I_{ab} \omega_1 \cos \phi_1 + I_{bc} \omega_2 \cos \phi_2 + I_{cd} \omega_3 \cos \phi_3 = S \]
(8)

From Eqs (5)-(8), the following relationship can be written:

\[\omega_k = b \omega_1 \]
(9)

\[I_{ab} \omega_1 \cos \phi_1 + I_{bc} \omega_2 \cos \phi_2 + I_{cd} \omega_3 \cos \phi_3 = S \]
(10)

where

\[a = -\frac{I_{ab} \sin(\phi_1 - \phi_2)}{I_{bc} \sin(\phi_2 + \alpha - \phi_3)}, \quad b = \frac{I_{ab} \sin(\phi_1 - \alpha - \phi_2)}{I_{bc} \sin(\phi_2 - \phi_3)}, \quad \text{and} \]

\[c = -\frac{I_{ab} \sin \phi_1 + d I_{bc} \sin \phi_1}{I_{cd} \sin \phi_2}. \]

In the four-bar linkage mechanism, the linkages FG, GH and HI have the initial angular positions of \(\phi_5, \phi_6, \) and \(\phi_7, \) respectively. The length of the linkages is \(L_i (i=FG, GH, HI, FI, IJ). \) The linkage IH has the angle \(\gamma \) from the x-axis positive direction. Based on the geometric and motion relationships, the following equation can be obtained:

\[l_{FG} e^{i \phi_5} + l_{GH} e^{i \phi_6} = l_{IJ} e^{i \gamma} + l_{HI} e^{i \phi_7} \]
(11)

Differentiating Eq. (11) with respect to time, yields

\[l_{FG} \omega_5 e^{i \phi_5} + l_{GH} \omega_6 e^{i \phi_6} = l_{IJ} \omega_7 e^{i \gamma} + l_{HI} \omega_8 e^{i \phi_7} \]
(12)

Let the real and imaginary parts of Eq.(12) be equal, respectively and the following equations can be achieved:

\[l_{FG} \omega_5 \sin \phi_5 + l_{GH} \omega_6 \sin \phi_6 = l_{IJ} \omega_7 \sin \phi_7 \]
(13)

\[l_{FG} \omega_5 \cos \phi_5 + l_{GH} \omega_6 \cos \phi_6 = l_{IJ} \omega_7 \cos \phi_7 \]
(14)

The following relationship can be gotten:

\[\omega_5 = \frac{l_{FG}}{l_{IJ}} \sin(\phi_1 - \phi_2) \omega_1 \]
(15)

\[\omega_6 = \omega_4 = b \omega_1 \]
(16)

Thus

\[\omega_7 = \frac{l_{FG}}{l_{IJ}} \sin(\phi_1 - \phi_2) \omega_1 \]
(17)

The displacement amplification ratio \(\text{R}_\text{amp} \) of the microgripper is defined as

\[\text{R}_\text{amp} = \frac{2 \bar{d}_{\text{out}}}{\bar{d}_{\text{in}}} \]
(18)

Differentiating Eq. (10) with respect to time, yields

\[l_{FG} \omega_5 \sin \phi_5 + l_{GH} \omega_6 \sin \phi_6 = l_{IJ} \omega_7 \sin \phi_7 \]
(13)

\[l_{FG} \omega_5 \cos \phi_5 + l_{GH} \omega_6 \cos \phi_6 = l_{IJ} \omega_7 \cos \phi_7 \]
(14)

The following relationship can be gotten:

\[\omega_5 = \frac{l_{FG}}{l_{IJ}} \sin(\phi_1 - \phi_2) \omega_1 \]
(15)

\[\omega_6 = \omega_4 = b \omega_1 \]
(16)

Thus

\[\omega_7 = \frac{l_{FG}}{l_{IJ}} \sin(\phi_1 - \phi_2) \omega_1 \]
(17)

The displacement amplification ratio \(\text{R}_\text{amp} \) of the microgripper is defined as

\[\text{R}_\text{amp} = \frac{2 \bar{d}_{\text{out}}}{\bar{d}_{\text{in}}} \]
(18)

Fig. 2. Pseudorigid-body-model of the piezoelectric driven microgripper: (a) the schematic diagram and (b) the displacement diagram.

Fig. 3. The amplification ratio varies with the lengths of the linkages.
The torsional spring constant of the flexural hinge can be estimated by

\[K_{t} = \frac{2EBt_{b}^{3/2}}{9\pi r_{t}^{1/2}} \quad i = A, ..., I \]

where \(r_{t} \) and \(t_{i} \) are the radius and thickness of the \(i \)th flexure hinge, respectively, \(E \) is the elastic modulus of the material, and \(B \) is the thickness of the microgripper.

Since the flexure hinges in the homothetic bridge-type mechanism should be the same to maintain symmetry, \(r_{i} \) is defined as the radius of flexure hinges in the homothetic bridge-type mechanism, and \(r_{2} \) is the radius of the other flexure hinges.

Furthermore, the torque \(M_{i} \), generated at the rotational center of the flexure hinge, can be obtained as

\[M_{i} = -K_{t}\psi_{i} \quad i = A, ..., I \]

where the negative sign indicates that the torque has the opposite direction with the rotational motion of flexure hinges.

In order to derive the input stiffness of the microgripper, the Castigliano’s first theorem is adopted and expressed as

\[F_{m} = \frac{\partial U}{\partial d_{m}} \]

where \(d_{m} \) is the deformation due to the applied force, \(F_{m} \) is the applied force, and \(U \) is the deformation energy and given as

\[U = \sum_{i=1}^{L} K_{i}\psi_{i}^{2} \]

Substituting Eqs (23)-(30) into Eq (34), yields

\[U = \frac{K_{t}}{2\epsilon^{2}}d_{m}^{3} + \frac{K_{t}(a-1)^{2}}{2\epsilon^{2}}d_{m}^{2} + \frac{K_{t}(c-a-1)^{2}}{2\epsilon^{2}}d_{m}^{2} + \frac{K_{t}b^{2}}{2\epsilon^{2}}d_{m}^{2} + \frac{K_{t}c^{2}}{2\epsilon^{2}}d_{m}^{2} + \frac{K_{t}d^{2}}{2\epsilon^{2}}d_{m}^{2} + \frac{K_{t}_2}{2\epsilon^{2}}d_{m}^{2} + \frac{K_{t}_3}{2\epsilon^{2}}d_{m}^{2} \]

where \(\xi_{1} = \frac{bl_{ Eg}\sin(\phi_{i} - \phi_{a})}{l_{ Eg}\sin(\phi_{i} - \phi_{a})} - b \), \(\xi_{2} = \frac{bl_{ Eg}\sin(\phi_{i} - \phi_{a})}{l_{ Eg}\sin(\phi_{i} - \phi_{a})} \), and \(\xi_{3} = \frac{bl_{ Eg}\sin(\phi_{i} - \phi_{a})}{l_{ Eg}\sin(\phi_{i} - \phi_{a})} + \frac{bl_{ Eg}\sin(\phi_{i} - \phi_{a})}{l_{ Eg}\sin(\phi_{i} - \phi_{a})} \).

The applied force can be expressed as

\[F_{m} = \frac{\partial U}{\partial d_{m}} = \left(\frac{K_{t}}{\epsilon^{2}} + \frac{K_{t}(a-1)^{2}}{\epsilon^{2}} + \frac{K_{t}(c-a-1)^{2}}{\epsilon^{2}} + \frac{K_{t}b^{2}}{\epsilon^{2}} + \frac{K_{t}c^{2}}{\epsilon^{2}} + \frac{K_{t}d^{2}}{\epsilon^{2}} + \frac{K_{t}_2}{\epsilon^{2}} + \frac{K_{t}_3}{\epsilon^{2}} \right) d_{m} \]

The input stiffness of the microgripper can be derived as
From Eq. (37), it can be seen that the input stiffness of the microgripper depends on its geometrical parameters. Considering the PRBM of the microgripper with external forces on the input terminal and jaw, and torques at each joint, the following equation can be obtained based on the force equilibrium of the microgripper:

\[F_{\text{in}} = K_{\text{in}} d_{\text{in}} + \frac{R_{\text{amp}}}{2} F_{\text{out}} = \frac{2K_{\text{in}} d_{\text{in}}}{R_{\text{amp}}} + \frac{R_{\text{amp}}}{2} F_{\text{out}} \]

Eq. (38) describes the relationship among the output force, the input force, input displacement and displacement amplification ratio of the microgripper. The larger the amplification ratio \(R_{\text{amp}} \), the smaller the output force \(F_{\text{out}} \). When the microgripper does not grasp the manipulated object, the output displacement is determined by the geometrical parameters of the microgripper and the input force. While grasping the manipulated object, the output displacement does not change when increasing the input force and the input displacement because the gripping jaws are fixed. Generally, the grasping jaws will close and then grasp the manipulated object with increasing voltage applied to the microgripper.

To evaluate the stress concentration at each flexure hinge, the reaction force and torque of each flexure hinge are determined and shown in Fig.4. Through the static equilibrium analysis of each rigid linkage, the following equations can be obtained:

\[F_{\text{ax}} = F_{\text{bx}} = F_{\text{cx}} - F_{\text{dx}} \]
\[F_{\text{by}} = F_{\text{dy}} = F_{\text{ey}} \]
\[F_{\text{zy}} = F_{\text{cy}} = \frac{M_c + M_d - F_{\text{dy}} L_z}{L_z} \]
\[F_{\text{zh}} = \frac{2(M_z L_z - M_h L_z)}{2L_z L_z - L_{gh} L_z} \]
\[F_{\text{bh}} = F_{\text{eb}} + F_{\text{fh}} \]
\[F_{\text{ej}} = F_{\text{dy}} + F_{\text{ey}} \]
\[F_{\text{ho}} = -F_{\text{bh}} = -F_{\text{dh}} = \frac{M_c + F_{\text{bh}} L_z + F_{\text{out}} L - M_h}{L_z} \]
\[F_{\text{oj}} = -F_{\text{bo}} = \frac{M_c + M_h}{L_{gh}} \]

The maximum stress \(\sigma_{\text{max}} \) occurs at the outer surface of the thinnest part of each flexure hinge, and can be expressed as

\[\sigma_{\text{max}} = \left[\frac{6E\psi^{1/2}}{3\pi r^{1/2}} \right] \frac{F_{\text{ci}}}{b_i} \quad i = A, B, C, D, I \]
\[\sigma_{\text{max}} = \left[\frac{6E\psi^{1/2}}{3\pi r^{1/2}} \right] \frac{F_{\text{ci}}}{b_i} \quad i = E, F, G, H \]

Here, the maximum allowable stress is considered. Thus

\[\sigma_{\text{max}} < \frac{[\sigma]}{n_a} \]

where \([\sigma]\) denotes the tensile yield stress, and \(n_a \) (\(n_a > 1 \)) represents the factor of safety.

C. Dynamic modeling

The natural frequencies can be derived using Lagrange’s equation expressed as

\[\frac{d}{dt} \left(\frac{\partial T}{\partial q_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial V}{\partial q_i} = F_i \quad i = 1, 2, \ldots, n, \]

where \(T \) and \(V \) denote the total kinetic energy and potential energy of the system, respectively, \(q_i \) is the generalized coordinate, \(n \) is the number of generalized coordinates and \(F_i \) represents the generalized nonconservative force.

The kinetic energy of the entire system can be expressed as
$T = \frac{1}{2} (m_e + m_{SPCA}) \omega_1^2 + I_{AB} \omega_1^2 + I_{CD} \omega_1^2 + (I_{FE} + I_{FG}) \omega_2^2 + I_{EF} \omega_2^2 + I_{FG} \omega_2^2 + m_{BCE} \omega_3^2 + m_{GH} \omega_3^2 $ \hspace{1cm} (53)

where m_{SPCA} is the mass of the SPCA, m_e is the mass of the microgripper input terminal. m_{BCE} and m_{GH} are the masses of the rigid frames BCE and GH, respectively, I_{AB}, I_{CD}, I_{EF}, I_{FG}, and I_o represent the moments of inertia of the linkages AB, CD, EF, FG and IJ with respect to their corresponding instantaneous centers, respectively.

The potential energy of the entire system is expressed as

$V = \sum_{i=1}^{k} k_i \omega_i^2 + \frac{1}{2} k_{SPCA} \omega_{SPCA}^2 $ \hspace{1cm} (54)

where k_i is the rotational stiffness of the flexure hinge i and k_{SPCA} is the stiffness of the SPCA.

The dynamic model of the microgripper can be expressed as

$M \ddot{\omega}_e + K \omega_e = F $ \hspace{1cm} (55)

where

$M = m_e + m_{SPCA} + \frac{2}{\epsilon^2} (I_{AB} + I_{CD}) + \frac{2}{\epsilon^2} (I_{FG} + I_{FG}) + \frac{2}{\epsilon^2} \omega_1^2 + \frac{2}{\epsilon^2} \omega_2^2 + \frac{2}{\epsilon^2} \omega_3^2 $ \hspace{1cm} (56)

$K = 2 \left(\frac{K_{ab} (a-1)^2}{\epsilon^2} + \frac{K_{cd} (c-a-1)^2}{\epsilon^2} + \frac{K_{fg} (c-1)^2}{\epsilon^2} \right) + k_{SPCA} $ \hspace{1cm} (57)

and $F = 2 F_{in} - R_{amp} F_{out}$.

The working mode frequency can be obtained by

$f = \frac{1}{2 \pi} \sqrt{\frac{K}{M}} $ \hspace{1cm} (58)

D. Optimization design

High bandwidth (natural frequency) is important for the microgripper to perform high speed operations, and the initial dynamic analysis using ANSYS software is conducted first to investigate the vibration modes of the proposed microgripper. An initial microgripper are designed and the dimensions of the microgripper model are shown in Table I, where $L=2$ and $R=0.5$. The dynamic analysis result shows that the first vibration mode is one of the local vibration caused by the linkages IJ and I’J’, and the second vibration mode is the working mode, so the working mode frequency f is selected as the objective function for the optimization. Based on the static and dynamic models, the key parameters r_1 and r_2, are chosen as the design variables and defined within certain scope considering the actual applications and manufacturing conditions. The input stiffness k_{in} is a key factor that affects the characteristics of the microgripper. If k_{in} is large enough, good dynamic characteristics can be achieved. On the other hand, it can reduce the output displacement of the SPCA, so we define $k_{in} \leq 20\% k_{SPCA}$. In addition, the maximum stress during working process should be less than the yield strength of the material.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
<th>L_7</th>
<th>L_8</th>
<th>L_9</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (mm)</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3.8</td>
<td>9.5</td>
<td>11.5</td>
<td>3.8</td>
<td>2</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Optimization design has been carried out to improve the performance of the microgripper, and the optimization work can be concluded as follows:

1) Objective: Maximize the working mode frequency (f).
2) Related parameters: t, r_1, and r_2.
3) Subject to:
 a) input stiffness value: $k_{in} \leq 20\% k_{SPCA}$ (k_{SPCA}=60 N/um);
 b) constraint equations: Eq. (51), and here $n_r=2$;
 c) parameter ranges: $0.2\mathrm{mm} \leq t \leq 0.5\mathrm{mm}, 0.3\mathrm{mm} \leq r_1 \leq 0.1\mathrm{mm},$ and $0.5\mathrm{mm} \leq r_2 \leq 1\mathrm{mm}$.

Through optimization using MATLAB Optimization toolbox with the initial values $x_0=[t, r_1, r_2]=[0.5, 0.5, 0.5]$, the optimization result is obtained as follows: $t=0.2$ mm, $r_1=0.4$ mm, $r_2=0.9$ mm, $R_{amp}=14.2$, $k_{in}=3.32$ N/km and the working mode frequency $f=970$ Hz.

IV. Characteristic analysis

The characteristics of the optimized microgripper are investigated using ANSYS software based on finite element analysis (FEA).

The deformation behavior of the jaws as well as flexure hinges and moving linkages under the input displacement of 10 μm applied by the SPCA is calculated. The result shows that the maximum displacement of a jaw can reach 126 μm which can enable grasping operations with a large range of micro objects. The displacement amplification ratio of one gripping jaw is 12.6. The displacement amplification ratio by FEA is smaller than the mathematical amplification ratio of 14.2 because that the displacement loss effect arising from the combination of lever arm bending and connection flexure stretching will cause the actual lever amplification ratio to be smaller than the ideal value. The maximum stress generated at the maximum displacement of a jaw is 12.6. The displacement amplification ratio by FEA is smaller than that of 14.2.

The grasping force is estimated by FEA, and the results are shown in Fig.6, where D is the initial distance between the jaws, d is the micro object diameter and δ is the distance between the jaw and micro objects. Before the jaws contact with the micro objects, the grasping force is zero, and the grasping force
increases linearly with the increase of the SPCA output displacement after contact. The grasping force can reach up to 1000 mN when the SPCA output displacement S is 10 μm and $\delta = 40 \mu$m.

Through-modal analysis, the first two natural frequencies and corresponding mode shapes of the microgripper are obtained. The first mode shape of the microgripper is a kind of local vibration mode where the jaws vibrate in the same direction and the corresponding frequency is 842 Hz. The second mode shape shows the jaws vibrate in the opposite directions and the corresponding frequency is 986 Hz.

V. EXPERIMENTS

Figure 7 shows the prototype of the microgripper driven by a SPCA (type: XP 5×5/18, output displacement: 0–18 μm, applied voltage: 0–150V). The microgripper was fabricated through wire EDM to guarantee the geometrical accuracy of the crucial section of the gripper, and it was made from AL7075-T651 with a high elasticity, yield strength, and light mass.

The experimental setup is displayed in Fig. 8, and it was mainly composed of the developed microgripper, laser displacement sensors (LK-H050 from Keyence, Inc) with an accuracy of 0.025 μm and the voltage control unit including the PI voltage amplifier, dSPACE DS1103 controller, universal interface and the computer. The basic operation of the system was realized by applying the desired voltage from the voltage control unit to the SPCA to activate the output motion at the microgripper tip. By changing the driving voltage, stable operations were offered to implement continuous expansion and retraction motions.

Experiments were carried out to evaluate the grasping capacity of the microgripper through grasping gold wires. The grasping process was captured by a super depth 3D analysis system (VHX-1000 from Keyence, Inc) with a high pixel resolution. Figure 9 provides the grasping process of a gold wire with a diameter of 25.4 μm.

Figure 10 summarizes the tip displacements of one grasping microgripper jaw vary with the input displacement obtained by different approaches. The experimental measured displacement amplification ratio is 11.4 for one gripping jaw, which is in good agreement with the results by mathematical calculation and FEA, so the total displacement amplification ratio of the microgripper is 22.8.
Figure 11 shows the SPCA output displacement versus the applied voltage, which exhibits the hysteresis behavior caused by the crystalline polarization effect and SPCA molecular friction. The maximum SPCA output displacement is 8.38 μm under a 100V voltage signal provided.

Figure 12 shows a single jaw tip displacement versus the applied voltage. The maximum tip displacement of a single jaw is 95 μm corresponding to the 100 V applied voltage, and the motion stroke of microgripper can reach up to 190 μm.

The resonance frequency of the microgripper was tested by applying a swept sine signal to the SPCA. In the experiment, the microgripper was driven by a voltage with amplitude of 20V and a frequency from 0.01 to 1500 Hz. The transfer function is shown in Fig.13. The vibration modes of the microgripper were observed using the super depth 3D analysis system (VHX-1000 from Keyence, Inc). The result shows that the working vibration mode is excited and the corresponding frequency is 953 Hz, which is consistent with the results by the mathematical calculation of 970 Hz and FEA of 986 Hz.

Table II summarizes the comparison with other related microgrippers.

<table>
<thead>
<tr>
<th>Actuation</th>
<th>Motion stroke (μm)</th>
<th>Amplification ratio</th>
<th>Force (mN)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZT</td>
<td>134</td>
<td>15.5</td>
<td>-</td>
<td>[24]</td>
</tr>
<tr>
<td>PZT</td>
<td>100</td>
<td>3.68</td>
<td>950</td>
<td>[25]</td>
</tr>
<tr>
<td>PZT</td>
<td>-</td>
<td>16</td>
<td>110</td>
<td>[26]</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>130</td>
<td>-</td>
<td>0.38</td>
<td>[11]</td>
</tr>
<tr>
<td>Electrothermal</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>[14]</td>
</tr>
<tr>
<td>PZT</td>
<td>190</td>
<td>22.8 (S<sub>c</sub>=10; δ=40μm)</td>
<td>1000</td>
<td>This work</td>
</tr>
</tbody>
</table>

Figure 11. SPCA Output displacement versus the applied voltage.

Figure 12. Tip displacement of a single jaw versus the applied voltage.

Figure 13. The transfer function of dynamic measurements.

The resonance frequency of the microgripper was tested by applying a swept sine signal to the SPCA. In the experiment, the microgripper was driven by a voltage with amplitude of 20V and a frequency from 0.01 to 1500 Hz. The transfer function is shown in Fig.13. The vibration modes of the microgripper were observed using the super depth 3D analysis system (VHX-1000 from Keyence, Inc). The result shows that the working vibration mode is excited and the corresponding frequency is 953 Hz, which is consistent with the results by the mathematical calculation of 970 Hz and FEA of 986 Hz.

Table II summarizes the comparison with other related microgrippers.
microgrippers, and the results show that the microgripper has a larger motion stroke, amplification ratio and force compared with others.

VI. CONCLUSION

Design, modeling, fabrication and experimental test of a novel piezoelectric actuated microgripper have been reported in this paper. A large displacement amplification ratio has been achieved through a three-stage flexure-based amplification. By use of the PRBM and Lagrange approaches, the kinematic, static, and dynamic models have been established first, and then the dimensions of the microgripper has been determined through optimization design with considerations of the crucial parameters that determine the characteristics of the microgripper including the working mode frequency, the input stiffness and the maximum stress. The static and dynamic characteristics of the microgripper have been analyzed using FEA and the prototype of the microgripper has been manufactured through wire EDM. Experimental tests have been implemented to examine the performance of the microgripper, and the results show that the total amplification ratio of the microgripper is 22.8, and the motion stroke of microgripper can reach up to 190 μm corresponding to the 100 V applied voltage. The working mode frequency of the microgripper is 953 Hz. The microgripper has successfully grasped gold wires. Future work will focus on the modeling and compensation of the hysteresis behavior of the microgripper, and output force measurement, calibration and control.

REFERENCES

Fujun Wang received the B.Eng. degree in mechanical manufacturing and automation from Hebei University of Technology, Tianjin, China, in 2005, and the M.Sc. and Ph.D. degrees in mechanical manufacturing and automation from Tianjin University, Tianjin, China, in 2007 and 2010, respectively. He became an assistant professor in the School of Mechanical Engineering, Tianjin University in 2010. Now he is also a research scholar in the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA. His current research interests include micro/nano manipulation and positioning techniques, micro/nano manufacturing, dynamics and control, flexure actuator and robots.

Cunman Liang received the B.Eng. degree in mechanical manufacturing and automation in the School of Mechanical Engineering, Tianjin University, Tianjin, China, in 2010, where he is currently working towards the M.Sc. degree. His current research interests include high speed and high precision manipulation, flexure mechanisms, dynamic and control.

Yanling Tian received the B.Eng. degree in mechanical engineering from Northwest Institute of Light Industry, Xianyang, China, in 1997, and the M.Sc. and Ph.D. degrees in mechanical engineering from Tianjin University, Tianjin, China, in 2002 and 2005, respectively. From 2005 to 2006, he was a Postdoctoral Research Fellow at Tianjin University, where he has been appointed as a professor now. From 2007 to 2009, he was a Research Fellow in the Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Australia. He was a Visiting Scholar at Hong Kong University of Science and Technology, China, and the University of Warwick, U.K., in 2001 and 2006, respectively. He was also a Visiting Professor at Tohoku University, Japan, in 2010. He has accomplished a couple of government and industry-based projects, and published more than 50 peer-reviewed papers. He obtained the prestigious Alexander von Humboldt Fellowship for experienced researchers in 2010. His research interests include micro/nanomanipulation, mechanical dynamics, finite element method, surface metrology and characterization.

Xingyu Zhao received the B.Eng. and M.E. degrees from Hebei University of Technology in 1995 and 1998, respectively, and Ph.D. degree in mechanical manufacturing and automation from Tianjin University, Tianjin, China, in 2001. Now she is an Associate Professor in the School of Mechanical Engineering, Tianjin University. Her current research interests are the kinematics and dynamics of parallel manipulators, finite element analysis, and micro/nanopositioning technique.

Dawei Zhang received the B.Eng. degree in mechanical engineering from Shenyang University of Technology, Shenyang, China, in 1984, and the M.Sc. and Ph.D. degrees in mechanical engineering from Tianjin University, Tianjin, China, in 1990 and 1995, respectively. From 1984 to 1987, he was an Associate Engineer with the Tianjin Institute of Power Source, China. He is currently a Professor in the School of Mechanical Engineering, Tianjin University. His current research interests include micro/nanopositioning technique, structural dynamics, signal processing, high-speed machining methodologies, and dynamic design of machine tools.