Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/78901

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
© 2016 Cambridge University Press.
http://dx.doi.org/10.1017/s0033291716000830

A note on versions:
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. Please see the ‘permanent WRAP URL’ above for details on accessing the published version and note that access may require a subscription. For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Common mental disorders in young adults born late-preterm

K. Heinonen,1,5* E. Kajantie,2,3,7 A-K. Pesonen,1 M. Lahti,1 S. Pirkola,2,4 D. Wolke,5
A. Lano,7 S. Sammallahti,1,2,7 J. Lahti,1,6 S. Andersson,7 J. G. Eriksson,2,8,9,10 K.
Raikkonen1

Affiliations:
1. Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
2. National Institute for Health and Welfare, Helsinki, Finland
3. Department of Obstetrics and Gynaecology, Oulu University Hospital and
University of Oulu, Oulu, Finland
4. University of Tampere, School of Health Sciences, Tampere, Finland
5. Department of Psychology, University of Warwick, Coventry, UK
6. Folkhälso Research Centre, Helsinki, Finland
7. Children’s Hospital, Helsinki University Hospital and University of Helsinki,
Helsinki, Finland
8. Department of General Practice and Primary Health Care, University of
Helsinki, Helsinki, Finland
9. Vasa Central Hospital, Vasa, Finland
10. Unit of General Practice, Helsinki University Hospital, Helsinki, Finland

*Address for correspondence: Kati Heinonen, Institute of Behavioural Sciences,
P.O. Box 9, 00014 University of Helsinki, Helsinki, Finland,
kati.heinonen@helsinki.fi, Tel: +358-2941 29514, Fax +358-2941 29520

Funding source:
Study baseline and childhood follow-up was financially supported by the
Bundesministerium für Forschung und Technik (Federal Goverment of Germany,
Ministry of Science and Technology) program grants PKE 4 and JUG 14 (FKZ’s
0706224, 0706564, and 01EP9504) to Drs Klaus Riegel, Dieter Wolke, and Barbara
Ohrt; Adulthood follow-up was financially supported by the Academy of Finland
program grants (to Drs Eriksson, Raikkonen and Kajantie); The work by Aulikki
Lano was supported by Foundation of Pediatric Research; The work by Dr Heinonen
and Dr. J. Lahti was supported by Academy of Finland post-doctoral grant; Dr
Eriksson was supported also by grant from Samfundet Folkhälsan and Dr Andersson
from Päivikki and Sakari Sohlberg Foundation and Finska Läkaresällskapet.

Conflicts of Interest: The authors have no conflicts of interest to disclose.
Word count: 3813
Abstract (Max 250/250)

Background

Results of adulthood mental health of those born late-preterm (34+0-36+6 weeks+days of gestation) are mixed and based on national registers. We examined if late-preterm birth was associated with a higher risk for common mental disorders in young adulthood when using a diagnostic interview, and if this risk decreased as gestational age increased.

Methods

800 young adults (Mean =25.3 years, SD=0.62), born 1985-1986, participated in a follow-up of the Arvo Ylppö Longitudinal Study. Common mental disorders (mood, anxiety and substance use disorders) during the past 12 months were defined using Composite International Diagnostic Interview (Munich version). Gestational age was extracted from hospital birth records and categorized into early-preterm (<34+0, n=37), late-preterm (34+0-36+6, n=106), term (37+0-41+6, n=617) and post-term (≥42+0, n=40).

Results

Those born late-preterm and at term were at a similar risk for any common mental disorder (odds ratio [OR]=1.11; 95% confidence interval [CI] 0.67-1.84), for mood (OR=1.11; 95%CI, 0.54-2.25), anxiety (OR=1.00; 95%CI, 0.40-2.50) and substance use (OR=1.31; 95% CI, 0.74-2.32) disorders, and comorbidity of these disorders (p=0.38). While the mental disorder risk decreased significantly as gestational age increased, the trend was driven by a higher risk in those born early-preterm.

Conclusion

Using a cohort born during the advanced neonatal and early childhood care, we found that not all individuals born preterm are at risk for common mental disorders in young adulthood –those born late-preterm are not, while those born early-preterm are at a higher risk. Available resources for prevention and intervention should be targeted towards the preterm group born the earliest.
Each year 14.9 million births worldwide are preterm (<37+0 weeks+days of gestation) (Blencowe et al. 2012). Of these births 70% are late-preterm (34+0–36+6 weeks+days of gestation) (Davidoff et al. 2006; Engle et al. 2007). While those born at the most severe end of birth weight and gestational length distribution of preterm birth are at an increased risk of mental disorders (Johnson & Marlow 2011; Treyvaud et al. 2013; Van Lieshout et al. 2015) it remains less clear if this risk also characterizes those born late-preterm. We are aware of only a handful of studies that have examined mental disorders among those born late-preterm (Linnet et al. 2006; Moster et al. 2008; Talge et al. 2010; D’Onofrio et al. 2013; Harris et al. 2013; Rogers et al. 2013; Lahti et al. 2014), and only three have extended follow-ups into adulthood (Moster et al. 2008; D’Onofrio et al. 2013; Lahti et al. 2014). These Scandinavian register studies demonstrate an inconsistent pattern of risks. In the first study, late-preterm birth was associated with an increased risk of schizophrenia, disorders of psychological development, behavior and emotion (Risk ratios (RRs): 1.3 to 1.5), but not with autism spectrum disorders (Moster et al. 2008); in the second study, it was associated with an increased risk of psychotic/bipolar disorder, autism spectrum disorders and attention deficit hyperactivity disorder (ADHD) (Hazard ratios (HR): ~1.2 to ~1.3), but not with substance use disorder or suicide attempts (D’Onofrio et al. 2013); and in the third study, it was associated with an increased risk of suicide (HR: 2.01), but not with substance use, psychotic, mood, anxiety or personality disorder or suicide attempt (Lahti et al. 2014).

In all these studies diagnoses of mental disorders were extracted from registers carrying data on inpatients hospitalizations, outpatients care, disability benefits or cause of death. While the severity of mental disorders is highly correlated with receiving treatment, up to 50% of individuals in developed countries with mental
disorder go untreated and, hence, remain unidentified by the registers (Demyttenaere et al. 2004; ten Have et al. 2013). Furthermore, of those receiving mental health treatment, up to 14% neither meet the criteria for mental disorders nor report other indicators of need for treatment (Bruffaerts et al. 2015).

To overcome at least some of the shortcomings related to studies employing registries, we tested if late-preterm birth was associated with increased risk for mood, anxiety and substance use disorders and comorbidity of these disorders defined by the Munich-Composite International Diagnostic Interview (M-CIDI), and if the mental disorder risk decreased according to the degree of prematurity. Our secondary aim was to test if the mental disorder risk varied according to the degree of intrauterine growth restriction.

METHODS

The study participants come from the Finnish arm of the Bavarian-Finnish Longitudinal Study (BFLS), also called the Arvo Ylppö Longitudinal Study (AYLS) (Wolke et al. 1998; Heinonen et al. 2008). We identified all 1,535 infants (867 boys, 56.5%) born alive in the county of Uusimaa, Finland between March 15, 1985 and March 14, 1986, who were admitted to neonatal wards in obstetric units, or transferred to the Neonatal Intensive Care Unit (NICU) of the Children’s Hospital, Helsinki University Central Hospital within ten days of their birth. The population ranged from severely ill preterm infants to infants born at term requiring only brief inpatient observation. The gestational age in the hospitalized group ranged from 23 to 43 weeks. Additionally, we identified 658 (326 boys, 49.5%) infants not admitted to neonatal wards or NICU. Infants were prospectively randomly recruited from 3
largest maternity hospitals in the study area and the neonate born after every second hospitalized infant was selected. The gestational age in this control group ranged from 35 to 42 weeks.

Of the 2,193 infants of the original cohort, 2,086 were identified in adulthood based on Finnish personal identification numbers. In 2009-2012, we invited 1,913 (173 participants address was not traceable, they lived abroad or would have needed accommodation for an overnight stay) for a clinical and psychological follow-up, and 1,136 participated (59.4%; 51.8% of the original cohort) (Mean age = 25.5, standard deviation [SD] = 0.65, Range 24.4 to 27.1 years). Of them 957 underwent the M-CIDI interview. We excluded 21 because of organic mental disorder (corresponds ICD-10 categories F06.0-06.4: mental disorders due to brain damage and dysfunction and to physical disease); 2 had missing information on the date of last substance use episode; 129 did not have information on gestational age or the information was evaluated as unreliable; 5 participants had congenital malformations or chromosomal abnormalities. Thus, the analytic sample comprised 800 participants (392 men, 49%) (41.8% of those invited, 36.5% of the initial study cohort) (Supplemental Figure 1).

Compared with the analytic sample (n=800), those in the initial study cohort (n=1393) but not included in the current study were more often men (49.0 vs 57.5%, \(p<0.001\)), born preterm (4.6 vs 9.3% early-preterm [24+0 - 33+6 weeks+days of gestation], 23.3 vs 15.0% late-preterm, 77.1 vs 71.8% term, and 5.0 vs 3.9% post-term, \(p<0.001\)), had lower birth weight for gestational age SD score (mean difference [MD]=0.20, \(p<0.001\)), were more often admitted to hospital (63.5 vs 73.7%, \(p<0.001\)), had younger mothers (MD=0.76 years, \(p=0.001\)) who had smoked more often during pregnancy (14.1 vs 26.5%, \(p<0.001\)) and more often had parents with a lower level of
education (8.0 vs 15.9% elementary, 21.5 vs 28.7% upper secondary, 36.8 vs 33.2% lower tertiary, 33.8 vs 22.1% upper tertiary, \(p < 0.001 \)); The groups did not differ in 5 minute Apgar score \((p = 0.15) \). In addition, we compared those included in the current study \((n = 800) \) with those excluded due to unreliable, but existing, information on gestational age \((n = 128) \). These groups did not differ from each other in gestational age as categorized into early-preterm, late-preterm, term and post-term \((p = 0.44) \) or in M-CIDI diagnoses \((\text{all } p \text{'s} > 0.18) \).

The study protocol at birth was approved by the ethics committees of the Helsinki City Maternity Hospital, Helsinki University Central Hospital, and Jorvi Hospital and in adulthood by the Coordinating Ethics Committee of the Helsinki and Uusimaa Hospital District. The informed consent was obtained from parents (childhood) and participants (adulthood).

Gestational Age and Fetal Growth

Gestational age was categorized to early-preterm \((n = 37, 16 \text{ were born very preterm, } < 32 + 0) \), late-preterm \((n = 106) \), term \((n = 617) \) and post-term \((n = 40) \). Length of gestation was extracted from medical records. It was based on fetal ultrasound, performed before 24+0 weeks of gestation, of 28 (75.7\%) of early-preterm, 72 (67.9\%) of late-preterm, 395 (64.0\%) of term and 20 (50.0\%) of post-term participants. If ultrasound was not performed, gestational age was determined from the date of mother’s last menstrual period.

Birth weight (g) was extracted from birth records and expressed in SD units relative to sex and length of gestation, based on Finnish standards (Pihkala et al. 1989). Children born < -2SDs of mean birth weight were defined as small-for-gestational-age
SGA), those born ≥ -2 and ≤ 2SDs of the mean as appropriate-for-gestational-age

(AGA), and those >2SDs of the mean as large-for-gestational-age (LGA).

175 Mental disorders

176 Mood, anxiety and substance use disorders (DSM-IV) during the past 12 months were
177 assessed using a Finnish translation of the computerized M-CIDI (Wittchen & Pfister
179 disorders included major depressive disorder, dysthymia, and bipolar disorder.
180 Anxiety disorders included general anxiety disorder, social phobia, panic disorder
181 with or without agoraphobia, and agoraphobia. Substance use disorders included
182 alcohol use disorder (dependence or abuse) and other substance use disorder
183 (dependence or abuse). Comorbidity was defined as suffering from any disorder from
184 more than one of the three categories (Pirkola et al. 2005). CIDI interview is valid and
185 reliable (Andrews & Peters 1998; Wittchen et al. 1998; Jacobi et al. 2004; Pirkola et
186 al. 2005) and has good concordance with Structured Clinical Interview for DSM
187 Disorders (Haro et al. 2006). The interviews were performed by eight master’s level
188 psychology students, trained by a psychiatrist with WHO authorization (SP) and
189 supervised by a clinical psychologist (KH). The interviewers were blind to all earlier
190 collected information of the participants including gestational age.

191 Covariates and Confounders

192 All covariates and confounders were a priori selected on the basis of earlier literature.
193 Covariates associated with either prematurity or mental health extracted from hospital
records, included sex, multiple pregnancy (singleton/multiple), parity (primiparous vs multiparous), Apgar score at 5 minutes (0-7, >7), length of stay in neonatal ward (no hospitalization, up to 7 days, 8-14 days, >14 days). Confounders associated with both prematurity and mental health, extracted from hospital records, included maternal pre-pregnancy body-mass-index (kg/m²) (BMI), hypertensive disorder during pregnancy (hypertension, pre-eclampsia, normotension), diabetes during pregnancy (gestational diabetes, type 1 diabetes, no diabetes; none had type 2 diabetes), and maternal age at delivery (<20, 20 to 40, >40 years). Other confounders included maternal smoking reported by the child’s mother at study baseline, highest educational attainment of the either parent (elementary, upper secondary, lower tertiary, upper tertiary) reported by the child’s mother when the child was 56 months old, maternal mental disorders (no vs yes) reported by the child’s mother in conjunction with the adulthood follow-up, and self-reported highest completed or on-going educational attainment (elementary, upper secondary, lower tertiary, upper tertiary).

Statistical Analysis

Logistic regression analyses with odds ratios (OR) and 95% Confidence Intervals (CI) were used to test if late-preterm birth, in relation to (a) term birth, (b) early-preterm birth, and (c) post-term birth increased the risk of mental disorders. Linear regression analysis tested if comorbidity of mental disorders was higher in those born late-preterm than those born at term, early-preterm and post-term. The above analyses were re-run with length of gestation as a continuous variable to test if the prevalence of mental disorders and comorbidity decreased according to the degree of
These analyses were further specified by comparing the early-term group with term-born and post-term groups. Early-preterm/late-preterm vs. term birth × SGA vs AGA interaction tested if intrauterine growth restriction modified the associations.

In all analyses, we made adjustments for all covariates and confounders, except for maternal mental disorders (Model I), and then for all of them (Model II). Missing information in covariates and confounders were dummy coded as separate category. We considered two-tailed P-values<.05 as statistically significant.

RESULTS

Twelve-month prevalence of any common mental disorder was 34.8%, and of mood, anxiety and substance use disorders 13.1%, 9.3% and 23.4%, respectively; 25.5%, 7.5% and 1.8% had suffered from a disorder in one, two or three categories, respectively. Women had more often mood, anxiety and less often substance use disorders, but their comorbidity did not differ by sex (Table 1). There were no sex differences in covariates or confounders (p-values >0.06).

Table 2 presents covariates and confounders by gestational age categories. Those born late-preterm differed from those born at term such that they were hospitalized more often and for a longer period after birth and their mothers had smoked more, had more often hypertensive disorders and diabetes during pregnancy; They also differed from those born early-preterm such that they were hospitalized less often and for a shorter
period after birth and more often had Apgar score > 7 at 5 minutes, and from those
born post-term such that they were hospitalized more often and for a longer period
after birth, were more often men, and born from multiple, multiparous or hypertensive
pregnancies. Differences between those born early-preterm and post-term from the
term group and from each other are presented in Table 2.

Supplemental eTable 1 presents these characteristics by mental disorders.

Late-preterm birth and mental disorders

Table 3 shows that those born late-preterm did not differ from those born at term in
their risk for any common mental disorder, for mood, anxiety or substance use
disorders, or their comorbidity (β’s<0.04, p’s>0.38 for Models I and II).

When compared with those born early-preterm, those born late-preterm had lower
odds for any common mental disorder (OR=0.37, 0.15 to 0.94, p=0.04 for Model I,
P=.04 for Model II) and mood disorders (OR=0.27, 0.08 to 0.92, p=0.04 for Model I,
P=.04 for Model II). Rates of mental disorders did not vary between those born late-
preterm and those born post-term (all p-values>0.10).

Degree of prematurity and mental disorders

The prevalence of mood disorders (p=0.03, Figure 1) and comorbidity for mental
disorders (p=0.045, Figure 2) decreased as the length of gestation increased. When we
excluded those born post-term, prevalence for substance use disorders decreased as
gestational age increased (p=0.04) (Figure 1).
Additional analyses where early-preterms were compared to those born at term demonstrated that early-preterms had higher odds for any common mental disorder (OR=3.00, 1.25 to 7.21, \(p=0.01 \) for Model I, \(p=0.02 \) for Model II), for mood (OR=4.03, 1.30 to 12.51, \(p=0.02 \) for Model I, \(p=0.02 \) for Model II) and substance use disorders (OR=3.12, 1.15 to 8.48, \(p=0.03 \) for Model I, \(p=0.03 \) for Model II), and were more likely to suffer from mental disorder comorbidity (\(p \)-values <0.03 for Models I and II); When compared to post-terms, those born early-preterm had higher odds for mood disorders (OR=7.14, 1.47 to 33.33, \(p=0.02 \) for Model I, \(p=0.02 \) for Model II) and were more likely to suffer from mental disorder comorbidity (\(p \)-values<0.04 for Models I and II).

Intrauterine growth patterns and mental disorders

Finally, analyses testing moderation by SGA/AGA status among those born late-preterm and term, and among those born early- to late-preterm and term did not reveal any significant interactions (all \(p \)-values>0.75). Compared with those born AGA, those born SGA did not have an increased risk for mental disorders with or without controlling for gestational age (all \(p \)-values>0.08).

DISCUSSION

Using a validated diagnostic interview, the current study demonstrates that 33.0% of adults born late-preterm had suffered from any common mental disorder during the previous 12 months, compared with 34.2% of those born at term. For specific
disorders, the rates were also similar: 17.4% vs 16.1% had a history of a mood, 10.1% vs. 13.1% of anxiety, and 26.8% vs. 25.0% of substance use disorders. Rates of comorbidity of these disorders were also equivalent between those born late-preterm and at term, 21.7%, 9.4% and 1.9% of those born later preterm and 25.8%, 6.6% and 1.8% of those born at term had suffered from one disorder or two or three comorbid disorders, respectively. These findings concur with previous studies that have not either identified differences in risks for mood, anxiety or substance use disorders in adulthood when these diagnoses are derived from registers (Moster et al. 2008; D’Onofrio et al. 2013; Lahti et al. 2014). Our findings thus add to the previous literature by showing that even when mental disorders are identified using a diagnostic interview, adults born late-preterm and at term do not differ from each other in the 12-month prevalence and comorbidity rates of common mental disorders.

However, our study revealed that the risk for these disorders decreased as gestational age increased. Indeed, when compared to those born early-preterm, those born late-preterm had lower risks for any common mental disorder and mood disorders, those born at term had lower risks for any common mental disorder, mood and substance-use disorders and mental disorder comorbidity, and those born post-term had lower risk for mood disorders and mental disorder co-morbidity. Hence the decreasing trend of mental disorder risk was driven by a higher risk for mental disorders in those born the earliest. Strikingly, nearly half of those born early-preterm had suffered from any common mental disorder during the past 12 months. While not in the direct focus of our study, these findings deserve some attention as they concur with previous studies (Indredavik et al. 2010; Johnson et al. 2010; Johnson & Marlow 2011; Nosarti et al.
2012; D’Onofrio et al. 2013; Van Lieshout et al. 2015) and hence increase both internal and external validity of our findings. However, of note is that in some previous studies those born the earliest/smallest have been less likely to suffer from alcohol and substance use disorders than those born at term (Strang-Karlsson et al. 2008; Lindström et al. 2009; D’Onofrio et al. 2013; Van Lieshout et al. 2015). In our study, the number of participants was, however, too small to examine more extreme groups, such as those born very preterm, separately. Thus, combining them may have masked any potential protective effects and may explain this slight controversy. This was supported by a post-hoc analyses in this sample which showed that those born very preterm did not differ (p-values $>$ 0.39) from those born at term, whereas those born moderately preterm (32+0 to 33+6 weeks of gestation) had a significantly higher risk (P-values $<$ 0.03) for substance use disorders.

Several mechanisms may underlie the detected associations, including brain immaturity, and severity of neonatal illnesses and complications, which decrease as gestational age increases. Although abnormalities in brain structure and function are also detected among those born late-preterm (Munakata et al. 2013; Rogers et al. 2014; Kelly et al. 2015), brain changes have been reported to be wide among those born earliest (Bäuml et al. 2014). Moreover, existing studies have shown associations between brain abnormalities and behavioural and psychiatric problems in preterm children (Skranes et al. 2007; Rogers et al. 2012, 2014; Treyvaud et al. 2013). Further, neonatal complications and illnesses related to preterm birth may amplify the risk for neurodevelopmental adversities (Whitaker et al. 1997; Indredavik et al. 2010). The risk for neonatal illnesses and complications generally decrease as
gestational age increases (Milligan 2010; Engle 2011; Laptook 2013). Moreover, severe complications, e.g. intracranial hemorrhage, are less common among those born late than among those born earlier (Laptook 2013). Also in our sample, the length of stay in neonatal intensive care was longest and 5 min Apgar score more often below 7 in those born early-preterm suggesting more severe illnesses/complications in this group. However, as we lack neuroimaging data, we cannot determine the extent to which any potential differences in brain structure and function according to the severity of preterm birth underlie our findings.

Moreover, also less mature regulatory and communicative abilities of those born preterm (Voegtline & Stifter 2010; Wolke et al. 2014) may add to the risk for later mental health problems of the offspring (Hemmi et al. 2011). Further, although observed parenting sensitivity does not differ between those born preterm and term (Bilgin & Wolke 2015), findings suggest that those born preterm are more susceptible to parenting effects (Shah et al. 2013; Jaekel et al. 2014). Evidence that especially those born the earliest (Shah et al. 2013) are most affected, may potentially also explain the increased risk of mental disorders among those born early-preterm, but not among those born late-preterm. Finally, a common, not yet known, genetic or environmental risk factor may also be involved.

Our study also showed that intrauterine growth (SGA/AGA), did not add to the risk for common mental disorders at any degree of gestational age. Earlier studies among adults born with extremely or very low birth weight have suggested that SGA birth increases the risk for any non-substance use disorder (Van Lieshout et al. 2015) and
depression (Raikkonen et al. 2008). Further, SGA have been shown to be associated with risk for mental disorders at any length of gestation (Mathiasen et al. 2011). A difference explaining the lack of moderation by intrauterine growth pattern in our study may relate to the relatively moderate degree of SGA in our sample in comparison to the earlier studies that by design have included those born at the extreme end of birth weight and gestational age distribution in their samples.

Strengths of our study include a validated diagnostic interview. Although the prevalence rates of mental disorders in the current study may seem relatively high (Table 1), especially for any substance use disorders, they correspond earlier reported twelve-months prevalence rates among young adults which for any substance-use disorder is 30.5%, and for any mood and anxiety disorders are 11.3% and 12.4%, respectively (Blanco et al. 2008). Further, we had reliable and verified information on gestational age, available data on important covariates and confounders, a relatively large sample, and a long follow-up to adulthood.

There are also limitations. Two thirds of the infants participating in the AYLS were admitted to neonatal wards in obstetric units or NICU after birth. However, the majority of the admitted infants had no diagnosed illness and were on the wards for observation or because of common problems of neonatal adaptation. Moreover, those with congenital malformations or chromosomal abnormalities potentially affecting gestational age and/or mental health, were excluded. While the eligibility criteria related to hospitalization after birth enriched the number of preterm births in our sample, it is also a study limitation that restricts generalizations from our findings to
samples that may vary from ours in neonatal health characteristics. Loss of follow-up may also inevitably cause selection bias and impact generalizability of the findings further. Of the original sample, 33.1% of the hospitalized infants and 44.4% of the non-hospitalized infants participated in the follow-up in adulthood. Also, participation rates in the adulthood follow-up increased according to gestational age: of the original sample 22.3%, 33.7%, 38.2% and 39.4% of those born early-preterm, late-preterm, term and post-term participated in the adulthood follow-up, respectively. Furthermore, those who did not participate in the adulthood follow-up had more often younger mothers who had smoked more often during pregnancy, and more often had parents with a lower level of education. All these characteristics have been related to preterm birth. Hence, the preterm group that participated in the adulthood follow-up might be healthier than those born preterm in general. Whether our results generalize to samples exposed to less advanced neonatal and early childhood medical care remains also unknown. As we examined the most common mental disorders in adulthood, we cannot either determine the extent to which our findings agree with previous studies, which have shown that late-preterm birth increased the risk of other mental disorders, such as schizophrenia. Moreover, our findings do not either inform of the lifetime mental disorder risk. Finally, although we did not find any statistically significant associations, ORs for those born late-preterm were 1.11 and 1.31 for mood and substance use disorders compared to those born at term. To detect significant association with these ORs the sample size should have been over 36 000 and over 5 000, respectively. Thus, future studies detecting mental disorders using structured interviews should be conducted in at least 5000 individuals to either confirm or refute the null associations found in this study. Moreover, the sample size of the current
study also precluded us to study the less common mental disorders, such as psychotic disorders, autism spectrum disorders or adult ADHD.

CONCLUSIONS

Using a cohort born during the advanced neonatal and early childhood care we found that not all individuals born preterm are at risk for common mental disorders in young adulthood – those born late-preterm are not, while those born early-preterm are at higher risk. Available resources of prevention and intervention of common mental disorders should be targeted towards the preterm group born the earliest.
Acknowledgements:

Special thanks are due to Juha Peltola and the numerous other persons who carried out the data collection and kept the sample intact in childhood and adulthood follow-ups.
References:

Prevalence, Severity, and Unmet Need for Treatment of Mental Disorders in the
World Health Organization World Mental Health Surveys. *JAMA* 291, 2581–2590.

Engle WA (2011). Morbidity and mortality in late preterm and early term newborns:

at risk. *Pediatrics* 120, 1390–1401.

Haro JM, Arbabzadeh-Bouchez S, Brugha TS, de Girolamo G, Gurey ME, Jin
Concordance of the Composite International Diagnostic Interview Version 3.0 (CIDI
3.0) with standardized clinical assessments in the WHO World Mental Health

Harris MN, Voigt RG, Barbaresi WJ, Voge G a., Killian JM, Weaver AL, Colby
CE, Carey WA, Katusic SK (2013). ADHD and Learning Disabilities in Former
Late Preterm Infants: A Population-Based Birth Cohort. *Pediatrics* 132, e630–e636.

disorder severity and its association with treatment contact and treatment intensity for

Heinonen K, Räikkönen K, Pesonen A-K, Kajantie E, Andersson S, Eriksson JG,
cognitive abilities at 56 months of age: a longitudinal study of infants born at term.
Pediatrics 121, e1325–e1333.

Hemmi MH, Wolke D, Schneider S (2011). Associations between problems with
crying, sleeping and/or feeding in infancy and long-term behavioural outcomes in

Indredavik MS, Vik T, Evensen KAI, Skranes J, Taraldsen G, Brubakk A-M
(2010). Perinatal risk and psychiatric outcome in adolescents born preterm with very
low birth weight or term small for gestational age. *Journal of Developmental &

(2004). Prevalence, co-morbidity and correlates of mental disorders in the general
population: results from the German Health Interview and Examination Survey

low birth weight children’s academic achievement: a test of differential susceptibility

Figure legends

Figure 1.
Title: The prevalence (%) of common mental disorders during the past 12 months by gestational age.

Figure 2.
Title: Comorbidity of common mental disorders during the past 12 months (%) by gestational age.
Table 1. 12-month prevalence of M-CIDI DSM-IV mood, anxiety, and substance use disorders.

<table>
<thead>
<tr>
<th>Mental disorder</th>
<th>Men (n=392)</th>
<th>Women (n=408)</th>
<th>Men vs. Women χ²-test, P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any common mental disorder</td>
<td>134 (34.2%)</td>
<td>144 (35.3%)</td>
<td>0.74</td>
</tr>
<tr>
<td>Mood disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysthymia or major depressive disorder a</td>
<td>28 (7.1%)</td>
<td>59 (14.5%)</td>
<td>0.003</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>7 (1.8%)</td>
<td>11 (2.7%)</td>
<td>0.38</td>
</tr>
<tr>
<td>Anxiety disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social phobia</td>
<td>11 (2.8%)</td>
<td>15 (3.7%)</td>
<td>0.48</td>
</tr>
<tr>
<td>Generalized anxiety disorder</td>
<td>4 (1.0%)</td>
<td>8 (2.0%)</td>
<td>0.27</td>
</tr>
<tr>
<td>Other anxiety disorder</td>
<td>16 (4.1%)</td>
<td>38 (9.3%)</td>
<td>0.006</td>
</tr>
<tr>
<td>Substance use disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol use disorder (dependence or abuse)</td>
<td>111 (28.3%)</td>
<td>70 (17.2%)</td>
<td>0.006</td>
</tr>
<tr>
<td>Other substance use disorder</td>
<td>13 (3.3%)</td>
<td>4 (1.0%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>One disorder</td>
<td>103 (26.3%)</td>
<td>101 (24.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two disorders</td>
<td>Three disorders</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 (5.6%)</td>
<td>38 (9.3%)</td>
<td></td>
</tr>
<tr>
<td>Three disorders</td>
<td>9 (2.3%)</td>
<td>5 (1.2%)</td>
<td></td>
</tr>
</tbody>
</table>

Note. Categories have comorbidity with each other.

\(^a\) Of total 10.0% (6.6% men, 13.2% women, \(P=0.005\)) had major depressive disorder.

\(^b\) Mood and anxiety disorder \(n=19\) (31.7%), mood and substance use disorder \(n=26\) (43.3%), anxiety and substance use disorder \(n=15\) (25.0%).
Table 2. Characteristics of the study sample by gestational age

<table>
<thead>
<tr>
<th>Gestational age</th>
<th>Early-preterm</th>
<th>Late-preterm</th>
<th>Term</th>
<th>Post-term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24+0 - 33+6</td>
<td>34+0 – 36+6</td>
<td>37+0 – 41+6</td>
<td>≥ 42+0</td>
</tr>
<tr>
<td>weeks (n=37)</td>
<td>(n=106)</td>
<td>(n=617)</td>
<td>(n=40)</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>n (%)/mean(SD)</td>
<td>n (%)/mean(SD)</td>
<td>n (%)/mean(SD)</td>
<td>n (%)/mean(SD)</td>
</tr>
<tr>
<td>Sex (men)</td>
<td>23 (62.2%)</td>
<td>59 (55.7%)</td>
<td>299 (48.5%)</td>
<td>11 (27.5%)</td>
</tr>
</tbody>
</table>

Pre- and neonatal period

Intrauterine growth
- SGA: 9 (24.3%)a, c 18 (17.0%) 27 (4.4%) 1 (2.5%)
- AGA: 27 (73.0%) 82 (77.4%) 568 (92.1%) 36 (90.0%)
- LGA: 1 (2.7%) 6 (5.7%) 22 (3.6%) 3 (7.5%)
- Multiple pregnancy: 3 (8.1%)a 12 (11.3%) 14 (2.3%) 0 (0.0%)b
- Parity (Primiparous): 25 (67.6%)a 59 (55.7%) 305 (49.4%) 33 (82.5%)c
- Maternal prepregnancy BMI: 22.3 (3.72) 22.0 (2.53) 22.2 (3.36) 21.8 (3.05)

Maternal hypertensive disorder
- Hypertension: 3 (8.1%)a 9 (8.5%)a 108 (17.5%) 4 (10.0%)b
- Pre-eclampsia: 7 (18.9%) 15 (14.2%) 14 (2.3%) 0 (0.0%)
- Normotension: 27 (73.0%) 82 (77.4%) 495 (80.2%) 36 (90.0%)

Maternal diabetes
- no OGTT: 33 (89.2%) 81 (76.4%) 494 (80.1%) 36 (90.0%)
- normal OGTT: 4 (10.8%) 14 (13.2%) 84 (13.6%) 4 (10.0%)
- gestational diabetes: 0 (0.0%) 3 (2.8%) 30 (4.9%) 0 (0.0%)
<table>
<thead>
<tr>
<th></th>
<th>No (73.0%)</th>
<th>1-10/ day (18.9%)</th>
<th>>10 / day (8.1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal smoking during pregnancy</td>
<td>27 (81.1%)</td>
<td>18 (17.0%)</td>
<td>19 (1.9%)</td>
</tr>
<tr>
<td>Maternal age at delivery</td>
<td>20 to 40 years</td>
<td>103 (97.2%)</td>
<td>598 (96.8%)</td>
</tr>
<tr>
<td>Childbirth</td>
<td>0-7</td>
<td>9 (8.8%)</td>
<td>44 (7.3%)</td>
</tr>
<tr>
<td>Length of stay in hospital/ days</td>
<td>no hospitalization</td>
<td>6 (5.7%)</td>
<td>275 (44.6%)</td>
</tr>
<tr>
<td>Young adulthood</td>
<td>Age</td>
<td>24.7 (0.68)</td>
<td>24.8 (0.70)</td>
</tr>
<tr>
<td>Own education</td>
<td>elementary</td>
<td>3 (2.9%)</td>
<td>26 (4.3%)</td>
</tr>
<tr>
<td>Level</td>
<td>Group A</td>
<td>Group B</td>
<td>Group C</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>upper secondary</td>
<td>11 (29.7%)</td>
<td>37 (35.6%)</td>
<td>192 (31.6%)</td>
</tr>
<tr>
<td>lower tertiary</td>
<td>8 (21.6%)</td>
<td>28 (26.9%)</td>
<td>168 (27.7%)</td>
</tr>
<tr>
<td>upper tertiary</td>
<td>16 (43.2%)</td>
<td>36 (34.6%)</td>
<td>221 (36.4%)</td>
</tr>
<tr>
<td>Mother’s self-reported mental illness</td>
<td>10 (31.3%)</td>
<td>14 (17.5%)</td>
<td>107 (20.8%)</td>
</tr>
</tbody>
</table>

CIDI DSM IV mental disorders

<table>
<thead>
<tr>
<th>Category</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any common disorder</td>
<td>17 (45.9%)</td>
<td>35 (33.0%)</td>
<td>211 (34.2%)</td>
<td>15 (37.5%)</td>
</tr>
<tr>
<td>Mood disorder</td>
<td>8 (28.6%)</td>
<td>15 (17.4%)</td>
<td>78 (16.1%)</td>
<td>4 (13.8%)</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td>4 (16.7%)</td>
<td>8 (10.1%)</td>
<td>61 (13.1%)</td>
<td>1 (3.8%)</td>
</tr>
<tr>
<td>Substance use disorder</td>
<td>13 (39.4%)</td>
<td>26 (26.8%)</td>
<td>135 (25.0%)</td>
<td>13 (34.2%)</td>
</tr>
</tbody>
</table>

a $p < 0.05$ for difference against the term born group.
b $p < 0.05$ for difference against the late-preterm born group.
c $p < 0.05$ for difference between early-preterm and post-term groups.
d Data missing from 1 early-preterm, 4 late-preterm, 13 term and 1 post-term participants.
e Data missing from 2 late-preterm, 10 term, and 1 post-term participants.
f Data missing from 5 early-preterm, 26 late-preterm, 102 term and 9 post-term participants.

OGTT=Oral glucose tolerance test; SGA= small for gestational age; AGA= appropriate for gestational age; LGA= large for gestational age; BMI=body-mass-index
Table 3. Risk of common mental disorders during the past 12 months in young adults born late-preterm \((n=106)\) in comparison to those born at term \((n=617)\).

<table>
<thead>
<tr>
<th>Mental Disorder</th>
<th>Any common</th>
<th>Mood</th>
<th>Anxiety</th>
<th>Substance use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR 95%CI</td>
<td>p</td>
<td>OR 95%CI</td>
<td>p</td>
</tr>
<tr>
<td>Term vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late-preterm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model I</td>
<td>1.11 0.67-1.84 0.68</td>
<td>1.11 0.54-2.25 0.78</td>
<td>1.00 0.40-2.50 0.99</td>
<td>1.31 0.74-2.32 0.36</td>
</tr>
<tr>
<td>Model II</td>
<td>1.08 0.66-1.80 0.75</td>
<td>1.08 0.53-2.21 0.83</td>
<td>1.00 0.40-2.49 0.99</td>
<td>1.30 0.73-2.29 0.37</td>
</tr>
</tbody>
</table>

Note: OR=Odds Ratio; CI= Confidence interval; Model I: controlling for sex, age and maximum educational level of either parent(s), own educational level, maternal age, and pre-pregnancy body-mass-index, multiple pregnancy, parity, small for gestational age (SGA), large for gestational age (LGA), five minutes Apgar score, smoking during pregnancy, maternal diabetes, hypertension, and preeclampsia, length of hospitalization after birth; Model II further controlling for mother’s self-reported mental health. Of those born at term 406 and of those born late-preterm did not had any mental disorders and were used as a comparison group.