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Highlights

• A portfolio selection problem under temperature uncertainty is studied.

• CVaR portfolio optimization is considered for scenario-based uncertainty set.

• Robust counterparts of the problem are derived using advanced uncertainty sets.

• Risk references are incorporated in the suggested robust framework.

• Computational experiments are presented.
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Abstract

In this paper, we consider a portfolio selection problem under temperature uncertainty. Weather deriva-

tives based on different temperature indices are used to protect against undesirable temperature events.

We introduce stochastic and robust portfolio optimization models using weather derivatives. The investors’

different risk preferences are incorporated into the portfolio allocation problem. The robust investment

decisions are derived in view of discrete and continuous sets that the underlying uncertain data in temper-

ature model belong. We illustrate main features of the robust approach and performance of the portfolio

optimization models using real market data. In particular, we analyze impact of various model parameters

on different robust investment decisions.

Keywords: Robust investment decisions, temperature uncertainty, asset allocation, weather derivatives

1. Introduction

Weather plays a significant role in determining revenue of some industries and market players. National

Science Foundation estimated the annual economic impact of weather risk to the US economy as $485

billion in 2011. Various business sectors such as agriculture, retail, tourism and energy are directly affected

by exceptional weather conditions (Svec and Stevenson (2007)). For instance, a warm winter may cause

excess supplies of oil or natural gas for the utility and energy companies or may incur significant losses in

earnings of a winter resort. Similarly, an exceptionally cold summer can affect tourism sector in various

aspects. Even big construction companies, especially in Northern Europe, with tight deadlines and costly

penalty clauses, consider derivatives to hedge the risk of delays due to weather conditions (The Economist

Magazine (2012)).

Weather derivatives were first introduced by Enron in 1997 as financial instruments to minimize effects

of climatic events in the US energy industry. Since then, the unregulated market for temperature derivatives

has been constantly growing. The standardized contracts are also available in Chicago Mercantile Exchange

(CME) for the major cities in the USA, Europe, Australia and Japan. The most common weather derivatives

are written on temperature indices that form about 80% of weather contracts to manage weather related

risk (Cao and Wei (2004)). There are also weather contracts written on other weather events such as levels

of rain, snow, wind, frost and hurricanes.

The pricing problem for weather derivatives has been widely studied in the literature; for instance

see Jewson and Brix (2005), Benth and Saltyte-Benth (2007 and 2011), Dorfleitner and Wimmer (2010),
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Schiller et al. (2012), and Hardle et al. (2012). The underlying indices or degree days are modeled under an

assumption of various stochastic processes. Garman et al. (2000) and Svec and Stevenson (2007) modeled

the underlying indices of weather derivatives using both time series and stochastic approaches. Brody et al.

(2002) characterized temperature dynamics by a fractional Ornstein-Uhlenbeck process to price contingent

claims based on heating and cooling-degree-days. Hamisultane et al. (2010) studied utility based pricing

of weather derivatives. Recently, Elias et al. (2014) compared regime-switching temperature modelling

approaches for applications in weather derivatives. The reader is referred to Saltyte-Benth and Benth (2012)

for a critical review on temperature modelling.

Weather derivatives have been extensively used as an attractive asset class for hedging and risk manage-

ment purposes. As Jewson (2004) pointed out, insurance companies, reinsurance companies, banks, hedge

funds and energy companies have set up trading desks that are dedicated to weather derivatives. Weather

derivatives are traded on different locations for the purpose of insurance over various weather events. Broadly

speaking, insurance is designed for low probability extreme events, like hurricanes and tornadoes, whereas

weather derivatives are structured for high probability events like a dryer-than-expected summer or warmer-

than-expected winter. An insurance payout is only received after a significant loss is proved. On the other

hand, a holder of weather derivative contracts receives the payout based on the realization of indices whether

they have suffered a loss or not. Turvey (2001) considered weather derivatives as a form of agricultural in-

surance. Woodard and Garcia (2008) suggested that the potential for weather derivatives in agriculture

may be greater, particularly for aggravators of risk such as reinsurer of the agriculture products. Musshoff

et al. (2008) investigated portfolio effects and the willingness to pay for weather insurances. Ellithorpe

and Punman (2000) stated that participants in the power industry hold a portfolio of weather positions.

Brockett (2005) examined the hedging strategies from the credit risk and the basis risk perspectives. Bank

and Wiesner (2011) empirically investigated the advantages of using weather derivatives in tourism industry.

The role of weather derivatives within portfolio management has also been recognized by the investment

community due to mainly diversification purposes. According to Brockett et al. (2006), investors have

seen the potential in weather derivatives as a tool for portfolio diversification, since the derivatives are not

expected to correlate significantly with the financial markets. Jewson (2004) highlighted several trading

strategies for profitable investment portfolios of weather derivatives. Cao et al. (2004) showed that as an

alternative class of financial instruments, weather derivatives can improve the risk-return trade-off in asset

allocation decisions. Recently, Barth et al. (2011) studied optimal positions in market-traded temperature

futures to hedge spatial risk. The optimal portfolio of futures contracts traded in different locations minimizes

the variance with a certain temperature index. In this paper, we introduce a robust optimization approach to

portfolio management of weather futures under uncertain temperature. To the best of our knowledge, robust

optimization has not been applied to portfolio construction of weather futures and options. The framework

laid out in the paper might be of interest to the practitioners for the insurance and risk management purposes.

Robust optimization is considered as an alternative approach to stochastic programming and deals with

data uncertainty. Since it was independently developed by Ben-Tal and Nemirovski (1998) and El Ghaoui

and Lebret (1997), it has been widely used for solving various stochastic programming problems arising

in different sectors such as defence, agriculture, energy, supply chain, healthcare, and finance. The reader

is referred to Gorissen et al. (2013) for a detailed overview of robust optimization and its applications in

various fields. In particular, it has been applied for robust investment decisions within the single period mean-
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variance portfolio allocation framework to handle uncertainty arising due to misspecification and estimation

errors for (mainly means and covariance matrices of) random asset returns: for instance see Goldfarb and

Iyengar (2003), Ceria and Stubbs (2006), and Kawas and Thiele (2009). Moon and Yao (2011) showed that

effective portfolio allocation strategies can be obtained by careful selection of the uncertainty sets over which

the worst-case is considered. Soyster and Murphy (2013) introduced a framework for duality and modelling

in robust linear programs and applied to the classic Markowitz portfolio selection problem. Oguzsoy and

Guven (2007) studied robust portfolio planning problem in the presence of market anomalies. In addition,

there exists several successful applications of the robust optimization approach within the multi-period

portfolio allocation framework; for instance, see Ben-Tal et al. (2002) and Bertsimas and Pachamanova

(2008).

Robust optimization considers the worst-case decision criteria, unlike the expected value criteria is used

as a standard approach for decision making problems under uncertainty. It possesses modelling and compu-

tational advantages over the stochastic programming, Ben-Tal and El Ghaoui (2009). The data uncertainty

is taken into account during modeling stage of the problem without an assumption on specific distribution

of the underlying random variables. The uncertain parameters take their worst-case values within a set

(so-called an uncertainty set). An uncertainty set consists of general restrictions (representing different

forms of rules or factors) on the realizations of the uncertainties of the underlying stochastic program. The

robust counterpart of the stochastic program is derived in view of the pre-specified uncertainty set. This is

a deterministic model that does not involve an uncertain parameter, Bertsimas et al., (2004). Most impor-

tantly, the robust model becomes computationally tractable. The main drawback of the robust optimization

methodology is that specific choice of uncertainty sets and budget of robustness may lead to a conservative

strategy (Gulpinar and Rustem (2007)). The recent studies showed that data driven robust approaches to

design uncertainty sets utilizing data can overcome this issue and avoid overly conservative strategies; see

for instance, Bertsimas et al. (2013).

In this paper, we are concerned with a portfolio management problem under temperature uncertainty

using weather derivatives. A robust optimization approach to portfolio allocation of weather derivatives is

introduced to investigate impact of temperature noise on the investment strategies. We are particularly

interested in the effect of robust investment strategies for insurance purposes, that is, whether robust op-

timization strategies perform better than traditional strategies in extreme scenarios. We present robust

formulations of the portfolio allocation problem under different uncertainty sets to incorporate risk prefer-

ences of the investor. We therefore consider discrete (scenario-based) as well as continuous (symmetric and

asymmetric) uncertainty sets for modelling temperature uncertainty. Specifically, we introduce Conditional

Value-at-Risk (CVaR) constraints using scenario-based uncertainty set in the context of portfolio selection

problem under weather uncertainty. The symmetric and asymmetric uncertainty sets in view of certain

conditions determine a risk measure on the uncertainty arising in the underlying problem. For further infor-

mation on the use of risk measures in financial applications, the reader is referred to Rockafellar and Uryasev

(2000) and Natarajan et al. (2008). The numerical experiments are conducted to analyze performance of

different investment strategies determined in view of different risk preferences and to investigate impact of

various model parameters on the performance of robust investment decisions using real data.

The rest of the paper is organized as follows. Section 2 presents a brief introduction to weather derivatives

and Section 3 focuses on modelling temperature uncertainty. The stochastic portfolio selection problem under
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temperature uncertainty is introduced in Section 4. In Section 5, we derive robust portfolio formulations

using different uncertainty sets. Section 6 summarizes design of numerical experiments, implementation

issues and data analysis . We present an empirical analysis of robust weather investment strategies using

real market data and computational results in Section 7. Section 8 concludes the paper with a short summary

of findings and future research directions.

2. Weather Derivatives

Weather derivatives are traded as financial instruments between two parties. The seller agrees to bear

risk for a premium and makes profit if nothing happens. However, if the weather turns out to be bad, then

the buyer claims the agreed amount. Broadly speaking, futures (forwards) and options are main types of

weather derivatives that are written on temperature indices. The reader is referred to Jewson (2002) for

further discussion on different weather derivatives. Besides the underlying variable of temperature indices,

a weather contract must specify such basic elements as the accumulation period, the index location (which

records temperatures used to construct the underlying variable), and the tick-size (i.e., fixed lump-sum

to be exchanged between parties for each level of degree days). The weather indices are defined through

temperature realised at any day for a specific location. The products associated with regions located in the

same geographical region are highly correlated. In this sense, a portfolio allocation problem using weather

derivatives displays different characteristics from other commodity types such as oil and corn.

We consider weather futures and options based on temperature indices associated with m locations that

are indexed by i, j = 1, · · · ,m. Let T denote an investment horizon and t represent future discrete time

periods, t = 1, 2, · · · , T . We assume that t = 0 refers to today. Let H̃it represent the temperature measured

for location i = 1, · · · ,m at time t = 1, · · · , T . The temperature at a specific day is basically average of the

highest and lowest temperatures observed during the day.

A degree day is defined as the difference between a reference temperature and the daily observed tem-

perature. The temperature indices are described by heating-degree-days (HDD) and cooling-degree-days

(CDD) and cumulative average temperature (CAT). In general terms, the HDD (CDD) indices are used

to measure coldness (hotness) of the temperature during a period of November-March (April-November).

Let ri be the reference temperature associated with location i. In general, it is fixed as 18 degrees Celsius

or 65 degrees Fahrenheit. The HDD and CDD indices, respectively, at time t for location i are defined as

temperatures below and over the reference temperature ri, and are formulated as

HDD(i, t) = max(ri − H̃it, 0), and CDD(i, t) = max(H̃it − ri, 0).

The total heating and cooling-degree-days for HDD and CDD indices associated with location i over time

period T are mathematically formulated as

fi =
T∑

t=1

HDD(i, t), and gi =
T∑

t=1

CDD(i, t).

In addition, total daily average temperatures with respect to CAT index at location i during the measurement

period T is calculated as di =

T∑

t=1

CAT (i, t) =

T∑

t=1

H̃it.
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Let f̄i, ḡi and d̄i denote the level of degree days agreed between the parties for HDD, CDD and CAT

indices at location i, respectively. A weather futures contract obligates the buyer to purchase the value of

underlying temperature index at a future date based on the accumulated heating or cooling-degree-days.

The parties exchange the value of the contract at the end of investment horizon. The payoff received from

the weather futures contracts on HDD, CDD and CAT temperature indices for location i, respectively, is

expressed as

FHDD(i) = phi (fi − f̄i), FCDD(i) = pci (gi − ḡi), and FCAT (i) = pcti (di − d̄i)

where phi , pci and pcti are tick-sizes attached to HDD, CDD, and CAT indices, respectively, for location i.

In the CME market, various weather options written on temperature futures are also traded. A call (put)

option provides its owner the right to buy (sell) the underlying asset for a fixed strike price at an agreed

exercise time. The underlying asset is a temperature future written on temperature (HDD, CDD or CAT)

indices for a specified measurement period.

Let Kh
i and Kc

i denote strike prices of HDD and CDD indices, respectively. The value of a weather call

option with underlying futures temperatures written on heating and cooling-degree-days, respectively, for

location i is determined as

CHDD(i) = phi max
(
fi −Kh

i , 0
)
, and CCDD(i) = pci max (gi −Kc

i , 0) .

Similiarly, the value of a weather put option on futures temperatures written on heating and cooling-degree-

days for location i can be computed as follows:

PHDD(i) = phi max
(
Kh
i − fi, 0

)
, and PCDD(i) = pci max (Kc

i − gi, 0) .

Therefore, it is desirable for an investor to exercise the call (put) option when the strike price on the option

contract is lower (higher) than the market value of the underlying temperature indices.

Next, we first describe the temperature model based on autoregressive process, and then introduce a

stochastic portfolio selection model under temperature uncertainty using weather future derivatives. Weather

options can be also included in a similar manner.

3. Modelling Temperature Uncertainty

As mentioned in the introduction, different temperature models have been considered to model weather

derivatives in the literature. The reader is referred to Saltyte-Benth and Benth (2012) and references therein

for the most recent updates in this area. In particular, Benth and Saltyte-Benth (2005) modelled temperature

uncertainty using a discrete mean reverting Ornstein-Uhlenbeck stochastic process and taking into account

the correlation information of locations under consideration. The empirical studies indicated that a mean-

reverting stochastic process is a reasonable choice for modelling temperature dynamics since temperature

gravitates towards its long-run mean. In this paper, following Benth et al. (2008) and Saltyte-Benth and

Benth (2012), we consider a general time series model for temperature dynamics. The temperature model

consists of different components such as trend line seasonality, autoregressive (AR) process and residual.

6
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We use notation tilde to represent randomness; for example, (∗̃) denotes a random variable (∗). Let’s

assume that the trader knows the temperature values today (t = 0), but temperature H̃it for location in

future time periods t for t > 0 are unknown (uncertain). The temperature dynamics for location i at time t

can be modeled as

H̃it = µit + δit

where µit and δit represent the mean and the residual process at time t for location i, respectively. As

suggested by Saltyte-Benth and Benth (2012), the auto-regressive process AR of order 3 is the best fit

for modelling the cyclic component of temperature data. Let lki for k = 1, 2, 3 at location i denote the

parameters of AR(3). The mean process is defined in terms of the seasonal and mean reverting components

as follows;

µit = sit +
3∑

k=1

lki

(
H̃it−k − sit−k

)
. (1)

The seasonal mean function is deterministic and contains a trend and the seasonality of temperature data.

It can be formulated as follows;

sit = a0i + a1it+ a2i cos

(
2π (t− a3i)

365

)
.

The first component (a0i) in the seasonality function of temperature represents the long-term average tem-

perature for location i whereas the trend line (a1it) is used to ensure stationarity in temperature data. A

trend could be expressed as an increasing temperature due to for instance, global warming (Saltyte-Benth

and Benth (2012)). The trigonometric function in the last component refers the seasonal variation in tem-

perature and changes between the coldest and the warmest periods of the year. The size of variation is equal

to two times a2i while a3i denotes the phase variable for the trigonometric function which corresponds to

the hottest day in the year.

As shown by the temperature data analysis in Section 6, and also reported in the literature (for instance,

see Alaton et al. (2002)), the temperature data suggests that the variability in the residual process δit is

not an independent identically distributed random variable. On the other hand, it depends on the season

and also captures correlation of temperatures between all locations (Barth et al. (2011)). Let ρit be the

seasonal variation and Σ represent a m×m matrix with elements of σij where Σ′Σ is the covariance of the

normalized residuals.

Therefore, we can model the residual process as

δit = ρit

m∑

j=1

σij ε̃jt. (2)

where ε̃jt represents independent random noise. The temperature data analysis in Section 6 proves that the

noise term follows a distribution with zero mean and 1 standard deviation.

We model the seasonal volatility using Fourier transform function with a single component defined as

ρit = b0i + b2i cos

(
2π (t− b3i)

365

)
.
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Note that time independent random process exhibit spatial dependence and is used to model the correlation

of temperature changes in different locations. This component is modeled as the summation of independent

random processes as

m∑

j=1

σij ε̃jt. Therefore, temperature of location i at time t can be rewritten as

H̃it = sit +
3∑

k=1

lki

(
H̃i,t−k − si,t−k

)
+ ρit

m∑

j=1

σij ε̃jt.

Let’s assume that the temperature values for 3 days prior to current day, Hi(−2), Hi(−1), Hi(0), and seasonal

components for that period, si(−2), si(−1), si(0), for location i are known. Using the backward induction and

some algebra, one can obtain the temperature at time t for location i as a function of the temperatures at

the beginning of decision period (namely, Hi(−2), Hi(−1), and Hi(0)) and can be written as follows:

H̃it = sit +

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk, (3)

where A1
it =

∑

∀a+2b+3c=t

la1il
b
2il

c
3i, A

2
it = A1

i(t+1) − A1
itl1i, and A3

it = A1
i(t+2) − A1

i(t)l2i − A2
i(t+1)l1i. The total

heating-degree-days for HDD and CDD temperature indices over a planning horizon T are computed as

fi =
T∑

t=1

max


ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk, 0


 , and (4)

gi =
T∑

t=1

max


sit +

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk − ri, 0


 . (5)

4. Stochastic Portfolio Allocation under Temperature Uncertainty

We assume that an investor (a firm, a hedge fund or an insurance company) is concerned with weather

risk and wishes to construct a portfolio using weather derivatives traded in the CME market. Moreover, the

investor considers two types of futures contracts in the market where temperature is the underlying index

for weather futures (written on HDD and CDD temperature indices over a given measurement period).

Let xhi and xci be decision variables representing weights of the futures contracts written on heating and

cooling-degree indices for location i, respectively. The capital is normalized to unity so that we have

m∑

i=1

xhi + xci = 1 (6)

where non-negativity constraints on asset weights, xhi , x
c
i ≥ 0 for i = 1, · · · ,m aim to avoid the short-sale.

The expected terminal wealth obtained from an investment of weather futures written on HDD and CDD

temperature indices for location i is computed as

E
[
xhi p

h
i

(
fi − f̄i

)
+ xcip

c
i (gi − ḡi)

]

8
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Recall that phi and pci define the tick sizes for HDD and CDD contracts, respectively. The investor’s goal is

to maximize the total expected wealth that is achieved by the investment on HDD and CDD weather futures

associated with locations i = 1, · · · ,m. Then the stochastic portfolio allocation problem can be formulated

as follows;

Pnom : max
xhi ,x

c
i

m∑

i=1

E
[
xhi p

h
i

(
fi − f̄i

)
+ xcip

c
i (gi − ḡi)

]

s.t. fi =
T∑

t=1

max


ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk, 0


 ,

i = 1, · · · ,m

gi =
T∑

t=1

max


sit +

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk − ri, 0


 ,

i = 1, · · · ,m
m∑

i=1

xhi + xci = 1

xhi ≥ 0, xci ≥ 0, i = 1, · · · ,m.

Notice that fi and gi functions (in the first and second sets of equations) are written explicitly rather than

substituting in the objective function due to convenience since the uncertain parameters arising in these

equations will be robustified in the upcoming sections.

The solution of the single-period portfolio selection model with recourse determines an optimal allocation

of wealth among temperature derivatives written on heating and cooling indices. The optimal investment

decision is made at the beginning of the investment horizon and total wealth received from the investment

depends on the path the temperature following between today t = 0 and final time period T like some

exotic options. As mentioned earlier, a stochastic programming model assumes that the decision maker is

concerned with the average performance of the system. Moreover, it requires a known distribution of the

underlying uncertainty. The expected wealth, formulated in terms of contributions of weather futures under

consideration, in Pnom can be easily computed by estimating expected return of each weather futures under

an assumption of specific noise distribution. Then the stochastic programming model above becomes a simple

linear programming problem that supplies the investment strategy to achieve maximum portfolio return.

Similarly, we can construct a scenario-based stochastic programming model to maximize the expected wealth

with discrete number of future temperature scenarios that are generated by the underlying distribution of

random parameters. Both approaches provide risk-neutral strategies. On the other hand, for the risk-seeking

investment decisions, the expected risk needs to be specifically modeled and minimized for the optimal

portfolio allocation. In this paper, we consider conditional Value-at-Risk (CVaR) metric and analyze the

risk factor for CVaR constraints in the context of temperature risk management. The alternative risk

preferences of the investor will be imposed through robust approaches in the next section.

Following Rockafellar and Uryasev (2000), the Conditional Value-at-Risk measure for a random variable

ṽ, ρ1−ε(ṽ), is defined as

ρ1−ε(ṽ) = min
a

{
a+

1

ε
E(−ṽ − a)+

}
,

9
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that can be reformulated by a set of the CVaR constraints in view of N discrete scenarios of ṽ as

Ucvar(v) =

{
µ+

1

b(1− δ) ·Nc
N∑

n=1

βn ≤ Cδ, −µ− βn ≤ f(ṽ), βn ≥ 0, n = 1, . . . , N

}

where b·c denotes the integer part of a real number and Cδ is a predetermined constant and f(ṽ) is the

loss function. It is worthwhile to mention that the set of CVaR constraints constructs a scenario-based

uncertainty set in the context of robust optimization; for instance see Bertsimas et al. (2013).

The CVaR portfolio optimization model under weather derivatives considers K realisations of random

temperature. For each realisation k̄ = 1, . . . ,K and futures i = 1, · · · ,m, we can compute γk̄i , and δk̄i as

follows;

γk̄i =
T∑

t=1

max


ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijε
k̄
jk, 0


 , and

δk̄i =
T∑

t=1

max


sit +

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijε
k̄
jk − ri, 0


 .

The expected portfolio return over K scenarios must be at least at the target level Wtarget. This condition

is basically formulated as follows:

K∑

k̄=1

1

K

m∑

i=1

xhi p
h
i

(
γk̄i − f̄i

)
+ xcip

c
i

(
δk̄i − ḡi

)
≥Wtarget.

The CVaR portfolio allocation problem with conditional performance constraint on weather derivatives can

be formulated as follows:

Pcvar : min Γ

s.t. µ+
1

b(1− β) ·Kc
K∑

k̄=1

uk̄ ≤ Γ,

uk̄ ≥ −
m∑

i=1

[
xhi p

h
i

(
γk̄i − f̄i

)
+ xcip

c
i

(
δk̄i − ḡi

)]
− µ, k̄ = 1, . . . ,K

K∑

k̄=1

1

K

m∑

i=1

xhi p
h
i

(
γk̄i − f̄i

)
+ xcip

c
i

(
δk̄i − ḡi

)
≥Wtarget,

uk̄ ≥ 0, xci ≥ 0, xhi ≥ 0 i = 1, · · · ,m, k̄ = 1, . . . ,K.

The CVaR minimization (or maximization) model imposes single objective to find an optimal investment

strategy for minimum risk (or maximum wealth) portfolio in view of risk preferences of the investor. The

multi-objective formulation produces a minimum risk investment strategy to achieve pre-determined wealth

Wtarget. Notice that Pcvar is a linear programming model whose size (in terms of number of constraints and

variables) depends on the number of assets as well as the number of scenarios generated.

Next, we introduce a tractable approach to determining robust investment strategies using weather

derivatives. For a decision maker who is concerned with the worst-case performance of the system, or

10
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probabilistic guarantees on the optimal solution, robust optimization may be a plausible approach since it

takes into account investors’ risk preferences and provides a guaranteed performance at the worst-case.

5. Robust Investment Decisions using Weather Contracts

We assume that uncertain parameters ε̃t vary within an uncertainty set Uε. The robust counterpart of

the stochastic portfolio management problem optimizes the worst-case wealth over a given uncertainty set

for the random variables and can be formulated as

Prob : max
xhi ,x

c
i

min
ε̃it∈Uε

m∑

i=1

(
xhi p

h
i

T∑

t=1

γit + xcip
c
i

T∑

t=1

δit − xhi p
h
i f̄i − xcip

c
i ḡi

)

s.t. γit = max


ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk, 0


 , i = 1, · · · ,m,

t = 1, · · · , T

δit = max


sit +

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk − ri, 0


 , i = 1, · · · ,m,

t = 1, · · · , T
m∑

i=1

xhi + xci = 1, xhi ≥ 0, xci ≥ 0, i = 1, · · · ,m.

The max (a, 0) function (in the first and second sets of constraints of the minimax problem above) takes

either positive value of function a or zero. Therefore, it can be represented by a constraint as y ≥ a where

y ≥ 0. Let Γ be a free variable representing the worst-case portfolio wealth in view of ε̃it ∈ Uε. We can show

that the optimization problem above is equivalent to

max
xhi ,x

c
i ,Γ

Γ−
m∑

i=1

xhi p
h
i f̄i − xcipci ḡi

s.t. Γ ≥
m∑

i=1

T∑

t=1

xhi p
h
i γit + xcip

c
i δit,

γit ≥ ri − sit −
3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk, i = 1, · · · ,m,

t = 1, · · · , T

δit ≥ sit +

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk − ri, i = 1, · · · ,m,

t = 1, · · · , T
ε̃it ∈ Uε, γit, δit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T
m∑

i=1

xhi + xci = 1, xhi ≥ 0, xci ≥ 0, i = 1, · · · ,m.

The worst-case outcome of the stochastic data ε̃it within a pre-specified uncertainty set Uε is derived and

the corresponding representation of each uncertain coefficient is reinjected into the original problem to

obtain its robust counterpart. This is typically a deterministic problem and does not involve random
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parameters. The important issue is how to construct an uncertainty set so that random behaviour of the

data is well captured, and, at the same time, its robust counterpart should be solved efficiently, in the most

computationally tractable way. As Bertsimas et al. (2004) highlighted, an uncertainty set can be determined

by statistical estimates and probabilistic guarantees for the solution. The random data that belongs to an

uncertainty set is mapped out from the probability distribution of uncertain factors. The support of the

random variables can be approximated by using different shapes of the uncertainty sets such as ellipsoidal,

box and polyhedral that have been widely used in different applications in the literature. In this paper, we

consider symmetric (ellipsoidal) and asymmetric uncertainty sets (introduced by Chen et al. (2007)) to find

the corresponding robust counterpart of the asset allocation problem in the context of risk management.

The CVaR optimization approach under the scenario-based uncertainty set takes into account the investor’s

risk preferences. Recall that the scenario-based uncertainty set, that is already defined (in Section 4) for the

CVaR risk optimization model, will be used as a benchmark to compare with the performance of risk-seeking

investors’ robust strategies.

It is worthwhile to mention that the size and shape of the uncertainty sets play an important role on

performance of the robust strategies. The size of the uncertainty set is often related to guarantees on

the probability that the constraint involving uncertain coefficients will not be violated. There is a trade-

off between the amount of protection against uncertainty that is desired and optimality - the smaller the

probability that the constraint will be violated, the more the modeller gives up in terms of optimality of the

robust solution relative to the solution to the original optimization problem.

The shape of the uncertainty set defines a risk measure on the constraints with uncertain coefficients; for

instance, see Natarajan et al. (2009). In practice, the shape is selected to reflect the modeler’s knowledge

of the probability distributions of the uncertain parameters, while at the same time making the robust

counterpart problem efficiently solvable. The symmetric (e.g. ellipsoidal) uncertainty set defines a standard-

deviation-like risk measure on the constraint with uncertain parameters. The uncertainty sets with a specific

asymmetric shape that incorporates knowledge about the skewed probability distributions of the underlying

random asset returns, can improve the performance of investment decisions under Value-at-Risk type risk

measures on the portfolio return (Natarajan et al. (2008)). On the other hand, a symmetric uncertainty set

with an ellipsoidal shape can be interpreted as variance type risk measures (Fabozzi et al. 2007).

We now focus on robust formulations of the portfolio allocation problem for weather derivatives using

symmetric and asymmetric uncertainty sets.

Symmetric Uncertainty Set: In general terms, an ellipsoidal uncertainty set describes a distance

requirement - the form of the Euclidean norm - between all elements of the set and the point estimates of

the uncertain data. For random variables ε̃t = [ε̃1t, ε̃2t, · · · , ε̃mt], we can mathematically define ellipsoidal

uncertainty set UE as

UE =
{
ε̃t |

∥∥∥Q−1/2 (ε̃t − ε̂t)
∥∥∥

2
≤ κ

}
, (7)

where matrix Q denotes an estimated covariance matrix and ε̂t is an expected value of the distribution of

random variables ε̃t. In addition, radius κ measures the level of the robustness (sometimes referred to as the

“robustness budget” or the “price of robustness”). The size of uncertainty set (as defined by κ parameter)

describes a condition on the probability of the constraint (involving uncertain coefficients) feasibility. The

smaller κ value indicates less protection against uncertainty that means more giving up in terms of robustness
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of the solution for the underlying problem.

For random variables ε̃t = {ε̃1t, ε̃2t, · · · , ε̃mt}, at time period t = 1, · · · , T , we have ε̂t = 0 and Q = I.

In this case, the ellipsoidal set for error terms at time t is simplified as UE = {ε̃it : ‖ε̃t‖2 ≤ κ}. Let αit and

βit be Lagrangian multipliers associated with constraints in Rnom. In addition, let’s define a vector Bt of

Bt(i) =
T∑

k=t

(αik − βik)A1
i(t−k)ρit for i = 1, · · · ,m and t = 1, · · · , T . The robust counterpart of the underlying

stochastic program using the ellipsoidal uncertainty set can be derived as in the following theorem.

Theorem 1. The robust counterpart of the portfolio allocation problem under the symmetric uncertainty
set using futures weather contracts with heating and cooling-degree-days can be formulated as

Rsym : max Π−
m∑

i=1

(
xhi p

h
i f̄i + xcip

c
i ḡi

)

s.t.

m∑

i=1

T∑

t=1

(αit − βit)
(
ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
)
− κ

T∑

t=1

‖ΣtBt‖2 ≥ Π

m∑

i=1

xhi + xci = 1

xhi p
h
i − αit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

xcip
c
i − βit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

xhi ≥ 0, xci ≥ 0, i = 1, · · · ,m
αit, βit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T .

As shown in Appendix B, a formal proof of Theorem 1 derives the robust counterpart of the corre-

sponding problem. This process requires to solve (inner) optimization problems that find the worst-case

values of the terms involving uncertain coefficients when these uncertain coefficients vary in the uncertainty

sets. Notice that in case of the ellipsoidal uncertainty sets with zero means and the unity covariance ma-

trices of the uncertain error coefficients, the robust counterparts of the constraints involve the square root

terms. Therefore, the robust portfolio allocation model is a second-order-cone programming problem. An

explanation of the specific optimization setup used for numerical experiments will be provided in Section 6.

The computational experience shows that symmetric uncertainty sets for the uncertain asset returns

in the portfolio optimization problem could lead to a highly conservative strategy, especially when the

random parameters possess skewed distributions, Ceria and Stubbs (2006). In other words, the asymmetric

characteristics of distribution may not be well captured by the symmetric uncertainty set. In order to deal

with this issue, Chen et al. (2007) introduced an asymmetric uncertainty set using a factor-based model

to represent forward and backward deviations of the random variables in the underlying application. They

showed that the asymmetric uncertainty set represents a generic convex uncertainty set (ellipsoidal) when

the underlying random variable follows a normal distribution. Next, we will give a brief overview of this

approach and present the robust formulation of the portfolio management of weather derivatives using an

asymmetric uncertainty set in the following theorem.

Asymmetric Uncertainty Set: Let z̃t be independent random factors with zero mean and Ξt denote

the covariance matrix of ε̂t. Following Chen et al. (2007), we consider a factor model ε̃t = ε̂t + (Ξt)
1
2 z̃t

for the error terms (temperature noise) arising in the future derivatives. Let’s define φj > 0 and ψj > 0,

j = 1, · · · ,m, to denote the forward and backward deviations of random variable z̃t, respectively, and define
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diagonal matrices P = diag(φ1t, · · · , φmt) and R = diag(ψ1t, · · · , ψmt). In addition, decompose the random

variable z̃t into two random variables ṽt and w̃t such that z̃t = ṽt − w̃t where ṽt = max {ε̃t, 0} and

w̃t = max {−ε̃t, 0}. Both ṽt and w̃t are positive and at least one of them is zero. Using a finite distribution

support for the random variables, [−zt, z̄t], the asymmetric uncertainty set is described as

UA =
{
z̃t : ∃ṽt, w̃t ∈ Rm, z̃t = ṽt − w̃t, ||P−1ṽt + R−1w̃t|| ≤ Ω, −zt ≤ z̃t ≤ z̄t

}
.

Theorem 2. The robust counterpart of the portfolio allocation problem under the asymmetric uncertainty
set using futures weather contracts with temperature indices can be formulated as follows;

Rasym : max Υ−
m∑

i=1

xhi p
h
i f̄i + xcip

c
i ḡi

s.t.
m∑

i=1

T∑

t=1

(αit − βit)
(
ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
)
− Ω

T∑

t=1

‖ut‖2 ≥ Υ,

uit ≥ ψi
T∑

k=t

A1
i(t−k)ρit

m∑

j=1

σij (αit + βit) , i = 1, · · · ,m, t = 1, · · · , T

uit ≥ φi
T∑

k=t

A1
i(t−k)ρit

m∑

j=1

σij (αit + βit) , i = 1, · · · ,m, t = 1, · · · , T
m∑

i=1

xhi + xci = 1,

xhi p
h
i − αit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

xcip
c
i − βit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

xhi ≥ 0, xci ≥ 0, i = 1, · · · ,m,
αit, βit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T .

For simplicity of exposition, we can relax the finite distribution support of the random variables. Therefore,

we have used z̃it = ṽit − w̃it where ṽit ≥ 0 and w̃it ≥ 0 for i = 1, · · · ,m during the proof of this result as

in Appendix B. Finally, it is worthwhile to note that since the error terms in the temperature model are

independent from each other, we define the factors as the error terms for the computational study.

6. Design of Numerical Experiments and Data Analysis

This section is concerned with various implementation issues of the proposed models and data analysis.

In particular, we focus on design of numerical experiments, data description, temperature modelling and

estimation of model parameters. The computational results are presented and analysed in Section 7.

6.1. Design of Experiments

In order to illustrate performance of the stochastic and robust portfolio allocation models under temper-

ature uncertainty, we conduct a series of numerical experiments using real data. Specifically, the computa-

tional experiments aim to answer the following questions:

• How does the investor’s risk preferences affect the investment decisions using weather derivatives?

• How do the robust portfolio management models perform when the underlying temperature noise

follows different distributions with symmetric and asymmetric characteristics?
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• How do the model parameters such as the level of robustness affect the investor’s decision on asset

allocation and the portfolio wealth?

In order to answer these questions, we implement the single-period portfolio management problem and

its corresponding robust formulations in MATLAB using the modelling interface YALMIP (Lofberg, (2004))

and the second-order cone programming solver GUROBI. We also use R for statistical analysis, in particular

normality test with GH distribution.

Model Performance: The performance of the portfolio allocation models is measured in terms of optimal

asset allocation, expected portfolio wealth and various risk measures. The robust optimization approach

is benchmarked against traditional stochastic programming approach using expected value optimization

and scenario-based optimization models since they are adopted in many practical applications. The single

period stochastic portfolio management problem is formulated as an expected value optimization model

(Pnom) in view of 1000 generated scenarios with equal probabilities. The robust portfolio allocation model

(Rnom) is the robust counterpart of the nominal portfolio allocation (Pnom) and considers symmetric (Rsym),

asymmetric (Rasym) and scenario based uncertainty sets with CVaR risk metric (Pcvar). In addition to the

optimal investment strategies obtained by the traditional stochastic portfolio optimization approaches, we

also consider a naive equally weighted investment strategy (abbreviated as “E-W (1/N))”) as a benchmark

to compare with performance of the robust portfolio optimization models. In this case, the optimal portfolio

is constructed by weather futures contracts across all available locations. The CVaR investment strategies

are tested at different percentiles since an investor may be concerned with extreme portfolio outcomes. Due

to length limitations, we only present the results obtained by the CVaR optimization at 5% for illustrative

purposes. We can report that both investment strategies - CVaR at 1% and 5% - at varying moments of

error distributions behave in the same manner.

Simulation Experiments: We design simulation experiments to illustrate impact of model parameters

and different error estimations of temperature uncertainty on the investment decisions. For each experiment,

a sample of ten-thousand simulation paths (future realizations) of the random parameter is generated by

predetermined distributions such as normal distribution, extreme value theory (EVT), generalized hyperbolic

(GH), hyperbolic (HD) and t-distributions. Once the portfolio management models (robust or nominal) are

solved to find an optimal investment strategy, we evaluate the optimal investment strategy using those

simulated realizations of noise in the temperature model. Thus we obtain ten thousands of terminal wealth

points evaluated by the optimal strategy on simulated temperature estimations. Finally, we statistically

analyze the sample points evaluated with the optimal strategy. We summarize the results of statistical

analysis in terms of average and variance of those evaluated simulations. We also compute value-at-risk

(VaR) and conditional value-at-risk. The VaR at 5% is found by taking the 500th smallest value whereas

the CVaR is calculated as an average of the 500 smallest values of all simulations. Due to length limitation we

only present statistical analysis of simulated sample points in terms of average of terminal wealth (labelled

as “Expected Wealth”) and the CVaR (labelled as “Conditional Value at Risk 5%”) with respect to varying

moments of random distributions. We also report different characteristics of the portfolio selection models.

Sensitivity Analysis: In order to determine response of the portfolio optimization models to changes in

the market conditions, the moments of random innovations (including mean, variance, skewness and kurtosis)

are independently varied for the sensitivity analysis of temperature errors. In other words, a distribution

is generated from the distribution of normalized random temperature errors (ε̃) having zero mean and unit
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variance. For instance, for HDD temperature indices a positive shift over the mean of the temperature error

process corresponds to a hotter temperature than the seasonal average value. Then we can test possible

effect of a hotter season, which may decrease the value of HDD contracts during the winter period, on

the investment decisions. Therefore, in order to change the mean error we add a constant amount to each

randomly generated sample point. Similarly, when a distribution of random innovation (ε̃) is multiplied by

a constant parameter c, then mean and volatility of (c · ε̃) become zero and c, respectively, while its skewness

and kurtosis remain the same. Therefore, we only change c in order to examine effect of varying volatility.

For testing effect of skewness of innovations on the optimal investment decisions, Chi-Square family of

distributions is used as suggested by Chaffin and Rhiel (1993). Recall that a Chi-square distributed random

variable ε̃′ with k degrees of freedom has mean k, variance 2k and skewness
√

8/k. Moreover, a linear

transformation on the random variable does not affect its skewness. We generate a random variable with

a positive skewness
√

8/k using the linear transformation (ε̃′ − k)/
√

(2k). Similarly, a negatively skewed

random variable corresponds to negative sign of the transformations.

We consider the contaminated normal family of distributions for testing leptokurtic distributions assum-

ing that the underlying random error follows either a standard normal distribution N (0, 1) with probability

p or a normal distribution N (0, S) with (variance S and) probability 1 − p (Chaffin and Rhiel (1993)).

For sensitivity analysis regarding with varying kurtosis of temperature errors, we use S = 4 and vary p to

achieve the desired level of kurtosis that is ranging between 3 and 8 to cover empirical values of historical

temperature data. The corresponding probabilities are 0 and 0.73 for kurtosis levels at 3 and 8, respectively.

6.2. Data Description

We consider calendar-month futures contracts (traded in the CME) on temperature indices for empirical

experiments. The weather derivatives are written on heating-degree-days and cooling-degree-days. We

have gathered historical daily average temperatures from 24 locations in the United States and from 10

major locations in the United Kingdom. The daily average temperatures are measured on Celsius (UK) or

Fahrenheit (USA) scale and computed as the average of the minimum and maximum temperature over the

day. The US daily temperature data regarding with 24 locations from 1973 to 2013 is obtained from the

National Climatic Data Center website. The UK temperature data for 10 locations is gathered from 1960

to 2006 by the Met Office, the UK’s National Weather Service.

The descriptive statistics of daily mean temperatures for the US (Fahrenheit) and UK (Celsius) based

locations are summarized in terms of average, variance, skewness, and kurtosis in Table 1 (Appendix A1).

We observe that daily mean temperatures of cities in America display a wider spectrum (in range of 46.30◦F

and 69.26◦F ) than mean temperatures of locations (in range of 8.87◦C and 11.24◦C) in the UK due to

geographical distance between locations. Apart from those positively skewed locations (namely Las Vegas,

Los Angeles, Portland, Sacramento, Salt Lake City), the other locations in America and all locations in the

UK possess negative skewness. However, both the US and UK locations have positive excess kurtosis.

6.3. Temperature Modelling and Validation

The temperature model described in Section 3 consists of deterministic (µit) and stochastic (δit) compo-

nents and they need to be estimated from the historical data. For the deterministic part involving seasonal

and cyclic components, we first estimate parameters a0i, a1i, a2i, a3i of the seasonality function sit for each
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location i by regressing through time index over the past 40 years of data. The remaining part from the

regression equation is then auto-regressed in order to estimate coefficients l1i, l2i and l3i.

We present the estimated parameters of the temperature model in Table 2 (Appendix A2). Notice that

all locations apart from Los Angeles have a positive trend component in the seasonality function. This can

be interpreted as the effect of global warming that is at the highest level in Tuscon (2.29× 10−4) where the

average temperature has risen by 3.42 ◦F during the last 41 years. In addition, the highest (the lowest)

average difference between the hottest and the coldest days for Minneapolis (Los Angeles) is estimated as

61.04◦F (16.40◦F ). The magnitude of seasonal squared volatility (ρ2
it) is modelled by a cosine process and

estimated by regressing the square of stochastic component with respect to time index. From the estimated

parameters (b0, b2, b3) of the seasonal volatility function, we observe that the variability of the volatility

changes from a city to another and the highest variability in the volatility function is observed during the

cold season (i.e. high values in column b2 means high variability in the volatility function). For example, in

Dallas the volatility increases up to 9.43 (2.76) during the winter (summer). This confirms the use of time

dependent volatility for temperature modelling.

The remaining errors are computed from the division of the stochastic part by seasonal volatility and

this leads to an error process with zero mean and unit variance. However, the errors for each location

at the same time period are correlated to each other. Thus we model vectors of unit errors at each time

period as factors equal to the number of locations multiplied by the dependence matrix σ. It is worthwhile

to mention that QQ plots in Appendix A4 are based on independent factors related to each location and

derived by multiplying the normalized residuals with the inverse of the dependance matrix. The covariance

matrix (consisting of σij) of the remaining residuals after removing the seasonality is computed via the

Cholesky factorization method provided in Matlab. From the AR(3) process and time dependent volatility

of residuals, we see that there exist highly correlated locations such as Baltimore and Washington D.C.

(with correlation coefficient around 0.95). This obviously confirms the importance of the spatial model for

the portfolio management problem using weather (temperature) products.

Residual Analysis: In order to validate the temperature model presented in Section 3, we analyse the

historical average temperature data for each location. For illustrative purposes, we present the findings of

data analysis of Atlanta in Appendix A4. Figure 1 (Appendix A4) displays the histogram and the autocorre-

lation function (ACF) for temperature observations. The temperature data shows non-normality and strong

seasonality characteristics. We obtain the de-trended and deseasonalized temperature data by subtracting

the seasonal component from each data point. Figure 2 (Appendix A4) presents the histogram, the auto-

correlation function and the partial autocorrelation (PACF) for deseasonalized temperature observations in

Atlanta. The PACF shows a strong evidence for autocorrelation of higher degrees than 1. This basically

justifies the use of autoregressive function AR(3). On the other hand, degrees of AR higher than 3 lags be-

come insignificant quite fast for the temperature data as reported by Saltyte-Benth and Benth (2012). The

autocorrelation and the partial autocorrelation functions for the residuals after removing the autoregressive

components are plotted in Figure 3 (Appendix A4). It is clearly seen that although AR(3) is acceptable

to explain the autoregressive pattern, the seasonality in the volatility is still observed (by examining the

autocorrelation function of the squared residuals).

For a validation of the temperature model, we also adopt an approach introduced by Saltyte-Benth

and Benth (2012) using historical observations and one-step-ahead predictions of temperatures in the US
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and UK locations. For each historical data points, the prediction of next-day temperature is computed via

mean temperature defined in (1). The difference between the predicted temperature and the real (observed)

temperature determines the prediction error (PE). The results of residual analysis for the estimated and pre-

dicted errors in terms of mean absolute error (MAE) and root mean squared error (RMSE) are summarised in

Table 3 (Appendix A3). For error terms εit over periods t = 1, · · · , n at location i, MAE(i) = (
∑n

t=1 |εit|) /n
and RMSE(i) =

√(∑n
t=1 ε

2
it

)
/n. The prediction interval (PI) for the day-ahead temperatures is built

through simulation of day-ahead temperatures and 95% and 99% PIs together with the percentage of pre-

dicted values outside of them are reported.

Normality Tests: Next, we proceed by regressing the error terms against the quantiles of a standard

normal distribution. The residuals obtained from the regression analysis represent error rates in the temper-

ature model and compare sample error data (on the vertical axis) to a standard normal population (on the

horizontal axis). Normal QQ plots of daily error terms of Atlanta, Kansas City, Los Angeles and Portland

(from left to right) against a normal reference distribution, presented at top panel of Figure 4 (Appendix A5),

indicate the lack of fit to the regression line for some cities, and consequently, a departure from normality.

The empirical quantile of the temperature error terms tends to be larger than the corresponding quantiles

of a normal distribution. We also apply Kolmogorov-Smirnov test for normal distribution. The normality

hypothesis for all locations apart from Liverpool, New York and Portland are rejected. The p values can get

as low as 10−90 for Tuscon. This confirms that a normal distribution is a poor model to use. The S-shaped

trend basically indicates that error distribution is skewed and displays fat-tails rather than a normal distri-

bution. For the US cities, the skewness of the errors varies between −1.2418 (for Houston) and 0.2558 (for

Los Angeles) while the temperature residuals associated with the UK locations are all negatively skewed. On

the other hand, the residuals associated with all locations in both countries possess positive excess kurtosis.

As a result of an extensive data analysis, we conclude that the temperature error distributions for both the

US and UK locations are heavy tailed and for most of them the normality test fails.

In order to model skewed and fat-tailed structure of data sets, we consider Generalized Hyperbolic

(GH), Hyperbolic (HD) and t-distribution to model temperature errors. In addition to this, we also take

into account extreme cases of data set using Extreme Value Theory (EVT). For a detailed review on those

distributions and their applications, the reader is referred to McNeil et al. (2005). The results of fitting

temperature errors of EVT, GH, HD and t-distributions displayed in Figure 4 (panels 2, 3, 4, and 5,

respectively, in Appendix A5) show that the EVT distribution is poor for explaining the residuals and GH

distributions produce much better fits of temperature errors than the normal error distribution. As a result,

we can say that the quantiles of GH distribution mostly fit the sample quantiles. For all computational

experiments, we generate future temperature realisations by GH distribution.

6.4. Input Parameters to the Portfolio Allocation Models

There are specific parameters that are input to the portfolio allocation models and need to be either

estimated from the historical data or generated via the temperature model (described in Section 3). In

particular, the CVaR optimisation model requires a set of scenarios representing discrete realisations of the

temperature uncertainty at each time point in the future. Notice that the future temperature scenarios

are also to be generated for the sensitivity analysis of model parameters in simulations experiments. For

generating scenarios in these experiments, we apply the same procedure whose brief description is as follows.
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As the first step, a random vector of error terms (following a distribution with zero mean and unit variance)

at each time period through the investment horizon is generated (as being factors equal to the number

of locations). These vectors are used to create dependent error terms via the dependence matrix. The

stochastic component for each period t is determined by multiplying dependent errors by seasonal volatility

(ρit). The auto regressive component is then added (by multiplying the stochastic component of previous

periods with the corresponding reversion values). As the final step, the seasonal temperature averages (sit)

are added. The resulting temperature process for given time horizon leads to a future temperature scenario.

A set of scenarios can be generated in the same manner.

An important step of implementing the robust portfolio models is to determine uncertainty sets and in-

puts that make sense given available data. The inputs to the robust optimization models are the estimated

moments of uncertain parameters and deviations of random factors. For the robust portfolio optimization

models with symmetric uncertainty sets, we estimate expected values and covariance matrices of the temper-

ature errors associated with locations under consideration using the historical data. In case of asymmetric

uncertainty set, we calculate the forward and backward deviations for each random variable by following the

procedure introduced by Natarajan et al. (2008). We construct an asymmetric distribution for temperature

random variables at various levels of backward and forward deviations for the simulation based experiments.

A two-variate asymmetric distribution for the simulated future temperature realizations is generated as

εi =

√
βi·(1−βi)
βi

, and −
√
βi·(1−βi)
(1−βi) with probability βi, and 1− βi, respectively. The resulting distribution of

random parameter has zero mean and unit standard deviation as well as different levels of backward and

forward deviations. In particular, if β < 0.5 (β > 0.5), then it has forward (backward) deviation equal to 1

whereas backward (forward) deviation is greater than 1. As β < 0.5, parameter gets closer to 0 (1) backward

(forward) deviation increases.

The size of an uncertainty set is described by the price of robustness (corresponding to κ and Ω for

the symmetric and asymmetric uncertainty sets, respectively). It is basically related to guarantees on the

probability that the constraint involving uncertain coefficients will not be violated. For the computational

experiments, we vary the value of price of robustness PoRi within a specific range as an indicator of different

risk averseness. It is arbitrarily generated as PoRi+1 = PoRi × (1 + 0.5(i/7)) + 0.05 for i = 1, 2, · · · where

PoR1 = 0. This provides exponentially increasing values of price of robustness starting from 0.05. Moreover,

from the numerical study we observe that the robust portfolios that are constructed by the budget of

robustness higher than 2.76 consist of a weather derivative based on single location. Therefore, we only

present the results of robust investment strategies obtained at price of robustness within [0, 2.76] so that the

optimal portfolio strategy is diversified among various weather contracts associated with different locations.

The other input parameters to the optimization models are selected as follows. The duration of weather

contracts is one month. The tick size is $20 for heating (phi ) and cooling (pci ) contracts based on location

i. The financial data regarding with future prices of the underlying contracts is not publicly available.

Therefore, the contractual prices f̄i and ḡi of weather derivatives associated with location i are generated by

attaching a random factor (between 0.95 and 1.05) to the average HDD and CDD levels for the upcoming

month. The randomness reflects the market related uncertainty or possible supply-demand imbalance.
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7. Computational Results

In this section, we present the results of numerical experiments to illustrate performance of the portfolio

allocation models and impact of uncertainty sets as well as model parameters on the optimal investment

strategy and to analyze temperature risk management from the perspective of reducing estimation error on

random temperature noise.

7.1. Performance of Portfolio Management Models

We are first concerned with performance comparison of various investment strategies (obtained by the

stochastic and robust portfolio optimization models) in terms of optimal asset allocation of weather futures

for HDD and CDD temperature indices on winter and summer periods, based on the US and UK locations.

Optimal Asset Allocation: Figure 1 illustrates optimal asset allocations obtained by solving the

CVaR optimization model (left) at different targeted wealth and the robust portfolio management models

under symmetric (middle) and asymmetric (right) uncertainty sets at varying price of robustness using HDD

(top panel) and CDD (middle panel) indices for the US locations as well as HDD (bottom panel) indices

for the UK locations. Different colours in Figure 1 represent asset allocations (weights) of various futures

contracts on different locations. Note that the optimal asset allocation using the CDD temperature indices

based on the UK locations is not presented in this figure since these contracts lead to a conservative strategy

suggesting to invest on single location. Recall that, during the summer period, the worst-case temperature

is below the threshold level (i.e. average temperature around 18oC) in Britain.

For a fixed price of robustness, the optimal solution of the robust portfolio allocation models under

symmetric and asymmetric uncertainty sets determines an investment strategy using weather derivatives

on the worst-case temperature error estimation within the corresponding uncertainty set. For the price of

robustness that is fixed at zero, the nominal model produces an optimal strategy that invests on single

location with the highest return. Generally speaking, Figure 1 shows that the robust portfolios constructed

by CDD (HDD) weather derivative contracts using symmetric and asymmetric uncertainty sets display

different (same) characteristics. More precisely, we make the following observations:

• The robust decision-making models under symmetric and asymmetric uncertainty sets at fixed price

of robustness within a range [0.05, 1.92] provide well-diversified portfolios of HDD weather derivative

contracts among different locations in the USA. Note that the northern cities have mean tempera-

ture below the reference temperature during the winter period. For high price of robustness varying

within [1.92, 2.76), the robust strategy (with both symmetric and asymmetric uncertainty sets) is still

profitable and diversified. However, the robust model at fixed budget of robustness 2.76 suggests to

invest on single location and provides zero profit at the worst-case. This implies that HDD weather

derivative contract at the worst-case has no value at certain threshold of budget of robustness (i.e. any

allocation gives 0 for the contract).

• The robust portfolios, constructed by the CDD weather derivative contracts based on several US

locations, are profitable during August unlike those contracts based on the UK locations due to the

climate. Note that during the summer the mean daily temperature at any location in the UK does

not exceed 18◦C. Thus, the worst-case temperature remains below the threshold level and the robust

portfolio consists of a weather future for single location. For the CDD temperature indices based on
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Figure 1: Optimal asset allocations obtained by the CVaR optimization model (left column), robust optimization with sym-
metric (middle column) and asymmetric (right column) uncertainty sets using HDD (top row) and CDD (middle row) weather
derivatives for the US locations and HDD (bottom row) indices for the UK locations.

the US locations, the robust portfolios constructed using the symmetric (asymmetric) uncertainty set

are diversified for the budget of robustness varying within [0.05, 1.92] ([0.05, 0.83]).

• The nominal strategy at zero price of robustness suggests to invest on HDD (CDD) contracts based

on Minneapolis (Las Vegas) while the robust strategy with the highest price of robustness, at 2.76,

considers HDD (CDD) contracts based on Los Angeles (Portland for symmetric and asymmetric un-

certainty sets, respectively). For the UK data set, the nominal strategy also prefers single location of

Edinburgh. However, the robust portfolio optimization model (at price of robustness 2.76) provides a

well diversified asset allocation strategy among the HDDs based on London, Belfast and Cardiff.

• The CVaR investment strategies for both HDD and CDD temperature contracts of the US locations

provide diversified portfolios consisting of different locations in America when the expected target

return is low. As the target portfolio wealth increases, the investment strategies suggest to invest

on single location: that is Philadelphia and Cincinnati for HDD and CDD contracts, respectively. A

similar pattern is observed for HDD contracts based on the UK locations. The CVaR portfolios with

targeted wealth in range [1210, 1265] consist of HDD temperature indices based on three locations
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whereas the maximum wealth portfolio is constructed by only HDD contract of Southampton.

CVaR Investment Decisions: For performance comparison of the CVaR investment strategies ob-

tained by weather futures written on HDD temperature indices for the US (left) and UK (right) locations,

we construct the simulation-based efficient frontiers as follows. The lowest (Wmin ) and the highest (Wmax)

portfolio positions on the efficient frontier are obtained by solving the CVaR (5%) risk minimization prob-

lem (ignoring the portfolio wealth constraint) and the wealth maximization problem (ignoring the risk

constraint), respectively. The range [Wmin,Wmax] of minimum and maximum wealth portfolio positions is

discretized by twenty points. At each discrete point on the frontier, we solve the CVaR minimization model

(Pcvar) in view of the expected portfolio wealth constraint with fixed target-wealth Wtarget ∈ (Wmin,Wmax).

As a result, the optimal asset allocations presented in Figure 1 (left column) are obtained. The optimal asset

allocation at each discrete point is then evaluated with a sample of 10000 future temperature realizations

generated by GH distribution with average errors 0, 0.05, and 0.1 (at fixed unit standard deviation) and

standard deviations 0.5, 1, and 1.5 (at fixed zero mean). Figure 2 presents the simulation results in terms of

average of the worst 500 evaluated paths in “Expected Wealth” and “Conditional Value at Risk 5%” space.

We observe that the CVaR investment strategies produce the highest (lowest) expected wealth as well as
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Figure 2: Impact of CVaR efficient portfolios using HDD temperature indices for the US (left) and UK (right) locations

the highest (lowest) “Conditional Value at Risk at 5%” when the future temperature realizations are dis-

tributed with low (high) mean (standard deviation, respectively). This performance can also be interpreted

as analogue of a risk-return frontier relationship for the mean-variance portfolio allocation problem.
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Performance of Robust Investment Strategies: In order to illustrate performance of the stochastic

and robust portfolio allocation models as well as the naive equally weighted investment strategies, we design

simulation experiments using two cases (labelled as “Case I” and “Case II”). In Case I, temperature reali-

sations are generated by a skewed distribution with mean 1.4 at fixed unit standard deviation whereas Case

II uses a skewed distribution of temperature realisations with zero mean and variance 1.9. It is worthwhile

to emphasise that Cases I and II basically aim to create unfavourable and favourable weather conditions to

express “weather conditions that were different than expected on average’’ and “weather conditions as we

expected”, respectively. Table 1 summarises the results of simulation experiments using investment strategies

obtained by the stochastic portfolio allocation problem (nominal model, henceforth abbreviated as “N-M”)

and the robust optimization models under ellipsoidal uncertainty set (abbreviated as “R-S”) at various

budget of robustness (PoR). We also consider an equally weighted portfolio (abbreviated as “E-W (1/N)”)

that is constructed by 1/N asset allocations where N is number of temperature derivatives based on various

locations under consideration.

Performance HDD Indices Based on the US Locations HDD Indices Based on the UK Locations
Statistics Mean S-Dev Skew Kurt VaR CVaR Mean S-Dev Skew Kurt VaR CVaR

Models Case I: Skewed distribution with high-mean (1.4) and low-variance (1.0)

N-M (0) 67.10 72.03 -0.45 3.00 27.18 16.30 -46.80 116.09 -0.39 3.18 -71.95 -81.06
R-S (0.05) 71.47 65.34 -0.45 2.89 25.86 16.75 -52.42 131.36 -0.41 3.73 -79.45 -84.41
R-S (0.14) 64.26 35.56 -0.46 2.81 33.98 29.40 -50.98 124.65 -0.43 3.42 -73.60 -80.18
R-S (0.28) 66.49 28.43 -0.46 3.03 35.49 29.91 -48.33 120.08 -0.39 3.53 -69.21 -75.62
R-S (0.50) 68.52 20.85 -0.47 3.05 30.52 27.06 -48.57 120.66 -0.41 3.39 -70.35 -75.51
R-S (0.83) 71.76 18.56 -0.45 2.97 25.23 22.47 -47.27 119.90 -0.40 3.29 -69.85 -76.12
R-S (1.29) 77.97 15.15 -0.41 3.02 19.14 18.19 -47.80 118.68 -0.41 3.45 -68.10 -76.05
R-S (1.92) 89.47 15.45 -0.38 3.02 17.48 13.77 -46.96 118.78 -0.38 3.21 -70.90 -75.32
R-S (2.76) 82.95 14.08 -0.37 2.85 -16.88 -22.97 -52.32 129.94 -0.34 3.82 -75.40 -82.06
E-W(1/N) 69.60 14.52 -0.37 2.81 24.48 21.12 -45.86 111.65 -0.36 3.40 -67.75 -71.55

Models Case II: Skewed distribution with zero-mean and high-variance (1.9)

N-M (0) 201.70 94.97 -0.51 2.60 152.98 143.23 64.57 46.40 -0.41 2.79 30.51 23.70
R-S (0.05) 201.34 85.69 -0.53 3.03 155.05 145.79 63.21 25.31 -0.41 2.84 38.06 33.03
R-S (0.14) 170.63 50.05 -0.52 2.62 135.25 128.18 60.57 22.90 -0.40 3.19 36.64 31.85
R-S (0.28) 159.87 38.89 -0.54 2.98 128.68 122.45 57.66 21.68 -0.37 2.97 34.38 29.72
R-S (0.50) 144.80 29.20 -0.54 2.80 117.79 112.38 56.42 21.54 -0.38 3.36 33.21 28.57
R-S (0.83) 130.96 24.27 -0.50 2.79 106.33 101.40 54.82 21.53 -0.35 3.05 31.63 26.99
R-S (1.29) 119.86 21.97 -0.52 2.61 96.43 91.74 53.83 21.54 -0.34 3.05 30.63 25.99
R-S (1.92) 103.36 20.50 -0.50 2.72 80.73 76.20 53.09 21.55 -0.33 3.07 29.88 25.24
R-S (2.76) 92.21 18.32 -0.50 2.96 70.81 66.53 50.73 23.06 -0.32 2.73 26.72 21.92
E-W(1/N) 124.42 19.27 -0.51 2.80 102.08 95.32 53.73 20.25 -0.31 3.08 30.36 25.37

Table 1: Performance comparison of investment strategies with HDD indices based on the US (left) and UK (right) locations.

• In general, the optimal portfolios of HDD contracts regardless locations of the UK and America

display a contracting behaviour in Cases I and II although they still keep specific characteristics of the

underlying modelling approaches. We also observe an exceptional pattern in Case I using the HDD

contracts based on the UK locations. In this case, all strategies produce negative wealth (loss) in

average and the equally weighted strategy outperforms to the other strategies by achieving the lowest

average loss and volatility. Recall that the distribution of future temperature realisations in Case II

has higher volatility than the past observations while in Case I expectation of future forecasts is higher

than the one observed from the past data.
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• The nominal model (providing a risk-averse investment strategy) in Case II produces the highest wealth

as well as the highest volatility in comparison with other strategies. However, when the investor has

higher temperature expectation than the one observed in data (as in Case I), the nominal strategy of

HDD contracts for the US locations provides one of the lowest wealth and the highest volatility. On

the other hand, the performance of the equally weighted strategy takes place between performances of

the robust and nominal models.

• Generally speaking, the robust optimization models based on the worst-case analysis behave differently

in both cases. In Case II, robust portfolios of HDD contracts on locations of both America and the UK

provide decreasing mean and standard deviation of portfolio wealth as the price of robustness increases.

However, in Case I, as the price of robustness varies in range (0.05, 2.76), average portfolio wealth

increases while the standard deviation of portfolio wealth decreases. This shows that expectation of

forecasts plays an important role on performance of the robust investment strategies.

• In addition, from the results of robust portfolios of HDD on the US locations in Case I, we observe that

the robust strategies at each price of robustness except 0.14 and 0.28 outperform (providing higher

wealth than) the nominal strategy. Moreover, they persistently produce lower volatility when extreme

(unfavourable) weather conditions are realised. Thus, we can say that when temperature forecasts have

higher average temperature than the one estimated from the past data (as in Case I), robust portfolios

of HDD contracts display a non-inferiority property that is referred as the worst-case performance.

The results in Table 1 clearly display that performance of weather investment strategies highly depend

on the underlying model as well as the future temperature realizations. We exploit these observations further

by carrying out an extensive empirical analysis.

7.2. Sensitivity Analysis

We conduct a sensitivity analysis in order to investigate impact of model parameters and characteristics of

temperature distributions on investment strategies. More precisely, we aim to empirically establish possible

effects of size and shape of uncertainty sets, choice of distributions of underlying random variable as well

as moment estimations on performance of the portfolio allocation models using weather derivatives (HDD)

based on the US and UK locations.

Choice of Uncertainty Sets: We first intend to analyse effect of the choice of uncertainty sets in

portfolio management of weather derivatives by taking into account the investor’s risk preferences. We

consider discrete (scenario-based) and continuous (symmetric and asymmetric) uncertainty sets.

Scenario Based Uncertainty Set: A risk-averse investor wishes to minimize portfolio risk while achieving

a pre-determined portfolio wealth. The minimum portfolio risk is obtained by solving the CVaR minimiza-

tion model in view of 1000 temperature scenarios (see Section 4). The optimal asset allocation, obtained

by solving the CVaR risk minimization model at fixed target portfolio wealth, is used for the simulation

experiments. We select the target portfolio wealth as 1006, 1100, 1210 and 1320 (1194, 1221, 1252, and 1283)

for weather derivatives based on locations in the US (UK). Notice that these four scenarios are chosen from

the interval [1006, 1320] ([1194, 1283]) for the US (UK) locations (see Section 7.1). From the computational

results, we find that an optimal strategy at fixed target wealth selected out of this range suggests to invest

only one location. It is worthwhile to mention that the CVaR risk minimization strategy provides better

diversification among different locations when the number of discrete scenarios is increased.
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Figure 3: Performance of CVaR investment strategy using HDD temperature indices for the US (left) and UK (right) locations

The plots displayed in the first and second panels in Figure 3 summarize the simulation results obtained

by varying mean temperature errors (at fixed unit standard deviation) and standard deviation of temperature

errors (at fixed zero mean), respectively, for locations in the US (left) and the UK (right) in terms of mean

wealth. The plots in the last panel present the simulation results in terms of average of the worst 500

evaluated paths at different standard deviation of temperature errors.

From results of the US case, we can easily observe that the optimal investment strategy that minimizes

CVaR risk measure at the highest (lowest) target portfolio level provides the highest losses (lowest expected

wealth) whereas the lowest target portfolio provides the lowest loss (highest expected wealth). As mean error

of future temperature distribution increases, we obtain the worst-case loss by implementing an investment

strategy obtained at the highest target portfolio level increases regardless the choice of data sets. For the

UK case, however, performance of portfolios at the lowest and highest target wealth is very close in terms of
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expected wealth. On the other hand, the estimated noise distribution with zero mean and standard deviation

varying between 0.5 and 1.5 for the US and UK locations does not change the pattern of losses achieved by

various investment strategies under temperature scenario uncertainty set. When the investor increases the

portfolio target level (Wtarget), then the CVaR optimal strategy persistently provides high expected wealth

and low conditional value-at-risk 5% at varying standard deviation of future temperature realizations.

Overall, these results confirm that a low targeted investment strategy performs better (worse) when the

average (standard deviation) of temperature errors increases. We can conclude that when investor’s CVaR

risk preferences is considered, the choice of target portfolio position combined with the moments of noise

distribution for future temperature realizations plays an important role on the weather risk management.

Symmetric and Asymmetric Uncertainty Sets: In order to understand impact of uncertainty sets and

their shapes on the robust strategies, we design empirical experiments where future temperature paths follow

different distributions as described in Table 2. Exp 1 considers a normally distributed (0.2 mean and unit

Experiment ID Type of Distribution Description

Exp 1 Symmetric normal distribution, N(0.2, 1)
Exp 2 Asymmetric historical positive deviations
Exp 3 Asymmetric historical negative deviations
Exp 4 Asymmetric random deviations
Exp 5 Asymmetric fixed positive deviations
Exp 6 Asymmetric fixed negative deviations

Table 2: Distributions of temperature noise

variance) temperature noise. For other experiments, we assume that future temperature realizations follow an

asymmetric distribution with different forward and backward deviations. More specifically, Exp 2 and Exp 3

use positive and negative deviations as estimated from the corresponding historical data set, respectively.

In Exp 5 and Exp 6, positive and negative deviations, respectively, are fixed for each location as 2. Exp 4

uses a random asymmetric structure where βi for each location i is randomly selected from interval [1, 2].

The forward and backward deviations of an asymmetric uncertainty set (using βi < 0.5) are specified (in

experiments 2, 3, 4, 5 and 6) as follows. The case of “historical” asymmetric uses actual deviations estimated

from the historical temperature data. For “equal” case, the forward and backward deviations are assumed

to be constant and fixed as 2. For “increasing” and “decreasing” cases, an increasing and decreasing order

of forward and backward deviations arising within interval [1, 3.4] are considered. “Random” deviations

at each location do not follow any structure, but are randomly generated. Figure 4 illustrates performance

comparisons of the robust models under symmetric and asymmetric uncertainty sets with fixed price of

robustness at 1.3 (left) and 0.45 (right) using the US (top) and UK (bottom) locations for each experiment.

• As expected from Exp 1, the robust investment strategy under the symmetric uncertainty set provides

higher wealth than the strategy under the asymmetric uncertainty set for both US and UK data sets

regardless the choice of price of robustness since temperature forecasts follow a symmetric distribution.

Similarly, as in Exp 2, · · · , and Exp 6, the asymmetric uncertainty set with different shape of distri-

butions (selecting different forward and backward deviations) outperforms the symmetric uncertainty

set. This is due to the nature of future realizations having asymmetric characteristics.

• We also observe that the choice of deviations describing a shape of the asymmetric uncertainty has
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Figure 4: Performance comparisons of symmetric and asymmetric uncertainty sets at fixed price of robustness at 1.3 (left) and
0.45 (right) using the US (top) and UK (bottom) locations

an impact on the robust strategy. Furthermore, asymmetric structure follows the same pattern under

different price of robustness. Decreasing (equal) asymmetric distribution produces higher (lower) ex-

pected wealth than other distributions using temperature indices based on the US locations. However,

historical (increasing) asymmetric distribution using the temperature indices based on the UK loca-

tions provides the highest (lowest) wealth. An asymmetric uncertainty set with fixed deviations using

both data sets behaves in more conservative fashion and, therefore, leads to the lowest wealth.

As a conclusion, we can say that distribution of various temperature realizations combined with the

choice of uncertainty set plays an important role on the performance of the robust investment strategies.

Temperature Error Distributions: We now wish to investigate effect of various temperature error

distributions on the optimal asset allocation. For this experiment, we evaluate the optimal investment

strategy (obtained by solving the nominal and robust portfolio models for fixed price of robustness at 1.29)

with each simulated future temperature index. A sample of future realizations of temperature indices is

generated by various distributions with the same mean and standard deviation of temperature noise. Figure

5 displays the results of simulation experiments in terms of expected portfolio wealth for varying values of

average errors (top panel) and standard deviation of noise (bottom panel).

The EVT distribution provides the lowest worst-case expected wealth of simulated temperatures while

other distributions show the same decreasing performance pattern as average error of future temperature

realizations increases. On the other hand, for standard deviation of future temperature realizations varying

between 0.5 and 1.5 (fixed zero mean), all distributions except EVT provide increasing expected wealth of

robust portfolios. In case of EVT, the investment strategies based on the US and UK locations produce the

same decreasing pattern since EVT considers only extreme temperature cases. While t-distribution provides

the best portfolio performance using HDD temperature indices based on the US locations, GH distribution
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Figure 5: Impact of various temperature error distributions using the US (left) and UK (right) locations

outperforms for the UK case. Finally, a non-smooth behaviour of expected wealth of the portfolios using

the UK locations (unlike in the US case) is observed at any level of standard deviation of temperature

errors using any distribution. As a result, we can conclude that standard deviation (average) of temperature

error distributions, used for generating future temperature realizations, has high (almost no) impact on the

performance of robust strategies regardless locations of the weather derivatives.

Next we would like to establish how the moments of innovations might have impact on the optimal

investment decision-making. We consider generalized hyperbolic distribution to generate future scenarios of

temperature since it has been established by the data analysis as the best fit of the historical data.

Moments of Temperature Distributions: For this experiment, we conduct simulation experiments

where the optimal strategies obtained from the nominal (with zero price of robustness) and robust portfolio

allocation models (with fixed price of robustness at 0.14, 1.3, and 2.8) are evaluated with the simulated

temperature errors of HDD weather contracts based on the US and UK locations. We compute statistical

properties of simulation paths, but only present simulation results in terms of “Expected Wealth” and

“Conditional Value-at-Risk at 5%” in Figures 6, 7, and 8. In Figure 6, the average temperature errors vary

between zero and one (with fixed unit standard deviation) whereas standard deviation of temperature errors

ranges from 0.5 to 1.5 (with fixed zero mean) in Figure 7. We also investigate performance of portfolio

allocation models by varying higher order moments (skewness and kurtosis) of temperature errors using

weather contracts based on the UK and US locations. From the computational results, we observe that

skewness and kurtosis of error distributions seem to display the same performance characteristics in terms of

impact on the investment decisions. Therefore, we only present the results of skewness for changing values
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Figure 6: Performance of investment strategies for the US (left) and UK (right) locations at various average temperature errors

within [-1.5, 1.5] in Figure 8.

We can make the following observations from the results in Figure 6:

• An investor’s expected terminal wealth depends on average, but not necessarily standard deviation,

of temperature errors used for distribution of future realizations. For low average temperature errors

(varying between 0 and 0.2 (0.1) for the US (UK) locations), the robust portfolio models (at price

of robustness 0.14, 1.3 and 2.8) as well as the nominal portfolio model (at zero price of robustness)

provide positive expected terminal wealth. In these cases, the nominal model outperforms the robust

models. We also observe that the robust models with low price of robustness produce higher expected

wealth than the ones with high price of robustness (described as more conservative models).

• As average temperature error increases (from 0.2 (0.1) to 1 for the US (UK) locations), the terminal

wealth achieved by each portfolio becomes negative since the value of HDD temperature indices de-

creases (i.e. return of future weather derivatives decreases). At those error terms, the robust strategy

with the highest price of robustness (2.8) provides the highest terminal wealth. In other words, the

robust investment strategy allows the investor to be guarded against the worst-case. On the other

hand, the nominal strategy produces the lowest wealth at unit average error.

• It is also worthwhile to mention that the gap between losses supplied by the robust models due to an

investment on HDD derivatives for the US locations dramatically decreases as the price of robustness

increases from 0.14 to 2.8. A similar pattern can be seen from the UK locations only for average

temperature errors within interval [0.6, 1] where the gap is much smaller than the US case.

As illustrated in top panel of Figure 7, the standard deviation (varying between 0.5 and 1.5) of future
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Figure 7: Performance of investment strategies for the US (left) and UK (right) locations at various standard deviation of
temperature errors

temperature error realizations does not have impact on the performance of investment strategies as far as the

expected terminal wealth is concerned. For both data sets, the nominal strategy persistently outperforms

the robust strategy and it provides the highest expected terminal wealth when average of sample for future

realizations of temperature errors is fixed at zero. As the price of robustness increases from zero to 2.8, the

expected portfolio wealth decreases. However, each strategy remains stable for the US locations when the

standard deviation of simulations increases. On the other hand, small variations for the UK data is realized,

but the performance order of investment strategies remains the same.

We also observe that mean and standard deviation of temperature errors’ distributions have impact on

“Conditional Value at Risk 5%” for HDD contracts on locations of the US and UK. More precisely, values

of CVaR 5% (loss) for all investment strategies decrease as mean (standard deviation of) error distributions

vary from 0 to 1 (from 0.5 to 1.5) as shown (bottom panel) in Figures 6 and 7.

As can be seen from Figure 8, skewness of future temperature errors and expected portfolio wealth

is negatively related. In other words, an increasing value of skewness decreases expected portfolio wealth

obtained by all strategies regardless the type of HDD indices based on the US and UK locations while the

performance order of all strategies remains the same starting from the nominal strategy (at the highest level)

through the robust strategies at increasing price of robustness (at the lowest level). In terms of CVaR 5%

of portfolio wealth, a general performance pattern is not seen.
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Figure 8: Performance of investment strategies for the US (left) and UK (right) locations at various skewness of temperature
errors

7.3. Annualized Portfolio Performance and Risk Metrics

We also investigate economical performance of trading strategies based on monthly weather derivatives

in terms of annualized return and risk-adjusted performance measures such as annualized volatility, Sharpe

ratio, maximum drawdown and information ratio. The reader is referred to Bacon (2008) for further infor-

mation on different portfolio measurements. A rolling horizon approach is adopted for one year investment

horizon (T = 12) starting from the 1st of January. A myopic multi-period portfolio model is created as

follows. At the beginning of each time period t = 1, · · · , T , the corresponding portfolio optimization model

is solved to determine the optimal asset allocation decisions for a month ahead. The portfolio wealth is

computed at the end of time period t using the predicted future temperature. Then the amount of capital,

that is gained in time t, is to be invested for time t+ 1. We resolve the optimization problem to determine

the derivative positions in time t + 1. This procedure is carried out till the end of investment horizon T .

Since the duration of weather derivatives is for one month, it is not possible to keep the position of a given

contract. We assume that the transaction cost for any of strategy (where the whole capital is invested to

take a market position) remains the same over the investment horizon and not included for the numerical

experiments. In order to eliminate possible effect of future temperature realisations, these experiments are

repeated by 1000 different simulations. The average performance of portfolio return and risk metrics are

computed over all simulations and these results are presented in Table 3.

The cumulative annual return is measured as average monthly portfolio return whereas the annualised

volatility represents the variability of monthly portfolio return over a year. The Sharpe ratio defines a risk-

adjusted portfolio return and is computed as the ratio of the excess return of the portfolio to its volatility
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where the risk-free return is assumed to be 1%. As expected, the nominal strategy provides the highest

annualized portfolio return and annualized portfolio volatility in average. On the other hand, as price of

robustness increases, the robust strategies provide a decreasing annualised portfolio return as well as portfolio

volatility, but an increasing Sharpe Ratio. The equally weighted portfolio’s annualised return (3.40) and

volatility (3.23) are higher (lower) than those values obtained by the robust strategy at price of robustness

in range [0.83,2.8] ([0,0.83), respectively).

In Average Cumulative Annualized Sharpe Maximum Information
Models (PoR) Annual Return Volatility Ratio Drawdown Ratio

N-M (0) 7.47 9.60 0.737 6.93 0.412
R-S (0.05) 6.96 8.90 0.730 6.43 0.439
R-S (0.14) 6.18 7.26 0.789 5.99 0.703
R-S (0.28) 5.22 5.44 0.807 4.97 0.870
R-S (0.50) 4.23 4.21 0.817 4.19 0.459
R-S (0.83) 3.25 2.96 0.821 3.06 -0.128
R-S (1.29) 2.31 1.51 0.946 2.30 -0.503
R-S (1.92) 2.20 1.45 0.957 2.01 -0.491
R-S (2.76) 2.06 1.21 0.986 1.90 -0.435
E-W(1/N) 3.40 3.23 0.837 2.97 0.0

Table 3: Average annualised portfolio performance and risk metrics

Similarly, maximum drawdown expresses a type of downside risk over an investment period of a year.

It represents the maximum loss from a peak to a trough of a portfolio, before a new peak level is reached.

As Table 3 illustrates, the robust strategies at each price of robustness outperform (i.e. producing lower

maximum drawdown than) the nominal strategy. In addition, the robust portfolios at price of robustness

varying in (0.83,2.76] also provide lower maximum drawdown than the equally weighted portfolio does.

Notice that the nominal strategy produces the highest maximum drawdown.

In order to compute the information ratio of the nominal and robust portfolios, the equally weighted

portfolio is selected as a benchmark. The information ratio of a specific portfolio is expressed as the ratio of

excess returns (difference between the portfolio returns and the benchmark portfolio returns) to the tracking

errors (volatility of those excess returns). From Table 3, one can observe that the portfolios obtained by the

robust strategy with low (high) price of robustness within range [0.05, 0.50] (and [0.83,2.76], respectively)

provide higher (lower) information ratio than the portfolio of nominal strategy. A high information ratio

highlights more consistency in terms of outperformance of the robust strategy with respect to the benchmark.

Finally, we conduct out-of-sample experiments to backtest performance of the different investment strate-

gies using the HDD indices based on the US locations over a five-year investment horizon (that is monthly

historical data from 2009 to 2013). The initial wealth is $1000. For this experiment, we first solve the

portfolio problem at the beginning of a month and evaluate the optimal investment strategy for the next

month to compute the portfolio wealth. Then for the upcoming months we rerun the portfolio allocation

model with the updated wealth. By moving one month time window over the five-year investment horizon,

we compute the final wealth (or cumulative portfolio profit) for each calendar month.

Figure 9 presents backtesting results in terms of portfolio wealth obtained by the nominal, robust (with a

symmetric uncertainty set at different robust of budget) and equally weighted investment strategies. These

results confirm that the nominal model (with no consideration of uncertainty) outperforms to other strategies

whereas the equally weighted portfolio provides a similar performance as the robust strategy R-S (1.3). The
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Figure 9: Backtesting results for HDD temperature indices based on the US locations

robust strategies at price of robustness varying from 0.05 to 1.3 produce lower portfolio wealth, but seem

to be less volatile than the nominal strategy over the investment horizon. On the other hand, the most

conservative robust investment strategies R-S (1.9) and R-S (2.8) produce the lowest portfolio wealth over

the investment horizon (with decreasing performance pattern). Notice that the nominal strategy as well as

the robust strategies with high price of robustness show a highly volatile behaviour over time.

8. Conclusions

In this paper, we study a single-period portfolio allocation problem under temperature uncertainty. We

introduce a robust optimization approach for the portfolio allocation problem from the perspective of an

investor who is dealing with temperature error distribution, and wishes to be protected against the worst-

case realizations of the uncertain weather. We suggest a spatial temperature modelling where correlation

between locations of weather derivatives under consideration is explicitly taken into account. This model

can also be used for hedging purposes to obtain an insurance portfolio in practice.

Weather derivatives are traded on different locations for the purpose of insurance over various weather

events. In this paper, the robust portfolio optimization approaches are proposed for weather derivatives to

immunize an investment strategy against the uncertainty due to temperature forecasts. Although robust

optimisation involves modelling and solving advantages in terms of, for instance, computational tractability

for real life applications, it has some drawbacks. One of the limitations is the question of how to construct

an uncertainty set and what size of the uncertainty set to choose. This drawback is extensively studied

in computational experiments. We approximate the support of uncertain temperature error parameters in

different ways by using specific shapes for the uncertainty sets. In other words, portfolio risk is integrated

via robust optimization with symmetric and asymmetric uncertainty sets as well as a scenario uncertainty
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set with the Conditional Value-at-Risk measure. The advantage of incorporating uncertainty through the

uncertainty sets is that one does not need to make restrictive assumptions on the underlying dynamics of

the processes for these uncertainties and can incorporate varying degrees of knowledge about the underlying

random probability distribution.

From the extensive computational experiments, we can conclude that the robust portfolios provide better

worst-case performance and produce a better diversification in comparison with the nominal model. The

empirical study indicates that an investor’s risk preferences, the choice of uncertainty set in view of different

characteristics as well as price of robustness play an important role on the performance of the robust

investment strategy. In particular, the sensitivity analysis on model parameters indicates that the investor’s

expected terminal wealth is highly affected by average, but not necessarily standard deviation or higher

order moments of distribution of forecasts.

For better performance, the choice of an uncertainty set should best represent the characteristics of the

probability distributions of future uncertainties. Data-driven approaches could be introduced for portfolio

and risk management of weather derivatives. In this case, the uncertainty sets are constructed with certain

structures and sizes that accord with the data. In addition, the portfolio allocation problem of weather

derivatives can be modelled in a multi-period setting where a dynamic trading strategy can be imposed by

introducing time dependent wealth as a state variable. Such a modelling approach suffers from the curse

of dimensionality and may involve a problem structure with uncertain data arising in cross constraints that

may lead a conservative strategy.
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Appendix B: Proofs of Theorems

Proof of Theorem 1: We first consider the inner minimization problem in Prob under the ellipsoidal

uncertainty set

min
ε̃it

m∑

i=1

T∑

t=1

xhi p
h
i γit + xcip

c
i δit

s.t. γit ≥ ri − sit −
3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk, i = 1, · · · ,m, t = 1, · · · , T

δit ≥ sit +
3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijε
k̄
ij − ri, i = 1, · · · ,m, t = 1, · · · , T

‖ε̃t‖2 ≤ κ, t = 1, · · · , T
γit, δit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

Let αt, βt ∈ Rm and λt for t = 1, · · · , T denote Lagrangian multipliers of the corresponding constraints.

The unconstrained minimization problem can be written as

min
γt,δtαt,βt,λt≥0

m∑

i=1

T∑

t=1

xhi p
h
i γit+ xcip

c
i δit +λt (||ε̃t||2 − κ)+(αit − βit)


Dit −

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk


−αitγit−βitδit

where Dit = ri− sit−
3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
. The first order optimality conditions and complementarity

conditions for the unconstrained problem are then derived as

xhi p
h
i − αit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

xcip
c
i − βit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

‖ε̃t‖2 ≤ κ, t = 1, · · · , T

||ε̃t||−1
2 λt

m∑

j=1

ε̃jt +

T∑

k=t

A1
i(t−k)ρit

m∑

j=1

σij (αjk − βjk) = 0, i = 1, · · · ,m, t = 1, · · · , T

λt (||ε̃t||2 − κ) = 0, t = 1, · · · , T

αit


Dit −

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk − γit


 = 0, i = 1, · · · ,m, t = 1, · · · , T

βit


−Dit +

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij ε̃jk − δit


 = 0, i = 1, · · · ,m, t = 1, · · · , T.

From the first complementarity condition, we obtain ‖ε̃t‖2−κ = 0 since λt 6= 0 for t = 1, · · · , T . For the sake

of simplicity, let Bt denote a vector that is consisting of Bt(i) =
T∑

k=t

(αik − βik)A1
i(t−k)ρitfor t = 1, · · · , T

and i = 1, · · · ,m. Thus, the solution of the optimality conditions provides the worst-case values of the

random variables varying in the ellipsoidal uncertainty set as ε̃t = − κ
λt

ΣtBt and we obtain λt = ‖ΣtBt‖2.
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In addition, the objective function value of the unconstrained optimization problem is

m∑

i=1

T∑

t=1

(αit − βit)
(
ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
)
− κ ‖ΣtBt‖2

Re-injection of the KKT conditions and the worst-case uncertain parameters into Prob leads to the robust

counterpart of the portfolio allocation problem under the ellipsoidal uncertainty set as stated in Theorem 1.

Proof of Theorem 2: The inner minimization problem in Prob under the asymmetric uncertainty set,

min
ṽt,w̃t,γt,δt

m∑

i=1

T∑

t=1

xhi p
h
i γit + xcip

c
iδit

s.t. γit ≥ ri − sit −
3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (ṽjk − w̃jk) ,

i = 1, · · · , m, t = 1, · · · , T

δit ≥ sit +

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (ṽjk − w̃jk)− ri,

i = 1, · · · , m, t = 1, · · · , T∥∥P−1ṽt + R−1w̃t

∥∥
2
≤ Ω, t = 1, · · · , T

ṽt, w̃t, γt, δt ≥ 0, t = 1, · · · , T

can be rewritten as the following unconstrained minimization problem

min
ṽt,w̃t,γt,δt,αt,βt,λt≥0

m∑

i=1

T∑

t=1

(xhi p
h
i − αit)γit + (xcip

c
i − βit)δit + λt

(∥∥P−1ṽt + R−1w̃t

∥∥
2
− Ω

)

+ (αit − βit)


Dit −

t∑

k=1

A1
t−kρit

m∑

j=1

σij (ṽjk − w̃jk)




where αt, βt ∈ Rm and λt for t = 1, · · · , T are Lagrangian multipliers for the corresponding constraints

and Dit = ri − sit −
3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
. It is worthwhile to mention that ṽitw̃it = 0, and φ−1

i and

ψ−1
i are i-th diagonal elements of matrices P−1 and R−1, respectively. The worst-case values of ṽit and w̃it

within the asymmetric uncertainty set can be obtained by solving the KKT optimality conditions. From the

complementarity conditions, λt
(∥∥P−1ṽt + R−1w̃t

∥∥
2
− Ω

)
= 0, a trivial solution is obtained only if λt = 0.

When λt 6= 0, then
∥∥P−1ṽt + R−1w̃t

∥∥
2
− Ω = 0. In this case, the first order derivatives of the Lagrangian

function (of the original problem) with respect to ṽit and w̃it for i = 1, · · · ,m and t = 1, · · · , T are

∥∥P−1ṽt + R−1w̃t

∥∥−1
λt




m∑

j=1

φ−1
i φ−1

j ṽjt + φ−1
i ψ−1

j w̃jt


−

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk − βit) ≥ 0,

∥∥P−1ṽt + R−1w̃t

∥∥−1
λt




m∑

j=1

φ−1
i ψ−1

j ṽjt + ψ−1
i ψ−1

j w̃jt


+

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk − βit) ≥ 0.
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These inequalities can be further simplified as

λt
Ω
φ−2
i ṽit +

λt
Ω
φ−1
i ψ−1

i w̃it ≥
t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk − βit)

λt
Ω
φ−1
i ψ−1

i ṽit +
λt
Ω
ψ−2
i w̃it ≥ −

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk − βit)
(8)

Since both γit and δit are nonnegative, at most one of the Lagrangian multipliers αjk and βit can be non-zero.

For αjk = 0, the inequalities in (8) become

λt
Ω

(
φ−2
i ṽit + φ−1

i ψ−1
i w̃it

)
≥ −

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijβit,

λt
Ω

(
φ−1
i ψ−1

i ṽit + ψ−2
i w̃it

)
≥

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijβit.

In this case, if ṽit = 0, then
λt
Ω
ψ−2
i w̃it ≥

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijβit. On the other hand, when w̃it = 0,

one achieves
λt
Ω
φ−1
i ψ−1

i ṽit ≥
t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijβit. Similarly, one can easily see that when βit = 0, the

inequalities in (8) become

λt
Ω
φ−2
i ṽit ≥

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijαjk, and
λt
Ω
φ−1
i ψ−1

i w̃it ≥
t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σijαjk.

that can be further simplified as

w̃it ≥
Ω

λt
ψ2
i

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk + βit) , and ṽit ≥
Ω

λt
φ2
i

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk + βit)

The unconstrained optimization problem can be rewritten as
m∑

i=1

T∑

t=1

(
ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
)

(αit − βit) +
T∑

k=t

A1
(t−k)ρitσij (αit − βit) (ṽik − w̃ik)

The initial minimization problem becomes

inf

m∑

i=1

T∑

t=1

(
ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
)

(αit − βit) +

T∑

k=t

A1
i(t−k)ρitσij (αit − βit) (ṽik − w̃ik)

s.t w̃it ≥ −
Ω

λt
ψ2
i

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjt + βit) , w̃it ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

ṽit ≥
Ω

λt
φ2
i

t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjt + βit) , ṽit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T
∥∥ P−1ṽt + R−1w̃t

∥∥ = Ω
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Using the proposition in Chen et. al (2008), the optimal solution of this problem is obtained as

m∑

i=1

T∑

t=1

(
ri − sit −

3∑

k=1

Akit
(
Hi(1−k) − si(1−k)

)
)

(αit − βit)− Ω
t∑

k=1

‖uk‖2

uit ≥ φi
t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk + βit) , i = 1, · · · ,m, t = 1, · · · , T

uit ≥ ψi
t∑

k=1

A1
i(t−k)ρit

m∑

j=1

σij (αjk + βit) , i = 1, · · · ,m, t = 1, · · · , T

uit ≥ 0, i = 1, · · · ,m, t = 1, · · · , T

Re injecting these into Rrob, the robust counterpart of portfolio allocation problem under the asymmetric

uncertainty set Rasym is derived as stated in Theorem 2.
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