Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Synthetic 6-aryl-2-hydroxy-6-ketohexa-2,4-dienoic acid substrates for C-C hydrolase BphD: investigation of a general base catalytic mechanism

Tools
- Tools
+ Tools

UNSPECIFIED (2004) Synthetic 6-aryl-2-hydroxy-6-ketohexa-2,4-dienoic acid substrates for C-C hydrolase BphD: investigation of a general base catalytic mechanism. ORGANIC & BIOMOLECULAR CHEMISTRY, 2 (20). pp. 2942-2950. doi:10.1039/b410322j

Full text not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1039/b410322j

Request Changes to record.

Abstract

A chemical synthesis of the 2-hydroxy-6-ketohexa-2,4-dienoic acid intermediates on bacterial meta-cleavage pathways has been established, using a Heck coupling strategy. Coupling of ethyl 3-bromo-2-acetoxyacrylate with 1-aryl vinyl ketals or 1-aryl allylic alcohols proceeded in 70-90% yield. Heck coupling with an alkyl vinyl ketal was also successful, allowing the synthesis of an alkyl-substituted ring fission intermediate. The synthetic ring fission intermediates were used to investigate the enzymatic reaction catalysed by C-C hydrolase BphD from Pseudomonas LB400. A reduced substrate analogue 2,6-dihydroxy-6-phenylhexa-2,4-dienoic acid was processed enzymatically to benzaldehyde by C-C hydrolase BphD, consistent with a catalytic mechanism involving general base-catalysed attack of water to give a gem-diol intermediate, and not consistent with a nucleophilic mechanism. A series of para-substituted 2-hydroxy-6-keto-6-phenylhexa-2,4-dienoic acid substrates were assayed against BphD, and the derived Hammett plot (rho=-0.71) is consistent with a departing carbanion in the transition state for C-C cleavage.

Item Type: Journal Article
Subjects: Q Science > QD Chemistry
Journal or Publication Title: ORGANIC & BIOMOLECULAR CHEMISTRY
Publisher: ROYAL SOC CHEMISTRY
ISSN: 1477-0520
Official Date: 2004
Dates:
DateEvent
2004UNSPECIFIED
Volume: 2
Number: 20
Number of Pages: 9
Page Range: pp. 2942-2950
DOI: 10.1039/b410322j
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: publications@live.warwick.ac.uk
Contact Details
About Us