Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Uncoupling of circadian and other maternal cues in decidualizing endometrial cells

Tools
- Tools
+ Tools

Muter, Joanne (2015) Uncoupling of circadian and other maternal cues in decidualizing endometrial cells. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Mutter_2015.pdf - Submitted Version - Requires a PDF viewer.

Download (8Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b2863164~S1

Request Changes to record.

Abstract

The differentiation of human endometrial stromal cells (HESCs) into specialised decidual cells prepares the endometrium for embryonic implantation. The biochemical and morphological transformation of these cells is highly temporally regulated in order to define a transient period of endometrial receptivity. Currently, the involvement of circadian machinery, and clock dependent pathways in this process are not fully understood. Firstly, analysis of circadian rhythms in HESCs revealed a consistent loss of oscillations in clock components upon decidualization. Down-regulation of Period 2 (PER2) expression, apparent in the early stages of differentiation, was shown to be sufficient to cause this aperiodicity. In turn, temporal suppression of PER2 expression was achieved via reduced CLOCK binding to a non-canonical Ebox enhancer in the PER2 promoter. RNA sequencing analysis upon premature PER2 knockdown revealed a disorganised decidual phenotype in which cell cycle and mitotic regulators were perturbed. As such, PER2 acts to uncouple the endometrium from circadian oscillations during decidualization.

Secondly, the gene PRIP-1 was shown to be PER2 dependent in undifferentiated HESCs. Endometrial expression of PRIP-1 was induced and maintained upon decidualization by the post-ovulatory rise in progesterone. Analysis of Ca2+ fluxes demonstrated the ability of PRIP-1 to act as a chelator of IP3 signalling. Additionally, PRIP-1, via its regulation of the AKT pathway, is shown to be an anti-apoptotic regulator in decidual HESCs. Together, these results indicate PRIP-1 functions as a molecular switch in response to progesterone signalling. High PRIP-1 levels during differentiation enable AKT and IP3 mediated cell survival, whilst declining levels upon P4 withdrawal leads to decidual apoptosis.

In summary, I provide a novel paradigm whereby both PER2 and PRIP-1 act to uncouple the endometrium from various signalling inputs, enabling an autonomous decidual response. Asynchrony in these pathways can lead to a cascade of events resulting in an array of adverse pregnancy complications.

Item Type: Thesis (PhD)
Subjects: Q Science > QM Human anatomy
R Medicine > RJ Pediatrics
Library of Congress Subject Headings (LCSH): Circadian rhythms, Endometrium, Miscarriage
Official Date: November 2015
Dates:
DateEvent
November 2015Submitted
Institution: University of Warwick
Theses Department: Warwick Medical School
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Brosens, Jan
Extent: vi, 249 leaves : illustrations (colour), charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us