Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Supercell size scaling of density functional theory formation energies of charged defects

Tools
- Tools
+ Tools

Hine, Nicholas, Frensch, K., Foulkes, W. M. C. and Finnis, M. W. (2009) Supercell size scaling of density functional theory formation energies of charged defects. Physical Review B (Condensed Matter and Materials Physics), 79 (2). 024112 . doi:10.1103/PhysRevB.79.024112

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1103/PhysRevB.79.024112

Request Changes to record.

Abstract

We address the calculation within density functional theory (DFT) of defect formation energies in alumina, a ceramic oxide often considered an archetype for a wide variety of other similar oxides. We examine the conditions under which calculated defect formation energies, especially those of charged defects, are independent of the principal approximations of the plane-wave DFT formalism, most significant of which is the finite-sized supercell in which the calculation must be performed. We introduce a variation on existing methods of extrapolation to infinite system size to reduce dependence of the result on finite-size errors in the electrostatic and elastic energies of a periodic supercell containing a defect. We also show how the results can be made relatively insensitive to the choice of exchange-correlation functional and pseudopotential by a suitable treatment of the chemical potentials of the atomic species. Our results for formation energies of charged defects are less sensitive than traditional approaches to supercell size and choices of exchange-correlation functional and pseudopotential, and differ notably from previous results.

Item Type: Journal Article
Divisions: Faculty of Science > Physics
Journal or Publication Title: Physical Review B (Condensed Matter and Materials Physics)
Publisher: American Physical Society
ISSN: 1098-0121
Official Date: 2009
Dates:
DateEvent
2009Published
Volume: 79
Number: 2
Article Number: 024112
DOI: 10.1103/PhysRevB.79.024112
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us