Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Arabidopsissystemic immunity uses conserved defense signaling pathways and is mediated by jasmonates

Tools
- Tools
+ Tools

Truman, William, Bennett, Mark H., Kubigsteltig, Ines, Turnbull, Colin and Grant, Murray (2006) Arabidopsissystemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences of the United States of America, 104 (3). pp. 1075-1080. doi:10.1073/pnas.0605423104 ISSN 0027-8424.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1073/pnas.0605423104

Request Changes to record.

Abstract

In the absence of adaptive immunity displayed by animals, plants respond locally to biotic challenge via inducible basal defense networks activated through recognition and response to conserved pathogen-associated molecular patterns. In addition, immunity can be induced in tissues remote from infection sites by systemic acquired resistance (SAR), initiated after gene-for-gene recognition between plant resistance proteins and microbial effectors. The nature of the mobile signal and remotely activated networks responsible for establishing SAR remain unclear. Salicylic acid (SA) participates in the local and systemic response, but SAR does not require long-distance translocation of SA. Here, we show that, despite the absence of pathogen-associated molecular pattern contact, systemically responding leaves rapidly activate a SAR transcriptional signature with strong similarity to local basal defense. We present several lines of evidence that suggest jasmonates are central to systemic defense, possibly acting as the initiating signal for classic SAR. Jasmonic acid (JA), but not SA, rapidly accumulates in phloem exudates of leaves challenged with an avirulent strain of Pseudomonas syringae. In systemically responding leaves, transcripts associated with jasmonate biosynthesis are up-regulated within 4 h, and JA increases transiently. SAR can be mimicked by foliar JA application and is abrogated in mutants impaired in jasmonate synthesis or response. We conclude that jasmonate signaling appears to mediate long-distance information transmission. Moreover, the systemic transcriptional response shares extraordinary overlap with local herbivory and wounding responses, indicating that jasmonates may be pivotal to an evolutionarily conserved signaling network that decodes multiple abiotic and biotic stress signals.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- )
Journal or Publication Title: Proceedings of the National Academy of Sciences of the United States of America
Publisher: National Academy of Sciences
ISSN: 0027-8424
Official Date: 2006
Dates:
DateEvent
2006Published
Volume: 104
Number: 3
Page Range: pp. 1075-1080
DOI: 10.1073/pnas.0605423104
Status: Peer Reviewed
Publication Status: Published

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us