Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Modelling high integrity steel forgings for turbine applications in the power generation industry

Tools
- Tools
+ Tools

Watson, Christopher J., Dean, Trevor A., Strangwood, Martin and Davis, Claire (2014) Modelling high integrity steel forgings for turbine applications in the power generation industry. Advanced Materials Research, 922 . pp. 795-800. doi:10.4028/www.scientific.net/AMR.922.795 ISSN 1022-6680.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.4028/www.scientific.net/AMR.9...

Request Changes to record.

Abstract

The continuous drive toward higher operating efficiency, greater reliability and longer life of steam turbines has introduced a need for higher integrity components to operate at higher temperatures and pressures. This poses several material and processing challenges to ensure that the components have metallurgical stability and the required mechanical properties in the high temperature environment. Modelling the open-die press forging process, used to manufacture steam turbine discs from cast ingots, is complex due to the variation of strain, strain rate and temperature within the ingot. These variations mean that recrystallisation and grain growth do not occur uniformly throughout the ingot. Severe plastic deformation is used to promote recrystallisation in order to refine the grain size and improve strength and toughness properties. A major part of the modelling described in this paper involves prediction and validation of strain, strain rate and temperature distributions during open-die forging. A sensitivity study has confirmed the requirement for accurate thermal and physical data such as Interfacial Heat Transfer Coefficient (IHTC), work-piece emissivity, specific heat and friction coefficient. In this paper experimental determination of these data for the grade of heat resistant steel being modelled, over process parameter ranges appropriate to open-die forging operations, is described. Incorporation of these data into a finite element-based model for strain variation within an ingot is reported with consideration and measurement of dead zone for thermo-mechanical simulation trials.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Engineering > WMG (Formerly the Warwick Manufacturing Group)
Journal or Publication Title: Advanced Materials Research
Publisher: Trans Tech Publications Ltd.
ISSN: 1022-6680
Official Date: 2014
Dates:
DateEvent
2014Published
Volume: 922
Page Range: pp. 795-800
DOI: 10.4028/www.scientific.net/AMR.922.795
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us