Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Determination of the optimal sample size for a clinical trial accounting for the population size

Tools
- Tools
+ Tools

Stallard, Nigel, Miller, Frank, Day, Simon, Hee, Siew Wan, Madan, Jason, Zohar, Sarah and Posch, Martin (2017) Determination of the optimal sample size for a clinical trial accounting for the population size. Biometrical Journal, 59 (4). pp. 609-625. doi:10.1002/bimj.201500228

[img] PDF
WRAP_Stallard_et_al-2016-Biometrical_Journal.pdf - Published Version - Requires a PDF viewer.
Available under License Creative Commons Attribution 4.0.

Download (639Kb)
Official URL: http://dx.doi.org/10.1002/bimj.201500228

Request Changes to record.

Abstract

The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, inline image in the case of geometric discounting, becomes large, the optimal trial size is inline image or inline image. The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes.

Item Type: Journal Article
Subjects: Q Science > QA Mathematics
R Medicine > R Medicine (General)
Divisions: Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School
Library of Congress Subject Headings (LCSH): Clinical trials -- Design -- Research, Bayesian statistical decision theory
Journal or Publication Title: Biometrical Journal
Publisher: Wiley-Blackwell Publishing Ltd.
ISSN: 0323-3847
Official Date: July 2017
Dates:
DateEvent
July 2017Published
17 May 2016Available
9 March 2016Accepted
28 October 2015Submitted
Volume: 59
Number: 4
Page Range: pp. 609-625
DOI: 10.1002/bimj.201500228
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access
Funder: Seventh Framework Programme (European Commission) (FP7)
Grant number: FP HEALTH 2013 – 602144
Open Access Version:
  • Other

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us