Supporting Information

for

Functionalisation of MWCNTs with poly(lauryl acrylate) polymerised by Cu(0)-mediated and RAFT methods

Jaipal Gupta,a Daniel J. Keddie,b Chaoying Wan,a David M. Haddleton,c and Tony McNally,a*

aInternational Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, CV4 7AL, UK.
bSchool of Biology, Chemistry and Forensic Science, University of Wolverhampton, WV1 1LY, UK.
cDepartment of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK.

Email: T.McNally@warwick.ac.uk
Supplementary Figures

Fig. S1 1H NMR spectrum of cyanomethyl dodecyltrithiocarbonate recorded in CDCl$_3$.

Fig. S2 1H NMR spectrum of P[LA] synthesised via RAFT using cyanomethyl dodecyltrithiocarbonate RAFT agent.
Fig S3. 1H NMR spectra of P[LA] recorded in CDCl$_3$ synthesised via Cu(0)-mediated polymerisation.

Fig. S4 TGA of cyanomethyl dodecyltrithiocarbonate.
Fig. S5 TGA of lauryl acrylate.

Fig. S6 NMR of P[LA] synthesised via RAFT ($M_{n,sec} = 2.5$ kDa, $D = 1.13$) before and after thermal treatment at 200 °C under an air atmosphere as a function of time.
Fig. S7 NMR of P[LA] synthesised via Cu(0)-mediated polymerisation ($M_n, \text{SEC} = 2.1$ kDa, $D = 1.11$) before and after thermal treatment at 200 °C under an air atmosphere as a function of time.