References: |
[1] J. Aaronson. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50). American Mathematical Society, Providence, RI, 1997. [2] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975. [3] J. Buzzi. Intrinsic ergodicity for smooth interval maps. Israel J. Math. 100 (1997), 125–161. [4] J. Buzzi. Intrinsic ergodicity of affine maps in [0, 1]d . Monat. Math. 124 (1997), 97–118. [5] J. Buzzi. Markov extensions for multidimensional dynamical systems. Israel J. Math. 112 (1999), 357–380. [6] J. Buzzi. Thermodynamical formalism for piecewise invertible maps: absolutely continuous invariant measures as equilibrium states. Smooth Ergodic Theory and its Applications (Seattle, WA, 1999) (Proc. Sympos. Pure Math., 69). American Mathematical Society, Providence, RI, 2001, pp. 749–783. [7] J. Buzzi. On entropy-expanding maps. Preprint, 2000. [8] J. Buzzi, F. Paccaut and B. Schmitt. Conformal measures for multi-dimensional piecewise invertible maps. Ergod. Th. & Dynam. Sys. 21 (2001), 1035–1049. [9] J. Buzzi and V. Maume-Deschamps. Decay of correlations for piecewise invertible maps in higher dimensions. Israel J. Math. 131 (2002), 203–220. [10] B.M. Gurevich. Topological entropy of a countable Markov chain. Dokl. Akad. Nauk SSSR 187 (1969), 715–718. [11] B.M. Gurevich. Shift entropy and Markov measures in the space of paths of a countable graph. Dokl. Akad. Nauk SSSR 192 (1970), 963–965. [12] B.M. Gurevich and S.V. Savchenko. Thermodynamic formalism for countable symbolic Markov chains. Uspekhi Mat. Nauk. 53(2) (1998), 3–106. (Engl. transl. Russian Math. Surv. 53(2) (1998), 245–344.) [13] F. Hofbauer. Piecewise invertible dynamical systems. Probab. Th. Rel. Fields 72 (1986), 359–386. [14] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995. [15] M. Keane. Strongly mixing g-measures. Invent. Math. 16 (1972), 309–324. [16] B.P. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts. Springer (Universitext), 1998. [17] F. Ledrappier. Principe variationnel et systèmes dynamiques symboliques. Z.Wahrsch. Gebiete 30 (1974), 185–202. [18] R. D. Mauldin and M. Urbánski. Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125 (2001), 93–130. [19] W. Parry. Intrinsic Markov Chains. Trans. Amer. Math. Soc. 112 (1964), 55–66. [20] D. Ruelle. A measure associated with Axiom A attractors. Amer. J. Math. 98(3) (1976), 619–654. [21] D. Rudolph. Fundamentals of Measurable Dynamics. Oxford Press, 1990. [22] O. Sarig. Thermodynamics formalism for countable Markov shifts. Tel-Aviv University Dissertation, 2000. [23] O. Sarig. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19 (1999), 1565–1593. [24] O. Sarig. Thermodynamics formalism for null recurrent potentials. Israel J. Math. 121 (2001), 285–311. [25] O. Sarig. Phase transitions for countable Markov shifts. Commun. Math. Phys. 217 (2001), 555–577. [26] O. Sarig. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131 (2003), 1751–1758. [27] P.Walters. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York-Berlin, 1982. [28] P. Walters. Ruelle’s operator theorem and g-measures. Trans. Amer. Math. Soc. 214 (1978), 375–387. |