Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/79625

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Viruses Inhibit CO₂ Fixation in the Most Abundant Phototrophs on Earth

Highlights

- Viruses of abundant marine cyanobacteria shut down CO₂ fixation during infection
- The strength of the shutdown is dependent on the viral gene content
- Viruses encoding genes that actively shut down CO₂ fixation are less productive

Authors
Richard J. Puxty, Andrew D. Millard, David J. Evans, David J. Scanlan

Correspondence
d.j.scanlan@warwick.ac.uk

In Brief
Puxty et al. show that marine cyanobacterial viruses modify host photosynthesis to maximize energy production but inhibit CO₂ fixation. These phototrophs are responsible for ~10% of global CO₂ fixation, and up to 60% of cells are infected at any time. Therefore, this phenomenon has implications for the assessment of primary production of the biosphere.
Viruses Inhibit CO2 Fixation in the Most Abundant Phototrophs on Earth

Richard J. Puxty, 1,2 Andrew D. Millard, 3,5 David J. Evans, 4 and David J. Scanlan 1,5,*

1 School of Life Sciences, University of Warwick, West Midlands CV4 7AL, UK
2 Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
3 Warwick Medical School, University of Warwick, West Midlands CV4 7AL, UK
4 Biomedical Sciences Research Complex, North Haugh, University of St Andrews, Fife KY16 9ST, UK
5 Co-senior author
*Correspondence: d.j.scanlan@warwick.ac.uk
http://dx.doi.org/10.1016/j.cub.2016.04.036

SUMMARY

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most numerous photosynthetic organisms on our planet [1, 2]. With a global population size of 3.6 x 10^{27} [3], they are responsible for approximately 10% of global primary production [3, 4]. Viruses that infect Prochlorococcus and Synechococcus (cyanophages) can be readily isolated from ocean waters [5–7] and frequently outnumber their cyanobacterial hosts [8]. Ultimately, cyanophage-induced lysis of infected cells results in the release of fixed carbon into the dissolved organic matter pool [9]. What is less well known is the functioning of photosynthesis during the relatively long latent periods of many cyanophages [10, 11]. Remarkably, the genomes of many cyanophage isolates contain genes involved in photosynthetic electron transport (PET) [12–18] as well as central carbon metabolism [14, 15, 19, 20], suggesting that cyanophages may play an active role in photosynthesis. However, cyanophage-encoded gene products are hypothesized to maintain or even supplement PET for energy generation while sacrificing wasteful CO2 fixation during infection [17, 18, 20]. Yet this paradigm has not been rigorously tested. Here, we measured the ability of viral-infected Synechococcus cells to fix CO2 as well as maintain PET. We compared two cyanophage isolates that share different complements of PET and central carbon metabolism genes. We demonstrate cyanophage-dependent inhibition of CO2 fixation early in the infection cycle. In contrast, PET is maintained throughout infection. Our data suggest a generalized strategy among marine cyanophages to redirect photosynthesis to support phage development, which has important implications for estimates of global primary production.

RESULTS AND DISCUSSION

First, we assessed CO2 uptake at a fixed irradiance. At 30 μmol photons m^{-2} s^{-1}, uninfected Synechococcus sp. WH7803 fixed CO2 linearly throughout the experimental period (Figure 1A). Infection with cyanophage S-PM2d resulted in cessation of CO2 fixation ~4 hr after infection (Figure 1A) (approximately 1/3 of the latent period; Figure 3A) [10]. Similarly, infection with cyanophage S-RSM4 results in cessation of CO2 fixation, but much earlier during infection (~2 hr; Figure 1A). This is despite a longer latent period in this cyanophage (~15 hr; Figure 3A). While there is a clear difference in CO2 fixation capacity between infected and uninfected cells and between infections with different phages, this may be imparted by modifications to the photosynthetic electron transport (PET) machinery by the infecting phage that cause a shift in the light response curve of photosynthesis. Therefore, we assessed CO2 uptake over a light gradient in a “photosynthetron” [21] (Figure 1B). These data show that under all light irradiances there is a reduced CO2 fixation rate in cells infected with either S-PM2d or S-RSM4 compared with uninfected cells. Interestingly, we did observe a slight broadening of the irradiance at which the maximal rate of photosynthesis (P$_{\text{max}}$) occurs in cells infected with S-PM2d, which may indicate modification of the photosynthetic apparatus by phage gene products.

To detect any changes in the light-dependent reactions of photosynthesis, we assessed the quantum yield of PSII photochemistry (Fv/Fm) between uninfected cells or cells infected with either cyanophage. Over a time series, this measurement determines the rate of re-oxidation of the primary acceptor of PSII by downstream photochemical processes. In contrast to CO2 fixation, we could not detect any significant changes in Fv/Fm between uninfected Synechococcus and Synechococcus infected with either cyanophage (Figure 2). This indicates that PET was stable during the infection period and presumably supplies energy in the form of ATP and reducing power to phage morphogenesis [20].

We hypothesized that the more pronounced cessation of CO2 fixation in S-RSM4 compared with S-PM2d would manifest as an increase in phage productivity. Therefore, we conducted comparative one-step growth experiments between these cyanophages (Figure 3). We demonstrate that, in fact, S-PM2d has both a shorter latent period than S-RSM4 (12 hr versus 14 hr, respectively; Figure 3A) and a larger burst size (2.15-fold, range = 1.52–3.90). These differences are reflected in comparative rates of plaque growth (Figures 3A and 3B), with S-PM2d producing 3.21-fold larger plaques over a 10-day period (one-way ANOVA, F$_{1,98}$ = 513.17, p < 0.001).

Previous studies, prior to the genomic era and uninformed about virus-encoded photosynthesis gene products, have produced
contradictory data on CO₂ fixation by cyanophage-infected freshwater cyanobacteria [22–24]. Therefore, in light of this realization, we revisited some of these experiments in a cyanobacterium of global importance. Our data clearly demonstrate, for the first time, a viral-induced inhibition of CO₂ fixation during infection of marine Synechococcus. This strongly implies that the cell contains ample carbon resources, but that the ATP and reducing power generated by PET are needed for virus morphogenesis, an interpretation reinforced by inhibitor studies of photosystem II functioning [25]. We suggest that the cessation of CO₂ fixation early in the infection period by S-RSM4 compared with S-PM2d is the result of the maintenance of central carbon metabolism genes in S-RSM4 (Table 1). S-RSM4 contains orthologs of the genes talC (host talB), cp12, zwf, and gnd [19]. CP12 is an inhibitor of the Calvin cycle enzymes phosphoribulokinase (prkB, consuming 1 ATP) and GAPDH (gap2, consuming 1 NADPH) [28]. CP12 has been shown to inhibit CO₂ fixation and regulates the photosynthetic response to the transition to the daily dark period experienced by picocyanobacteria [28–30]. Meanwhile, the transaldolase talC is shared by both the Calvin cycle and the pentose phosphate pathway (PPP) but is the only enzyme that operates in the direction of the PPP and against the direction of the Calvin cycle [31]. zwf and gnd are components of the PPP, whereby the activities of both generate NADPH [20]. The combined activities of these gene products have been suggested to bolster the PPP during infection for phage dNTP synthesis [20]. This hypothesis is reinforced by evidence that these genes are expressed during infection [20], that phage gene products are functional in vitro [20], and that cyanophage infection augments the dynamics of NADPH and its derivatives [20]. Our data support this hypothesis given that a cyanophage encoding C metabolism genes seems to inhibit CO₂ fixation more rapidly than a cyanophage lacking them. We hypothesize that evolution has selected for the maintenance of genes that inhibit CO₂ fixation in cyanophages, and thus the decreased productivity of S-RSM4 compared with S-PM2d was unexpected. However, our data are limited to laboratory conditions and therefore exclude environmental factors likely experienced by cyanophages in nature, e.g., a diel light regime and/or nutrient limitation. Certainly, comparative metagenomics has revealed differing representation of zwf, gnd, and cp12 sequences in Mediterranean, Pacific, and Atlantic water column samples [32]. Hence, further work is required to dissect the role of specific environmental parameters in the productivity and organic carbon production. In light of the evidence surrounding the cessation of host metabolism in other phage-host systems [33], the maintenance of genes encoding PET components in cyanophages, and the observed changes in CO₂ fixation between the two phages studied here, we favor our first hypothesis. However, although we cannot exclude such carbon-loss processes, we still note that regardless of the mechanism, phage-infected cells fix less net CO₂.

Assuming Prochlorococcus and Synechococcus contribute approximately 10% of global net primary production [3, 4], a mean global day length of 12 hr, cyanophage latent periods between 6 and 15 hr [10, 11] (Figure 3), cessation of CO₂ fixation between 20% and 50% (of the latent period), and between 1% and 60% of cells being infected per day [34–36], we estimate between 0.02 and 5.39 Pg C per year is lost to viral-induced inhibition of CO₂ fixation. The upper figure of this range represents approximately 2.8-fold greater productivity than the sum of all coral reefs, salt marshes, estuaries, and marine macrophytes on Earth [37]. Moreover, with climate change predicted to expand both the oceanic gyre regimes [38, 39] and the abundance of picocyanobacteria [3], the impact of cyanophages on global CO₂ fixation is expected to increase. To better quantify this impact, it is essential to develop improved measurements of infection rates in wild populations of prokaryotic picophytoplankton as well as the effects of biotic factors on the infection process.

Our data also have important implications for the measurement of CO₂ fixation in marine ecosystems. Methods to track changes in the estimation of net primary production and, in particular, group-specific gross CO₂ fixation rates are often laborious, expensive, and allow for poor resolution [40]. Recent attention has focused on developing proxies for CO₂ fixation rates derived from in situ fluorescence-based measurements of photochemistry [41]. Although these methods provide greater spatial and temporal resolution, they rely on strict coupling of the light reactions of photosynthesis to CO₂ fixation. We show here that the latter assumption is incorrect. Instead, cyanophage development acts as a sink of PSI-derived electrons, diverting them away from the Calvin cycle and thus effectively decoupling the light and dark reactions of photosynthesis. This is likely particularly important for ocean gyre regimes, where Prochlorococcus is the dominant component of the photosynthetic community [2, 3]. Indeed, fluorescence-based estimates of primary...
production tend to overestimate compared with 14C in the open ocean \[42\], and while these deviations have been suggested to be explained by various cellular processes (see \[43\] for review), here we add another process that acts to consume photochemically generated electrons, ATP, and/or reductant at the expense of CO$_2$ fixation.

EXPERIMENTAL PROCEDURES

Infection Conditions

Synechococcus sp. WH7803 was grown in ASW medium in continuous light (25–30 μmol photons m$^{-2}$ s$^{-1}$) at 23°C to an OD$_{750}$ nm between 0.35 and 0.40. Cell concentrations were measured using flow cytometry (FACScan, Becton Dickinson) and diluted to a concentration of 1 x 108 cells/ml with fresh ASW medium \[44\]. Samples were taken and either cyanophage S-PM2d or S-RSM4 was added to a virus-bacteria ratio (VBR) of 10 in triplicate. The virus titer was determined by plaque assay prior to the experiment as described in \[45\]. The samples were incubated at room temperature under low light (~25 μmol photons m$^{-2}$ s$^{-1}$) for 1 hr to allow adsorption by cyanophages.

Measurement of CO$_2$ Fixation

CO$_2$ fixation rate measurements were made by assessing the amount of uptake of NaH14CO$_3$ \[46\]. After cyanophage adsorption, cultures were diluted to a concentration of 1 x 107 cells/ml by addition of fresh ASW, and 0.1 MBq of NaH14CO$_3$ (specific activity: 1.48–2.22 GBq/mmol, PerkinElmer) was added to each culture. In the first experiment (at a fixed light irradiance), the cultures were split into 3 ml volumes in clear polycarbonate tubes and incubated at 30 ± 5 μmol photons m$^{-2}$ s$^{-1}$. The cultures were maintained at 23°C using a temperature-controlled water bath. An entire 3 ml culture was harvested at 1, 2, 4, 5, 7, and 9 hr post infection. In the second experiment, samples were again split into 3 ml volumes in clear polycarbonate tubes but were instead placed into a laboratory-built “photosynthetron,” which acts to supply a gradient of light to experimental samples by placing them incrementally more distant from the light source \[21\]. Samples were incubated for 4 hr before being harvested. 4 hr was selected because previous experiments had shown that light significantly reduced the cyanophage latent period (unpublished data). Therefore, shortening the incubation period limited the effect of any early lysis in comparisons between phage and host and between phages. The light delivered to each polycarbonate tube was measured using a Spherical Micro Quantum US-SQS/B light meter (Walz), connected to a PhytoPAM (Walz). Once samples were taken, cells were fixed by addition of paraformaldehyde (final concentration 1%). Samples were acidified by addition of 0.5 vol 6N HCl in a...
fume hood for 1 hr. Samples were then neutralized by addition of 0.5 vol 6N NaOH. 5 ml scintillation fluid (Ultima Gold, PerkinElmer) was added to scintillation vials and left overnight before scintillation counting using QuantaSmart software on a Packard Tri-Carb 2900TR scintillation counter.

Photophysiological Measurements

The effective quantum yield of PSII photochemistry (Fv/Fm) was measured following [42]. All measurements were made using a pulse amplitude-modulated fluorometer (PhytoPAM, Walz). Cells were incubated in the dark for 5 min to completely oxidize the primary electron acceptor Qa. Weak modulating light was supplied at 520 nm at 1 μmol photons m⁻² s⁻¹ to measure basal fluorescence (F₀). Light-adapted maximal fluorescence (Fm) was measured in the presence of 100 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) following an ~30 s illumination of 1,300 μmol photons m⁻² s⁻¹ and a saturating pulse of 2,600 μmol photons m⁻² s⁻¹ for 200 ms. (Fm/F₀) was calculated as (FM-F₀)/FM.

One-Step Growth Curves and Phage Productivity Estimates

Synechococcus sp. WH7803 was grown to mid exponential phase. Cell concentration was determined by flow cytometry and cells were diluted in ASW to 1 x 10⁷ cells/ml. S-PM2d and S-RSM4 were added to a VBR of 0.05 in triplicate and allowed to adsorb for 1 hr in continuous light. Subsequently the cultures were diluted 4,000-fold in ASW to synchronize infections and prevent reinfection of lysed virions. 100 μl were taken at specified intervals and centrifuged at 6000 x g for 10 min. The supernatant was taken and immediately titrated by plaque assay following [45]. Phage productivity estimates were derived from relative plaque growth on a lawn of Synechococcus sp. WH7803. Phages were diluted to give an approximate yield of 1 phage per dilution. Subsequently, 10 μl was spotted in the center of a 6-well plate, and 200 μl of 10% concentrated Synechococcus sp. WH7803 (approximately 1 x 10⁶ cells/ml) was mixed with the spot and left at room temperature for 1 hr. 2 ml of 0.35% (w/v) cleaned ASW agar [46] was mixed with the cell/phage mix by aspiration and allowed to cool. Plates were incubated for 10 days until plaques from both phages were visible. Plaque diameters were measured using ImageJ [48]. The latent period was calculated by testing for a significant increase (by 1 test) in the free phage concentration between each time point (after time point 0) and the time point with the lowest free phage concentration (i.e., immediately before lysis occurs). The burst size was calculated as the maximum free phage concentration divided by the minimum.

Table 1. Photosynthesis Gene Copy Number of Cyanophages Used in This Study

<table>
<thead>
<tr>
<th>Phage</th>
<th>Isolation Site</th>
<th>Reference</th>
<th>LH</th>
<th>cpeT</th>
<th>psbA</th>
<th>psbD</th>
<th>hli</th>
<th>petE</th>
<th>petF</th>
<th>ptox</th>
<th>cp12</th>
<th>gnd</th>
<th>zwf</th>
<th>talC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-PM2d</td>
<td>English Channel</td>
<td>[26, 27]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S-RSM4</td>
<td>Red Sea</td>
<td>[19]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

LH, light harvesting.

REFERENCES

