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Abstract

The typical estimation of DSGE models requires data on a set of macroeconomic aggregates,

such as output, consumption and investment, which are subject to data revisions. The con-

ventional approach employs the time series that is currently available for these aggregates for

estimation, implying that the last observations are still subject to many rounds of revisions.

This paper proposes a release-based approach that uses revised data of all observations to esti-

mate DSGE models, but the model is still helpful for real-time forecasting. This new approach

accounts for data uncertainty when predicting future values of macroeconomic variables subject

to revisions, thus providing policy-makers and professional forecasters with both backcasts and

forecasts. Application of this new approach to a medium-sized DSGE model improves the ac-

curacy of density forecasts, particularly the coverage of predictive intervals, of US real macro

variables. The application also shows that the estimated relative importance of business cycle

sources varies with data maturity.
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1 Introduction

The typical estimation of Dynamic Stochastic General Equilibrium (DSGE) models requires data

on a set of macroeconomic aggregates, such as output, consumption and investment, which are

subject to data revisions. The conventional approach uses the time series currently available for

these aggregates to estimate the parameters of the model. This implies that the last observations

in the time series are earlier estimates and subject to many rounds of revisions. The conventional

approach has been employed to evaluate the accuracy of DSGE forecasts in real time by Edge

and Gurkaynak (2011), Woulters (2012) and Del Negro and Schorftheide (2013). Del Negro and

Schorftheide (2013) show that long-horizon output growth and inflation forecasts from medium-

scale DSGE models are more accurate than Federal Reserve Greenbook forecasts and professional

forecasters.

Though one could estimate the DSGE model using only heavily revised data by shortening the

sample size to remove earlier estimates, this alternative implies that we cannot use the model as a

forecasting device because the lack of information on recent observations is very damaging for the

forecasting accuracy of future values. This paper proposes a release-based approach that allows

the DSGE model parameters to be estimated by using revised data while retaining the usefulness

of the model for real-time forecasting. The approach jointly estimates the model parameters and

the data revision processes by employing a specially designed Metropolis-in-Gibbs algorithm.

To model the data revision processes, I assume that we observe both initial releases and revised

values of the macroeconomic time series of interest. My proposed method requires the augmentation

of the measurement equation in a way that differs from others that are used in the literature. Data

augmentation normally implies that we observe some of the endogenous variables in the model

with error (Boivin and Giannoni, 2006). Croushore and Sill (2014) exploit the data augmentation

method of Schorftheide et al. (2010) to measure how initial releases are explained by shocks to

the revised data, assuming that the DSGE model is estimated only with the revised data. Their

approach requires shortening the dataset to estimate the model only with heavily revised data in
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the first step, and therefore, it is not adequate for real-time forecasting. Smets et al. (2014) assume

that the expected values of some variables are observed with measurement errors by augmenting the

data set with survey forecasts. In contrast, the release-based approach assumes that the observed

endogenous variables fit the final revised values for t = 1, ..., T . The dataset employed in the DSGE

estimation includes the time series of the initial releases such that the modelling approach is able

to deliver final estimates for the observations still subject to revision t = T − q + 2, ..., T . The

release-based approach assumes that the statistical agency publishes data revisions either because

information on the complete effect of structural shocks was not available at the time of the initial

releases or due to reduction of earlier measurement errors.

Alternative modelling approaches modify consumers’and firms’decisions to account for real-

time data availability (Coenen et al., 2005; Casares and Vazquez, 2016). Because, at each point in

time, the last observation available is typically an initial release, these approaches match model-

observed variables to initial releases, and they allow for unanticipated data revisions to have an

effect on business cycle fluctuations. In this paper, I assume that agents’decisions are based on

revised data, including data revision predictions for the set of observations still subject to revisions.

When forecasting economic activity, policy makers may also examine the uncertainty around

recent values of output growth. The Bank of England density forecasts for UK output growth, which

are published quarterly in the Inflation Report, include probabilistic assessments of past values of

GDP growth still subject to revisions, that is, they include backcasts in addition to forecasts.1

The release-based approach allows us to use a single model to compute predictive densities for

both forecasts and backcasts. Clements and Galvão (2013a) compare backcasts and forecasts of

reduced-form modelling approaches, but this is the first paper to provide similar policy-relevant

predictive information based on a DSGE model.

This new approach for estimating DSGE models accounts for data uncertainty when predicting

future values of macroeconomic variables subject to revisions. Empirical results with a DSGE

1For historical fan chart information, see http://www.bankofengland.co.uk/publications/
Pages/inflationreport/irprobab.aspx .
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applied to US data suggest that the new approach reduces the gap between nominal and empirical

coverage rates of predictive intervals of consumption and investment growth. In general, if our

macroeconomic forecasting targets are values observed after many rounds of revisions, then DSGE

models estimated with the release-based approach may provide us with well-calibrated and more

accurate predictive densities than the usual option of disregarding data revisions.

The release-based approach for forecasting with DSGE models provides new evidence on the

nature of US data revisions and how they affect the measurement of sources of business cycle

fluctuations. Earlier data revisions may be explained by the lack of complete information on the

effect of structural shocks at the time of the previous release. Investment-specific shocks are a

relevant source of data revisions at this early stage. Later data revisions are explained by reduction

of the measurement error embedded in previous releases. As a consequence, the relative importance

of a specific business cycle source may vary with the data maturity, that is, the number of quarters

that a first release is available. By applying the release-based approach to the Smets and Wouters

(2007) model, I find that productivity shocks explain 51% of the variance of output growth observed

seven quarters after the first release, but this proportion is only 38% if computed for the first

release of output growth. Future data revision shocks explain a sizeable proportion (20-40%)

of the unexpected changes in first-release estimates of real variables (output, consumption and

investment), but by definition, they have no impact on fully revised data.

The approach developed in this paper can be applied to any DSGE model that can be estimated

based on a linear state-space representation. Section 2 describes the new approach in contrast

with the conventional approach, including a detailed description of the estimation, backcasting

and forecasting methods. The release-based approach is applied to the medium-scale Smets and

Wouters (2007) model, and section 3 describes the details of this application, including descriptive

statistics of data revisions of output growth, inflation, and consumption and investment growth.

Section 4 discusses full sample results including posterior estimates for alternative specifications

and variance decompositions. Section 5 describes the design and the results of a real-time out-of-

sample forecasting exercise, including backcasting and forecasting evaluations, and an assessment
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of real-time output gaps.

2 Forecasting with DSGE Models

This section describes the conventional approach for using DSGE models for real-time forecasting,

as employed by Edge and Gurkaynak (2011), Woulters (2012), Herbst and Schorftheide (2012) and

Del Negro and Schorftheide (2013). Then, I demonstrate how to apply the release-based approach

for real-time forecasting of DSGE models.

2.1 The Conventional Approach

Before estimation, some endogenous variables in the DSGE model are detrended based on com-

mon deterministic (Smets and Wouters, 2007) or stochastic (Del Negro and Schorftheide, 2013)

trends. Then, the model is log-linearised around the deterministic steady state. Based on the

log-linearised version, numerical methods are employed to solve the rational expectations model

(see, e.g., Guerron-Quintana and Nason (2012) for a description of the usual techniques).

Define xt as an n × 1 vector of the endogenous DSGE variables written as a deviation of the

steady state. In practice, xt may also include lagged variables. Define θ as the vector of structural

parameters. The solution of the DSGE model for a given vector of parameters θ is written as

xt = F (θ)xt−1 +G(θ)ηt (1)

where ηt is a r × 1 vector of structural shocks, and thus, the matrix G(θ) is n× r. Note also that

ηt ∼ iidN(0, Q) and that Q is a diagonal matrix. The equation (1) is the state equation of the

state space representation of the DSGE model.

Define Xt as the m× 1 vector of observable variables. Typically, m < n and m ≤ r. Smets and

Wouters (2007) medium-sized model has m = r = 7. The measurement equation is:

Xt = d(θ) +H(θ)xt, (2)
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that is, the observable variables, such as inflation and output growth, are measured without error.

Edge and Gurkaynak (2011), Woulters (2012) and Del Negro and Schorftheide (2013) evaluate

the accuracy of DSGE forecasts in real time. This means that they use only the data available

at each forecast origin for estimating the vector of parameters θ. Observables such as the output,

inflation, consumption and investment are computed using national accounting data. US and UK

quarterly national accounting data are initially published with a one-month delay with respect to

the observational quarter. If the model is estimated at T + 1, we only have data available up to T

for estimation. The measurement equation for real-time estimation is:

XT+1
t = d(θ) +H(θ)xt

for t = 1, .., T , where T is the number of observations in the initial in-sample period. Suppose

that the number of quarters in the out-of-sample period is P ; a conventional real-time forecasting

exercise re-estimates the model at each forecast origin from T + 1 up to T + P , and the forecasts

are computed using data up to T, ..., T + P − 1 at each origin.

An issue with this approach is that the model is estimated by mixing heavily revised data

(t = 1, ..., T − 14), data subject to annual revisions (t = T − 13, ..., T − 1), and data subject to

the initial round of revisions and annual revisions (t = T )2, while the forecasts are computed

conditioned on lightly revised data (t = T ). Koenig et al. (2003) and Clements and Galvão (2013b)

establish how to improve forecasts by addressing this problem in the context of distributed lag

regressions and autoregressive models, respectively. Clements and Galvão (2013b) demonstrate

that the conventional use of real-time data delivers estimates of autoregressive coeffi cients that do

not converge to values that would deliver optimal forecasts in real time.

2This assumes three round of annual revisions published every July, as is usually the case for US National Accounts
Data published by the Bureau of Economic Analysis.
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2.2 The Release-Based Approach

As before, we have observations up to T from the T +1 data vintage. We could estimate the DSGE

model using only the revised data by removing the last q observations of the time series that are

currently available:

XT+1
t−q+1 = d(θ) +H(θ)xt−q+1 for t = 1, ..., T (3)

This approach is applied by Casares and Vazquez (2016) and Croushore and Sill (2014). The

disadvantage of this approach is that if we want to predict XT+1, ..., XT+h, the fact that the

observations XT+1
T−q+2, ..., X

T+1
T are not included may imply that the forecasts will be inaccurate.

The release-based approach, based on Kishor and Koenig (2012), requires the assumption that

after q − 1 rounds of revisions, we observe an effi cient estimate of the true value. Assume that the

true value Xt is observed after q − 1 rounds of revisions at Xt+q
t for t = 1, ..., T , with both the

subscripts and superscripts varying with t. If the DSGE is estimated using the values observed

after q − 1 rounds of revisions, the measurement equations are:

Xt+1
t−q+1 = d(θ) +H(θ)xt−q+1 for t = 1, ..., T, (4)

and as before, the last q − 1 observations have to be excluded. Note however that the number of

rounds of revisions at each time period is exactly q − 1 in (4) but it varies with t in (3), implying

that the release-based approach recognises differences in data maturity by not mixing apples with

oranges as in Kishor and Koenig (2012).

The demeaned observed revisions between first releases Xt+1
t and true values Xt+q

t are

revt+q,1t = (Xt+1
t −Xt+q

t )−M1 for t = 1, ..., T − q + 1.

This implies that we observe T − q+ 1 values of the full revision process to a first release at T + 1,

and that the full revision process for observation t is only observed at t+q because of the statistical

agency data release schedule. In general, for the vth release, the (demeaned) remaining revisions
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up to the true values are:

revt+q+1−v,v
t = (Xt+v

t −Xt+q
t )−Mv for t = 1, ..., T − q + v and v = 1, ..., q − 1.

At T + 1 we do not observe fully revised values, Xt+q
t , of the observations T − q + 2, ..., T , but

we do observe earlier estimates of these observations. The release-based approach proposed in this

paper employs these earlier estimates to estimate the revised value of the last q − 1 observations.

The approach incorporates modelling of data revisions to the DSGE estimation by assuming that

both the true values of the observables Xt and the q − 1 revision processes rev1
t , ..., rev

q−1
t are

unobserved at t. These assumptions imply the use of filtering procedures to obtain values for Xt

and rev1
t , ..., rev

q−1
t for t = 1, ..., T when estimating the model cast in state space.3 The fact that

revisions, albeit unobserved at t, are observed at t + q + 1 − v is incorporated in the smoother

employed to obtain full sample estimates of the true values Xt. The release-based approach is in

particularly advantageous when forecasting with DSGE models because we can use all observations

available while assuming that the DSGE is estimated with only heavily revised data.

The approach augments the measurement equations (4) to include a time series of first releases,

3Note that revt+q+1−υ,νt is the observed revision between the υth and the qth release available up to t = T − q+ v,
while revvt is the state variable matching the same concept. rev

v
t is unobserved at t and by using filtering procedures

available up to t = T .
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second releases, and so on, as:



Xt+1
t

Xt+1
t−1

...

Xt+1
t−q+1


=



d(θ) +M1

d(θ) +M2

...

d(θ)


+



H(θ) 0m · · · 0m Im 0m · · · 0m

0m H(θ) · · · 0m 0m Im · · ·
. . . . . .

0m 0m H(θ) 0m 0m 0m





xt

xt−1

...

xt−q+1

rev1
t

rev2
t−1

...

revq−1
t−q+2


(5)

for t = 1, ..., T and:

revvt = (Xt+v
t −Xt)−Mv for v = 1, ..., q − 1,

where the m× 1 vectors Mv allow for non-zero data revisions.

Data revisions may add new information and/or reduce measurement errors, following the

definitions by Mankiw and Shapiro (1986) employed by Jacobs and van Norden (2011). I consider

both noise and news revisions. Noise revisions follow the classical measurement error in Sargent

(1989): they are orthogonal to the true values. News revisions are correlated with the true values,

and they may be caused by the statistical agency filtering the available data (Sargent, 1989). If

the statistical agency filters the data before releasing it, innovations to the data revisions may be

correlated with structural shocks, as in Sargent (1989). Finally, I also allow for serial correlation

in the revisions as in Kishor and Koenig (2012), following the Howrey (1978) model. The data

revision processes are:

revvt = Kvrev
v
t−1 + ξvt +Avηt, ξ

v
t ∼ N(0, Rv) (6)

where the serial correlation allows for noise-predictable revisions if the m×m matrix Kv is nonzero.

The own innovation term ξvt allows for data revisions that are caused by a reduction of measurement
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errors, and we assume that the innovations are not correlated across variables, so Rv is diagonal.

The last term Avηt implies that the data revisions may be caused by new information not available

at the time of the current release, but included in the revised data used to compute the complete

effects of the structural shocks. We can identify both types of innovations —measurement errors

and news revisions —because we assume that we eventually observe the revised or true value of each

observation in the time series.4 The structural innovations ηt drive the business cycle fluctuations in

the DSGE endogenous variables as a common component because the number of shocks ηt is smaller

than the number of endogenous variables xt. The equation (6) suggests that these innovations may

also drive a common component in the data revision processes of observables, rev(v)
t , depending on

the values in Av.

The release-based approach implies that we need to the enlarge the state vector to include

revision processes. The n+ 2(q − 1)m vector of state variables is

αt = [x′t, ..., x
′
t−q+1, rev

1′
t , ..., rev

q−1′
t−q+2]′,

instead of αt = xt in the conventional approach used in section 2.1. The new mq vector of observ-

ables is written as

yt+1
t = [Xt+1′

t , ..., Xt+1′
t−q+1]′.

The vector of parameters governing the data revision process is

β = [M ′1, ...,M
′
v, vec(K1)′, ..., vec(Kv)

′, a1,1, ..., a1,m, ..., av,1, ..., av,m]′,

where av,i is the row i of matrix A(v) where i = 1, ...,m. Using the above defined vectors, the

4Jacobs and van Norden (2011) decompose the observed values into the true value and noise and news revisions.
Their approach, similar to mine, assumes that the data revisions are a combination of both news and noise processes.
However, because they assume the true value is not observed, the last revision process (say revq−1t in our notation)
can be either news or noise, but not both. The modelling choice that the true values are eventually observed solves
this identification problem. A similar approach was applied by Cunningham et al. (2012), Kishor and Koenig (2012)
and Croushore and Sill (2014).
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measurement equations in (5) may be written as:

yt+1
t = D(θ, β) + L(θ, β)αt, (7)

Therefore, the measurement equations do not include measurement errors to be able to incorporate

the fact that we observe each data revision process at t + q + 1 − v. This approach differs from

the data augmentation of Boivin and Giannoni (2006). They assume that some of the endogenous

variables in the DSGE model are measured with errors using a set of observable variables. Smets

et al. (2014) include measurement errors to employ survey forecasts as an approximate measure of

expectations.

Measurement errors have been also employed by Ruge-Murcia (2007) and Ferroni et al. (2015)

to solve stochastic singularity problems caused by there being fewer structural shocks than the

number of observables in the estimation of DSGE models. Ireland (2004) suggests the inclusion of

measurement errors for cases in which the DSGE is too prototypical a model to fit the observed

data. In these last two cases, the measurement equations for the conventional approach are:

Xt = d(θ) +H(θ)xt + ut, (8)

where the measurement errors in the m × 1 vector ut could be serially correlated (Ireland, 2004).

The release-based approach measurement equations (7) would then include a vector of measurement

errors ut in the equations for the revised data Xt+1
t−q+1 as:

yt+1
t = D(θ, β) + L(θ, β)αt +But−q+1, (9)

where B =
[
0′m×m(q−1)Im

]′
.5 The release-based approach is able to identify both DSGE serially

correlated measurement errors ut and revisions rev
(v)
t due to the assumption that final values are

5 In the case of serially correlated measurement errors as in Ireland (2004), the state equations (eq. 10) need to be
augmented to include the new set of unobserved disturbances. Note that depending on the DSGE specification, the
modeler may choose fewer measurement errors than m.
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observed at t+ q, and that the set of observables is enlarged accordingly.

In the release-based approach, the r + (q − 1)m vector of state disturbances is

εt = [η′t, ξ
1′
t , ..., ξ

q−1′
t−q+2]′,

and therefore, the state equations are

αt = T (θ, β)αt−1 +R(θ, β)εt where εt ∼ N(0, P ), (10)

where P is a diagonal matrix containing the variances of the structural shock innovations and of

the data revision innovations along the diagonal. If the DSGE model has the same number of

observables as shocks, this state-space representation implies that qm observables are driven by qm

innovations. The required state matrices are

T (θ, β) =



F (θ) 0 · · · 0 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0

...
. . .

...
...

...
. . .

...

0 0 1 0 0 0 · · · 0

0 0 · · · 0 K(1) 0 · · · 0

0 0 · · · 0 0 K(2)

...

...
. . .

...
...

...
. . .

0 0 · · · 0 0 0 K(q−1)


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and

R(θ, β) =



G(θ) 0 0 · · · 0

A(1) 1 0 · · · 0

A(2) 0 1 · · · 0

...
...

. . .
...

A(q−1) 0 0 · · · 1


.

The released-based approach implies that the smoothed estimate of the true values Xt|T =

E[Xt|{yt+1
t }t=Tt=1 , θ, β] is equal to the observed Xt+q

t for t = 1, ..., T − q+ 1. Note, however, that the

predicted estimatesXt|t−1 = E[Xt|{yt+1
t }t=t−1

t=1 , θ, β] and filtered estimatesXt|t = E[Xt|{yt+1
t }t=tt=1, θ, β]

will not be equal to Xt+q
t for all t because filtered values are computed using yt+1

t that does not

include Xt+q
t . True values are observed at t + q for observations up to t = T − q + 1 so they are

incorporated when computing smoothed estimates. To compute the likelihood of an unobserved

component model, we use filtered estimates Xt|t. This implies that if we compute the likelihood as

function of θ and β for the state space model in (7) and (10), the full time series of Xt is treated

as an unobserved time series. If, however, our aim is measure Xt for t = 1, ..., T , then the posterior

distribution of the smoothed estimates p(Xt|{yt+1
t }t=Tt=1 , θ, β) provides the best estimate because it

uses the full sample information, which implies that we are only uncertain about the last q − 1

observations.

2.2.1 Estimation

I exploit two Bayesian Markov Chain Monte Carlo methodologies to obtain posterior distributions

for the DSGE parameters θ jointly with the parameters of the data revision processes β. The first

method uses the Random-Walk Metropolis-Hasting (RWMH) algorithm described in Del Negro and

Schorftheide (2011) for the state-space representation described by (7) and (10). As part of the

RWMH approach, the prior distributions for both sets of parameters p(θ, β) need to be defined,

and the likelihood p(Y |θ, β), where Y = {yt+1
t }t=Tt=1 , needs to be evaluated. The RWMH algorithm

requires the numerical optimisation of the posterior kernel to obtain the variance-covariance matrix
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of the parameters at the posterior mode. Because the release-based approach involves the estima-

tion of at least r+ 2 parameters for each revision of order ν and for each variable m in addition to

the DSGE parameters (around 40 in the case of a medium-sized model), this step is highly com-

putationally intensive and may fail in some circumstances. I present the results of the application

of this approach in sections 4 and 5 for the case that q = 2 and the data revision process of only

two variables are modelled.

The second method exploits the fact that conditional on a time series of true values, that

is, X = {Xt}t=Tt=1 , we can compute posterior distributions for θ by applying the RWMH to the

state-space representation defined by (1) and (2). If we can draw p(θ|β,X) and p(β|θ, Y ) from

the conditional distributions, we can use Gibbs sampling to obtain an approximation of the joint

posterior distribution of the parameters. This is also a computationally intensive MCMC algorithm,

but it is less likely to fail with large q and m because the Metropolis step and the numerical

optimisation of the posterior kernel are only applied to the subset θ of the parameter space. In

addition, the proposed algorithm delivers clear measures of the underlying data uncertainty on the

last q − 1 observations of Xt, which are drawn from a conditional distribution within the Gibbs

algorithm. The algorithm is described in detail in Appendix A, which also includes a convergence

analysis in comparison with the RWMH algorithm. Previously, Gibbs sampling was applied to

DSGE estimation where the variance of the shocks was allowed to change over time (Justiniano

and Primiceri, 2008).

The first step employs a Metropolis RW draw to obtain the conditional draw θ(j)|β(j−1), X(j−1).

The second step draws a time series of structural shocks η(j)
(1), ..., η

(j)
(T ) by employing a smoothing algo-

rithm to the state-space model defined by (1) and (2) conditional on θ(j) and X(j−1). The third step

employs an independent normal-inverse gamma prior approach for the parameters in β such that

we can use closed-form solutions to obtain the conditional draw β(j)|θ(j), X(j−1), η
(j)
(1), ..., η

(j)
(T ), Y ,

including draws for the variances of the data revision innovations as well. The fourth step applies

a smoothing algorithm to the state space defined by (7) and (10) such that conditional on β(j), θ(j)

and Y , we are able to obtain draws for X(j)
T−q+2, ..., X

(j)
T .
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2.2.2 Backcasting

The algorithm provides us with a direct measure of the data uncertainty because based on a

set of kept draws of X(j)
T−q+2, ..., X

(j)
T for j = 1, ..., S, we can compute moments of the posterior

distribution. For example, the posterior mean for the last observation is computed as X̂T =

1/S
S∑
j=1

X
(j)
T , which is an estimate of the fully revised values of the last observations of the observed

time series. The standard deviation of the posterior distribution can be used as a measure of the

data uncertainty embedded in the DSGE estimation. If, for example, we compute this value only

for the last observation, we use std(XT ) =

√
1/S

S∑
j=1

(X
(j)
T − X̂T )2. The posterior draws can also

be used to compute the data uncertainty quantiles. We can call the computation of predictions for

X
(j)
T−q+2, ..., X

(j)
T backcasting because it predicts time periods for which initial releases are already

available.

2.2.3 Forecasting

In addition to the backcasting computation described above, the release-based approach for the

estimation of the DSGE model also provides us with forecasts of future revised values of the

observables, that is, XT+1, ..., XT+h, where h is the maximum forecast horizon in the quarters. To

compute J draws from the predictive density of the state vector, we employ J equally spaced draws

of the saved posterior distributions of θ and β in the state equation as:

α
(j)
T+h|T = T (θ(j), β(j))α

(j)
T+h−1|T +R(θ(j), β(j))εt where εt ∼ N(0, P (j)).

Note that the draws θ(j), β(j) are also used to compute α(j)
T to condition forecasts on, which includes

X
(j)
T . This procedure delivers the sequence of forecasts x(j)

T+1|T , ..., x
(j)
T+h|T . Based on the DSGE

parameters draw θ(j) and a sequence of forecasts for the DSGE state variables, forecasts of future
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revised values of the observable variables are computed using:

X
(j)
T+h|T = d(θ(j)) +H(θ(j))x

(j)
T+h|T .

6 (11)

I evaluate forecasts computing the predictive density p(XT+h|Y ) as the empirical density of X(j)
T+h|T

for j = 1, ..., J . Point forecasts are the mean of the predictive density, that is, X̂T+h|T = 1/J

J∑
j=1

X
(j)
T+h|T .

3 Application of the Released-Based Approach to the Smets and

Wouters Model

In this section, I explain how I apply the released-based approach proposed in this paper to the

Smets and Wouters (2007) (SW) model. The forecasting performance of the SW model in real

time has been evaluated by Edge and Gurkaynak (2011), Herbst and Schorftheide (2012) and

Del Negro and Schorftheide (2013). The equations of the log-linearised version of the SW model

are described in Appendix B under the assumption of a common deterministic trend for output,

consumption, investment and real wages. Similar to the approach of Smets and Wouters (2007),

some of the parameters are calibrated such that the number of parameters to be estimated using

6 I am implicitly assuming that the adequate measurement equations are eq. (7). If using instead eq. (9), then
draws from the measurement error processes ut are also required.
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the conventional approach is 36. The observation/measurement equations are:



∆ log(GDPt)

∆ log(Const)

∆ log(Invt)

∆ log(Waget)

∆ log(Hourst)

∆ log(Pt)

FFRt



=



γ

γ

γ

γ

l

π

r



+



yt − yt−1

ct − ct−1

it − it−1

wt − wt−1

lt

πt

rt



. (12)

All of the observable variables are subject to revisions, except the fed fund rate FFRt and the

total population above 16 used to compute GDPt, Const, Invt and Hourst. The GDP deflator

is used to compute Pt and also to deflate the nominal observed values of Const, Invt and Waget.

Table 1 provides details on how each of these variables are computed using the available observable

data and the availability of quarterly vintages.

In this paper, I model data revisions of output growth, inflation, consumption and investment

growth, that is, the four observables computed using national accounting data. The remaining

observables are treated as the conventional approach for real-time forecasting. Because real-time

data on compensation are available only for a limited period, I am not able to model revisions of

real wages and prefer not to model revisions in hours.

I consider two assumptions for the number of revisions before obtaining an effi cient estimate of

the true values of the macroeconomic time series. With the first, I assume that the first-final (or

third), that is, the value available after the initial round of monthly revisions, is an effi cient estimate

of the truth (as in Kishor and Koenig (2012) and Garratt et al. (2008)), implying that q = 2. Recent

evidence on the impact of macro news on equity markets (Gilbert, 2011; Clements and Galvão, 2015)

suggests that surprises on the first two revisions released in the second and third month after the

observational quarter have an impact on equity markets on the day of the announcement. This
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suggests that market participants may incorporate the impact of these revisions in their economic

decisions, in agreement with our assumption that we estimate behavioural parameters using revised

data. With the second, I assume that the truth is revealed two years after the observational quarter,

that is, q = 8. This means that I also incorporate the first two rounds of annual revisions in

additional to the initial monthly revisions. The idea that the observational quarter revisions are

largely unpredictable two years after is embedded in the argument of Croushore and Sill (2014).

3.1 Characteristics of the Data Revisions

In this subsection, I describe the characteristics of the data revisions implied by the use of Xt+2
t

and Xt+8
t as the final data in contrast to the data revisions measured using the most recent vintage

as in Casares and Vazquez (2016) and Croushore and Sill (2014).

Table 2 presents characteristics of the data revisions of per capita output growth (∆ log(GDP )),

inflation (∆ log(P )), per capita consumption growth (∆ log(Cons)) and per capita investment

growth (∆ log(Inv)). The period covered is 1984Q1-2008Q3; 2008Q3 is the last observation avail-

able with the 2008Q4 vintage, which is the last vintage considered when estimating DSGE models

in sections 4 and 5. Table 2A presents results for revisions always using the first release as the

initial value, but either the first-final Xt+2
t , the eighth release Xt+8

t or the 2008Q4 vintage data as

the final value. Table 2B presents summary statistics for the 84-98 period with observations taken

from the first releases Xt+1
t , the second releases Xt+2

t , the eighth releases Xt+8
t and the 2008Q4

vintage data. Table 2C presents the correlation matrix of data revisions for the four macroeconomic

variables, assuming that the true value is either the second or the eighth release.

The standard deviations of the data revision processes indicate that the 7th revision has a

similar size to the one measured using the 2008Q4 vintage, but the 1st revision is in general

smaller, accounting for half of the revision variation of the 8th estimate. The initial revisions

(Xt+2
t − Xt+1

t ) are sizeable because they are equivalent in size to the first two rounds of annual

revisions (Xt+8
t −Xt+2

t ). The results of the Lyung-Box Q(4) test for a serial correlation of order 4

suggest that revisions computed using Xt+2
t and Xt+8

t as the final value are not serially correlated in
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general; in contrast, revisions computed using the 2008Q4 as the final value are serially correlated.

Because we consider either Xt+8
t or Xt+2

t to be the true values, we expect that our results might

differ from Casares and Vazquez (2016) and Croushore and Sill (2014), where the last vintage is

used for the true values.

Data revisions tend to increase the time series average as suggested by Tables 2A and 2B, but

this increase is only sizeable in the case of the first revision of investment growth. Data revisions

also have a large impact on the first-order serial correlation of the time series but a small impact on

the unconditional variance. In general, data revisions of real variables increase the unconditional

variance but decrease the unconditional variance of inflation. Correctly measuring the underlying

unconditional variance may improve the coverage of interval forecasts, as suggested by Clements

(2015).

Table 2C suggests that data revisions on the real macroeconomic variables are negatively cor-

related with data revisions on inflation, as expected based on the construction of these time series.

The comovements of data revisions on output growth, consumption and investment are stronger

when q = 8. When q = 2, data revisions on investment are mainly uncorrelated with revisions of

other variables. The release-based approach can accommodate comovements in data revisions if

structural shocks have a similar impact on data revisions of different variables, that is, they depend

on the estimates in A(v).

3.2 Release-based Specifications

The SW model describes business cycles fluctuations using seven shocks: spending (g), risk-

premium (b), investment (i), productivity (a), price-push (p), cost-push (w) and monetary policy

(r). Because we are modelling data revisions of four observables, the number of coeffi cients to

be estimated in A(v) is 28 for each v = 1, ..., q − 1. The time series of revisions for v > 2 include

many zeros because the observations are not revised every quarter after the initial round of monthly

revisions. As a consequence, I assume that the revision processes for q = 8 are such that only rev(1)
t
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is affected by structural shocks:

(
Xt+1
t −Xt

)
= M(1) +K(1)(X

t
t−1 −Xt−1 −M(1)) +A(1)ηt + ξ

(1)
t ; ξ

(1)
t ∼ N(0, R(1))(

Xt+1
t−1 −Xt−1

)
= ξ

(2)
t−1; ξ

(2)
t−1 ∼ N(0, R(2))

...(
Xt+1
t−6 −Xt−6

)
= ξ

(7)
t−6; ξ

(7)
t−6 ∼ N(0, R(7)).

If q = 2, I retain the same assumption, and therefore, I estimate only the first equation of the

system above.

The first specification considered is estimated using the RWMH algorithm; therefore, only data

revisions of output growth and inflation are modelled, and q = 2. The number of additional

parameters in this specification is 20. In the remaining two specifications, I assume no serial

correlation in the data revisions, that is, all elements in K(1) are zero. The removal of the serial

correlation coeffi cient is supported by the characteristics of the data revisions described in Table

2. As a result of these assumptions, the number of additional parameters to be estimated if q = 8,

the number of structural shocks is 7, and data revisions of 4 observables are modelled, is 60. If

q = 2, 44 parameters are to be estimated.

In summary, I consider three vintage-based specifications. The first specification is ‘MH, q = 2’,

where the MH estimation method is applied for modelling data revisions only of output growth and

inflation while estimating the DSGE model and assuming that the second quarterly release is an

effi cient estimate of the truth. The parameters of the data revision processes of this specification

are listed in Table 4. The second is the ‘Gibbs-M, q = 2’specification that models revisions of

consumption and investment growth in addition to output growth and inflation. The third is the

‘Gibbs-M, q = 8’specification that extends the previous specification by considering data revision

processes up to two years after the observational quarter, that is, the effi cient estimate of the truth

is only published eight quarters after the observational quarter.

Del Negro and Schorftheide (2013) employ a medium-sized DSGE specification assuming a

20



common stochastic trend for consumption, investment, output and real wage instead of the common

deterministic trend in Smets and Wouters (2007). Canova (2014) claims that the assumption for

this trend has an impact on the estimates of the DSGE parameters. The baseline results in sections

4 and 5 are based on the common deterministic trend model, but I will investigate the robustness

of the forecasting results to the assumption of a stochastic trend.7 The preliminary results suggest

that the forecasts of output growth and inflation are in general more accurate if the common trend

is deterministic.

4 Full Sample Evaluation

In this section, I discuss results based on the estimates for the full sample. As in Herbst and

Schorftheide (2012), I use observations since 1984, implying that the period of high inflation is

not included in the estimation. In this section, I use the 2008Q4 vintage for the conventional

approach, that is, the results are computed for the sample period from 1984Q1 up to 2008Q3. For

the release-based approach, I use vintages from 1984Q2 up to 2008Q4.

Both estimation methods described in section 2.2.1 require priors for the DSGE parameters,

including structural shocks processes. The priors for these coeffi cients are the ones used in Smets

and Wouters (2007), and I do not include the large set of calibrated coeffi cients suggested by Herbst

and Schorftheide (2012); the values used are listed in Table 3. The priors on the coeffi cients that

describe the data revision processes are not restrictive. In the case of the ‘MH, q = 2’model, I use

a normal prior for the mean revisions and autoregressive coeffi cients, allowing for negative serial

correlation in the data revision processes. I use inverse gamma priors for the standard error of data

revision innovations following the priors for the standard deviations of the structural shocks. I also

assume a normal prior for the parameters measuring the impact of structural shocks on the data

7 If the total factor productivity process follows a deterministic trend, this means that it exhibits features of a linear
trend plus an AR(1) process. If it follows a stochastic trend, then it exhibits features of a linear trend plus a random
walk (AR(1) with ρ = 1). After calculating the first differences (or detrending), the productivity shocks follow an
AR(1) process with drift in the first case and white noise with drift in the second case. Because variables such as the
output, consumption and investment are detrended before the equations are log-linearised around the stead-state,
some equations require small modifications. Modifications are also required for the measurement equations.
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revision processes. The description of the complete set of priors for the data revision processes of

output growth and inflation is provided in Table 4. In the case of the Gibbs-M specifications, priors

for the parameters of the data revision processes are described in Appendix A.

4.1 Conventional and Release-based Posteriors

In this subsection, I compare the full sample estimates of the release-based approach with the

conventional one. I also discuss the estimates of the parameters governing data revision processes

for different estimation methods and specifications.

Table 3 presents the mean of the posterior distributions and 5% and 95% posterior quantiles for

the DSGE parameters estimated with the conventional approach and three release-based approach

specifications. Table 4 presents posterior mean and 5% and 95% posterior quantiles for the parame-

ters of the data revision processes of output growth and inflation. For the ‘MH, q = 2’specification,

the values presented include all the parameters estimated, but for the other two specifications, these

are only a subset of the β parameters. The estimates of the serial correlation parameters with the

‘MH, q = 2’specification support the assumption that K(1) = 0 in the remaining specifications.

The posterior mean estimates for the DSGE parameters obtained with the release-based ap-

proach are in general within the 90% interval estimates of the conventional approach. Table 3

highlights values when this is not the case. The main impact of the vintage-based approach is

observed in the autoregressive coeffi cients of the structural shocks in agreement with the change in

the first-order serial correlation with the maturity q in Table 2B. Modelling data revisions of output

growth and inflation reduces the persistence of productivity shocks and increases the persistence

of price shocks. If data revisions of investment are also incorporated, the variance of investment-

specific shocks (only if q = 2) increases, and the capital-share in the production function (α)

decreases. Finally, the Gibbs-M specifications suggest larger consumption habit formation (h) val-

ues than observed with the conventional approach because they include modelling of consumption

data revisions.

The posterior mean and quantiles presented in Table 4 allow us to compare the impact of
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specifications and estimation methods on the posterior distribution of the data revision parameters

of output growth and inflation. The inclusion of data vintages on consumption and investment

alters many of the estimates of the coeffi cients in A(1) In particular, the values of the output

growth revisions of productivity shocks go to zero, while the coeffi cients for the investment-specific

shocks are now significantly negative. The results for the data revisions defined as Xt+1
t − Xt in

Table 4 indicate that the 90% intervals for the parameters in the A(1) matrix are generally wider

with the Metropolis-in-Gibbs algorithm than with the RWMH algorithm. This implies that the

Gibbs approach exploits a larger portion of the parameter space than the Metropolis approach for

the β parameters. A comparison of both methods convergence analysis in Appendix A.3 shows

that indeed the ineffi cieny factor is normally smaller for the Gibbs algorithm.

4.2 Variance Decompositions

Smets and Wouters (2007) describe business cycles fluctuations using seven shocks: spending (g),

risk-premium (b), investment (i), productivity (a), price-push (p), cost-push (w) and monetary

policy (r). In this subsection, I evaluate variance decompositions from innovations to each one of

these shocks in addition to idiosyncratic innovations to data revisions of output growth, inflation,

consumption and investment growth. These results allow us to address the issue of how the relative

importance of business cycle sources changes with data maturity.

Figure 1 presents the proportion explained by each of the seven DSGE structural shocks and the

future revision-specific shocks computed for the posterior mean with the released-based approach

(Gibbs-M, q = 8 specification). The future revision shock is specific for each variable (output

growth, inflation, consumption and investment growth in panels A to D) and data maturity. Figure

1 shows the results for data maturities from the first release Xt+1
t up to the eighth release Xt+8

t ,

represented by bars varying from left to right. Figure 1 also includes results using the conventional

approach. Recall that the data employed to estimate the DSGE model with the conventional

approach are in general heavily revised, and therefore, the explained fractions may be more similar

to the 8th release results, but with some weight given to the last 7 observations that are still subject
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to revision. The proportions presented in Figure 1 are those for responses after 40 quarters and

for the observed values of each variable, which implies that these values were computed using both

state (10) and measurement equations (7).

Figure 1 suggests that data uncertainty plays an important role in explaining the differences

between the observed first release values and the predicted true values. The fraction values are 20%

for output growth, 30% for consumption growth, 42% for investment growth and 15% for inflation.

These fractions decrease with the data maturity and become zero for the 8th release based on

the assumption that the true values are eventually observed. The assumption that revisions may

be caused by not fully observing the effect of structural shocks at the time of the initial release

implies large differences in the fraction explained by some structural shocks when the first release

is observed in comparison with later releases. For example, in the case of consumption, 12% of the

first-release variation is explained by investment-specific shocks, but this value drops to around 5%

in later releases. In contrast, the fraction explained by productivity shocks increases from 32% in

the first release to 62% in the final release.

The last bar for each shock in Figure 1 shows the proportion estimated using the conventional

approach. In some cases, the conventional approach that mixes data from different maturities

provides variance decomposition estimates that differ from the ones obtained with revised/true

data (Xt). In the case of output growth, for example, the conventional approach suggests that

the spending shocks explain 45% of the variation in contrast with 35% with the release-based

approach, while productivity shocks explain 40% with the conventional approach but 51% with the

release-based approach.

In Table A in the Appendix, more detailed variance decomposition results are presented for the

first and last release (Xt+q
t ; q = 2, 8) and for the conventional approach. Also included are ranges

for the estimates and results for two additional released-based specifications: Gibbs-M, q = 2 and

MH, q = 2. These results show that if we assume that the true/revised value is observed after two

quarters, then the variation of the first release explained by future revisions is small (around 2%

but up to 7% for investment). Table A confirms the main result from Figure 1 that the relative
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importance of different shocks in causing business cycle variation may depend on how far in the

revision process we are. If our best variance decomposition estimates are obtained using revised

data, we should be aware that, by estimating them using time series that include observations still

subject to many rounds of revision, our inference on the relative importance of structural shocks

might be mistaken.

Figure 2 presents variance decompositions for the same set of shocks of Figure 1 but they show

the proportion of unexpected data revision variation caused by each shock. The data revision

process considered is rev(1)
t = Xt+1

t − Xt − M(1), that is, the complete revision process until

the true (revised) value is observed. Figure 2 presents variance decompositions computed at the

posterior mean for Gibbs specifications with q = 2 and q = 8 for each one of the four variables

with modelled data revision processes. The bars are ordered by variable and then specification,

so we can evaluate the impact of the assumption on the final values (Xt+2
t or Xt+8

t ). It is clear

that the proportion explained by future revisions, or the revision-specific shocks for each variable,

is smaller if the final value is Xt+2
t instead of Xt+8

t . As a consequence, structural shock innovations

are more dominant in explaining the first revision than later revisions. This is in agreement with

the fact that publications of initial revisions by statistical agencies are mainly caused by the use of

a more complete information set (Landefeld et al., 2008), and that the initial revisions are mainly

predicted based on new information (Clements and Galvão, 2015).

Although the main source of unexpected revisions is a decrease in measurement errors of earlier

estimates because "future revisions" shocks explain at least 70% of the variation if the truth is

revealed after 8 quarters, data revisions of all variables, except investment, are also explained

by investment-specific shocks. Investment-specific shocks are then the source identified using the

release-based approach for the data revision comovements identified in Table 2C.

In Table A2 in the Appendix, I present the estimated range for these variance decomposition

values as well as the results for the ‘MH, q = 2’specification that confirms that structural shocks

are more important in explaining earlier rather than later revisions.
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5 Real-time Out-of-sample Evaluation

In this section, I compare the relative real-time forecasting performance of the conventional and

the release-based approach to estimate and forecast using DSGE models in real time. One of

the advantages of the release-based approach is that confidence intervals for the last observation

currently available can be easily computed based on the information set available for the forecaster

estimating using the DSGE model. In other words, we can account for data uncertainty. As a

consequence, I use a backcasting exercise to assess the empirical coverage of the data uncertainty

intervals computed using the release-based specifications. I also employ this forecasting exercise

to evaluate the reliability of DSGE real-time estimates of the output gap with the conventional

approach and compare these estimates with the release-based approach.

5.1 Design of the Forecasting Exercise

I use a real-time forecasting exercise, but instead of organising real-time vintages to match the dates

of computation of the Greenbook and/or Blue Chip forecasts, as is done in Edge and Gurkaynak

(2011), I organise the data by quarterly vintages dated at the middle of the quarter, similar to the

Philadelphia Fed real-time dataset. Although this makes it more diffi cult to compare my results

with the survey forecasts computed earlier in the quarter, it is easier to compare them with results

in the literature on the impact of real-time datasets in forecasting, as surveyed by Croushore (2011).

Details of the real-time datasets employed are provided in Table 1.

The forecast accuracy is evaluated using first-final estimates as in Edge and Gurkaynak (2011),

when the release-based specification assumes q = 2 and the use of the eighth estimate if the

vintage-based specification sets q to be 8. This implies that forecasts computed using the conven-

tional approach are evaluated using both Xt+2
t and Xt+8

t . I consider 38 forecasting origins covering

end-of-sample vintages from 1999Q1 up to 2008Q2 and using observations from 1984Q1. For each

forecasting origin, I compute forecasts for one to four quarter horizons. For this baseline exercise,

I disregard later forecasting origins because the medium-sized DSGE model is not adequate to fit
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central bank preferences during the recent period where the Zero Lower Bound holds. The implica-

tions for relative forecasting performance of considering this out-of-sample period are investigated

in section 5.3.

Computation of forecasts using the release-based approach is performed as described in section

2.2.3. I set J = 2000 using equally spaced draws from the draws kept from the posterior distribution

(30,000). A similar approach is applied to compute forecasts using the conventional approach. I

also use the posterior distribution of XT (over S draws) to compute 90% intervals for the last

observation and evaluate the data uncertainty.

Figures 3A and 3B provide us with an example of the application of the vintage-based approach

with q = 8 to compute backcasting and forecasting intervals, computed using real-time vintages

up to 2008Q2, which include observations up to 2008Q1. Figure 3A presents the values from

2006Q2 up to 2009Q1 for output growth and inflation, and Figure 3B presents the values for

consumption and investment growth. The grey line represents the last 8 observations available

in the 2008Q2 vintage. The line with a square marker represents the values available 8 quarters

after the observational quarter, that is, Xt+8
t , which are the target values. The Xt+8

t time series is

only equal to the equivalent time series from the 2008Q2 vintage at the 2006Q2 observation. The

black line represents our mean/point forecasts for this period. The dashed lines represent the 90%

confidence bands. These forecasts are based on the ‘Gibbs-M, q = 8’specification.

As expected, the intervals are wider for the last observation available (2008Q1) than for earlier

dates. The interval widths show that the forecasting uncertainty is larger than the data uncertainty.

Note also that the model does not perform well for observations from 2008Q3, as reported by

Del Negro and Schorftheide (2013) on DSGE models not being able to provide accurate forecasts

during the 2008-2009 crisis.

The ability to use the same model to provide uncertainty assessments for both backcasts and

forecasts is one of the main contributions of the release-based approach proposed in this paper.

Figure 3 provides us with an example of these uncertainty measurements for a specific forecasting

origin. A formal assessment of the modelling approach considering both data and forecasting
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uncertainty is presented below.

I evaluate the coverage of the predictive intervals and the calibration of both backcasts and

forecasts. I compute the empirical coverages using nominal coverages of 70% and 90%. Clements

(2015) argues that accounting for data revisions may have a large impact on the prediction interval

coverages of autoregressive models.

If the predictive densities approximate the true data density well, the probability integral trans-

forms (PITs) should be uniform, implying that the density is well-calibrated. We use the test

proposed by Berkowitz (2001) to assess the uniformity while imposing no restriction on the serial

correlation of PITs over time, as in Clements (2004). This implies that we can evaluate the cal-

ibration of density forecasts at all forecast and backcast horizons because we expect some serial

correlation in the PITs if we are not dealing with a one-step-ahead prediction.

The relative forecasting performance of a model is measured using the squared error loss function

for point forecasts and log scores for density forecasts. The advantage of using log scores is that if

model A has a larger log score than model B, this means that model A is closer to the true density

using the Kullback—Leibler information criteria (Mitchell and Wallis, 2011). I compute log-scores

log pj,h,t for t = 1, ..., P for model j based on the predictive density for horizon h using numerical

methods.8 I test for equal forecasting accuracy using the difference in log scores between the model

i under the null hypothesis and the model j under the alternative as

dh,t = log pi,h,t − log pj,h,t,

and therefore, the null hypothesis is rejected in favour of the model under the alternative if the

mean of dh,t is significantly smaller than zero. I use a t-statistic that employs the Newey-West

estimator to obtain var(dh,t) and asymptotic normality to obtain critical values, as in Diebold and

Mariano (1995), Giacomini and White (2006) and Amisano and Giacomini (2007). A similar test

8 In a first step, I use a non-parametric Kernel estimator with Gaussian weights and bandwidth computed using
cross-validation to estimate the predictive density over a grid of 1000 values between -15% and +15%. Then, in a
second step, I use the smoothed predictive density to obtain the log score at the realization value.
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statistic is also used when comparing the mean squared forecasting errors so that we can evaluate

whether the alternative model is a more accurate point forecaster than the model under the null

hypothesis.

5.2 Backcasting Evaluation

The first empirical question that I address using the forecasting exercise described above is whether

the release-based approach is able to provide a good measure of data uncertainty for the last

observation available at each vintage in the out-of-sample period, that is, {Xt}t=T+P−1
t=T . I use two

release-based specifications in this exercise: Gibbs-M, q = 2 and q = 8. Note that each of these

specifications is evaluated using their assumed actual value (Xt+2
t and Xt+8

t ). Empirical coverages

computed for the 38 forecasting origins considered and p-values for the Berkowitz test are presented

in Table 5 for the four variables that we model the data revision processes for.

The performance of the specification with q = 2 is not good because the null hypothesis of

uniformity is rejected for all variables and the predictive intervals are too narrow in comparison with

the nominal values. The specification with q = 8 performs better, and we find that the backcasting

densities for inflation and investment growth are well calibrated and that their empirical coverages

are near the nominal value. Even with q = 8, the predictive intervals heavily undercover the actual

realizations, particularly when predicting consumption growth.

This disappointing performance of the release-based approach in providing accurate backcasts

for the last observation of each vintage maybe be related to the fact that we are not using any

additional information for forecasting these data revisions. A successful predictive model for data

revisions should normally incorporate additional information (Cunningham et al., 2012; Clements

and Galvão, 2015). This paper does not aim to provide us with an outstanding data revision

forecasting model, and therefore, this issue is not pursued further. However, the release-based

approach when estimated using the Gibbs-M algorithm is suffi ciently flexible that we can incorpo-

rate additional observables on the data revision regression equations. I leave this task for future

research.
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5.3 Forecasting Evaluation

The second empirical question addressed by this empirical exercise is the relative performance of

the release-based approach in comparison with the conventional approach in real-time forecasting.

The statistics presented in Table 6 to evaluate the forecasting performance of both approaches are

similar to those in Table 5, that is, they include coverage measures and p-values for the Berkowitz

test. Results are presented for two forecasting horizons: h = 1 and h = 4. In addition to the four

variables of Table 5, I include results for the fed fund rate. This last variable is not subject to

revision, and therefore, the conventional approach results for both actual values, Xt+2
t and Xt+8

t ,

are exactly the same. For the other variables, the change in the target values affects the coverage

and calibration of conventional density forecasts.

The results in Table 6 suggest that the release-based approach addresses issues of undercoverage

of the conventional approach. The predictive intervals using the conventional approach are too

narrow for the Xt+8
t values of consumption and investment growth at both horizons. Coverage rates

with the release-based approach for q = 8 are closer to the nominal values, and there is evidence

that the predictive density is calibrated well for all variables except the fed rate. The DSGE model

is not able to provide good forecasts of the fed fund rates at both horizons (confirming the results

of Herbst and Schorftheide (2012) and Del Negro and Schorftheide (2013)) using either approaches

to deal with real-time data.

One could argue that the conventional approach provides density forecasts that are in general

well calibrated if the first-final (q = 2) is taken as the actual, as in Edge and Gurkaynak (2011).

However, the usual argument, as presented in Del Negro and Schorftheide (2013), is that how we

define the actual does not matter for the DSGE forecasting performance. The results in Table 6

suggest that the actual does matter when evaluating interval coverage and density calibration. It

also shows that if we aim to predict revised data, then density forecasts with the release-based

approach may provide better coverage and calibration.

The statistics in Table 6 are not adequate for evaluating if the vintage-based approach is rel-
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atively more accurate than the conventional approach. As a consequence, in Table 7, I present

t-statistics and p-values of the test of equal accuracy using both MSFEs and log scores as the loss

function. Results are presented for the two release-based specifications of Table 6 and the same

five variables, but for h = 1, 2, 4. The negative t-statistics suggest that the release-based approach

is more accurate than the conventional approach.

The specification that assumes the first-final estimate is the revised value (q = 2) has a fore-

casting performance that is in general similar to that of the conventional approach, though it is

worse in some cases. However, the specification with q = 8 is able to significantly improve forecasts

of consumption and investment growth at the first two horizons, presenting reductions of RMSFEs

of around 30%. The caveat here is that fed fund rate forecasts are deteriorated at h = 1. One-

step-ahead forecasts of output growth are also largely improved with q = 8, but not significantly

at a 10% level. In agreement with previous results, the ‘Gibbs-M, q = 8’specification may perform

better than the conventional approach in forecasting.

Table 8 presents additional forecasting results to investigate the robustness of the baseline results

discussed above and presented in Table 7. Table 8 presents t-statistics on the equal accuracy test

of log scores (because the tests deliver qualitatively similar results based on log scores and MSFEs

in Table 7) for the three most popular variables in US macroeconomic forecasting (output growth,

inflation and the fed rate). The additional four release-based specifications considered are ‘Gibbs-

M, q = 2’and ‘Gibbs-M, q = 8’specifications, but modelling data revisions of only output growth

and inflation, and ‘MH, q = 2’specifications with a common deterministic trend (as evaluated in

section 4) and a common stochastic trend.

Significant gains/losses in density forecasting performances by using the release-based approach

instead of the conventional one for real-time forecasting may depend on the model specification

because by modelling additional data revision processes, we increase the model complexity, which

may not always be beneficial for forecasting. The specification with a common stochastic trend

suggests one-step-ahead improvements for all three variables, although this is only statistically

significant for the interest rate. The MH, q = 2 specification shows significant improvements in
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predicting one-step-ahead output growth. The removal of data revisions of consumption growth

and investment from the information set improves the forecasts of the fed fund rates.

Finally, I compare the specifications in Table 7 for forecasting origins from 2008Q3 up to 2013Q3

(using as actuals data released up to the 2016Q2 vintage if q = 8) to check if the relative perfor-

mance of the release-based approach sustains during this most recent period, which is in general

associated with a zero lower bound in the policy rate. The results in Table 9 suggest that, as in the

earlier period, the release-based approach improves forecasts of output, consumption and invest-

ment growth when predicting heavily revised data (q = 8) and it is equivalent to the conventional

approach if predicting the first final (q = 2). During the most recent period, the relative perfor-

mance of the release-based approach has improved when forecasting inflation, but the approach

performs badly when predicting the fed rate.

In summary, I find evidence that the release-based approach can improve real-time forecasts at

short horizons. By accounting for the uncertainty arising from future data revisions, the release-

based approach improves the predictive density forecasts, particularly the interval coverages, of real

macro variables.

5.4 Real-Time Output Gap Estimates

Orphanides and van Norden (2002) argue that real-time estimates of the output gap are unreliable,

and Watson (2007) shows that this is mainly related to the two-sidedness of typical filters employed

in the output gap computation. Based on the estimated coeffi cients and a set of observables, we

can employ the Smets and Wouters (2007) model to compute a time series of the output gap.

The output gap in the SW model is the difference between the current log (output) and the

log(output) that would hold if there were no frictions. This measure of the output gap is one

of the systematic components in the Taylor rule. In this subsection, I compare conventional and

release-based measures of the output gap computed in real time based on their ability to replicate

final estimates, which are the values computed using the 2008Q4 vintage in the conventional case

and vintages up to 2008Q4 for the release-based specification.
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At each forecast origin, I save estimates of the output gap and 90% intervals for the last

observation (t = T, ..., T + P − 1) so that I can plot a time series of real-time estimates9. The

real-time gap estimates are computed for the conventional approach and the ‘Gibbs-M, q = 8’

release-based approach, which was chosen based on its performance in the previous exercises.10

Figure 4 presents the time series of the output gap estimates and 90% intervals obtained with

the conventional approach in the upper plot and the release-based approach in the lower plot. Each

plot also includes the estimate (posterior mean) obtained using the full sample (2008Q4 vintage),

that is, the final value. The real-time output gap measures obtained with the DSGE model are

remarkably reliable even if we employ the conventional approach. There are issues of unreliability

for the 1998Q4 and 1999Q1 observations, but in general, there is a good match between the real-

time and final measures. The release-based approach performs better in the sense that no large

failure is noted. More importantly, if we measure the average width of the 90% interval over these

40 quarters for both approaches, we find that the width computed using the conventional approach

is 2.2%, which is smaller than the 2.4% width computed using the release-based approach. These

results are in agreement with the ones in Table 6 based on interval coverage rates: the conventional

approach may underestimate the uncertainty around estimates obtained using the DSGE model by

disregarding the impact of future data revisions.

6 Conclusions

Sargent (1989) argued that the behaviour of the statistical agency that provides data on output,

inflation and other macroeconomic variables should be taken into account when fitting a DSGE

9These are real-time estimates because I only use data available up to the specific date to estimate the DSGE and
compute the output gap with increasing larger windows of data.
10The conventional approach estimates are computed by using 5000 equally spaced draws from the saved posterior

distribution of the DSGE parameters estimated using the RWMH algorithm. For each parameter draw, I use a
smoother, similar to the one described in the Appendix A, to obtain estimates for the state variables, which are
required for the output gap computation. Then, the empirical distribution of the last observation of the output gap
is used to compute the gap estimate (mean) and the 90% interval (5% and 95% quantiles). For the release-based
approach, I exploit the fact that at each Gibbs iteration, the algorithm requires the computation of a draw of the state
vector, which allows us to compute the output gap. After removing 20% burn-in draws, I use the Gibbs posterior
draws to compute the gap estimate (posterior mean) and the 90% interval for the last observation.
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model to data. This paper proposes an approach for joint estimation of DSGE parameters and data

revision processes. The release-based approach allows the statistical agency to revise data to reduce

initial measurement errors and add new information to the initially released estimates. Households,

firms and the government make their decisions using revised data. Because these entities and the

econometrician have only the initial releases of the last observations, they use past data revision

processes to compute estimates of the last observations.

The application of the release-based approach to the Smets and Wouters (2007) model suggests

that initial releases differ from the final values because data revisions reduce initial measurement

errors and the best estimates at the time of the initial release are not able to incorporate the effects

of structural shocks, particularly investment-specific structural shocks. In addition, the release-

based approach improves the real-time accuracy of predictive densities by bringing coverage rates

closer to the nominal values when predicting heavily revised data. The improvements in forecasting

performance are explained by considering the data uncertainty in the observations still subject to

revision.

I also provide evidence that future data revisions are an important source of unexplained varia-

tion in initial releases of real macroeconomic variables (output, consumption and investment) and

inflation. As the process of releasing revised data progresses, the size of revision shocks decreases

and the correlation between unexpected data revisions and structural shocks may change. This

implies that the estimated relative importance of business cycle sources varies with data maturity.

Future research should investigate the possible impact of data revisions on the measurement

and identification of news and noise shocks as drivers of business cycles as defined and argued by

Blanchard et al. (2013).
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A Metropolis-in-Gibbs Algorithm for Vintage-Based Estimation

of DSGE Models

A.1 Priors and Initialization

The first step of the Gibbs sampling described below requires us to have values for Σθ, which is the

variance-covariance matrix of the parameters of the DSGE model at the posterior mode, computed

based on the Hessian at the posterior mode. We compute the posterior mode of θ using the state

equation in (1) and the following measurement equations:

Xt+1
t−q+1 = d(θ) +H(θ)xt−q+1for t = 1, ..., T,

that is, only observations up to T − q + 1 are employed in the computation of Σ̂θ to initialise the

required Metropolis step.11 The priors on the DSGE parameters p(θ) for the applications described

in this paper are set as in Smets and Wouters (2007).

The Gibbs sampling algorithm also requires priors on the parameters of the data revision process

β. The algorithm below exploits draws for βi,v for i = 1, ...,m and v = 1, ..., q−1, that is, I draw the

parameters for each round of the data revision process and observed variable separately. Assuming

that the structural shocks ηt and Xt are observed, I can write a regression for the v remaining

revision rounds for each variable in the vector Xt as:

(Xt+v
i,t −Xi,t) = Mi,v +Ki,v(X

t+v−1
i,t−1 −Xi,t−1) +Ai,vηt + ξ

(v)
i,t for i = 1, ...,m and v = 1, ..., q − 1

zv,i,t = w′v,i,tβi,v + ξ
(v)
i,t ; wv,i,t = (1, zv,i,t−1, η

′
t)′

where βi,v and wv,i,t are k × 1 vectors with k = r + 2 and r is the number of DSGE structural

shocks innovations.
11Note that if the DSGE model in the conventional approach includes measurement errors, then Xt+1

t−q+1 = d(θ) +
H(θ)xt−q+1+ut−q+1 should be used instead, and the parameters describing the measurement errors are drawn within
the Metropolis step in the algorithm below.

39



I define normal/inverse gamma independent priors for each revision regression. The priors on

βi,v are N(βi,v,Vi,v) where βi,v = 0k×1 and the prior variance diagonal elements are:

Vi,v,j = ϕs2
v,i(W

′
j,v,iWj,v,i)

−1 for j = 1, ..., k

where Wv,i is a N × k matrix with all observations of the row vector w′v,i,t. I set ϕ = 252 so that

the prior variance is data dependent, but its degree of tightness is controlled by ϕ, which is set to

a high value, that is, it is a loose prior. The implicit prior on the var(ξ(v)
i,t ) = σ2

v,i is:

σ2
v,i ∼ IG(s2

v,i, v).

I compute the prior for the variance as:

s2
v,i =

1

N

N∑
j=1

(zv,i,t − w′v,i,tβ̂i,v)2

where β̂i,v is the OLS estimate assuming that Xt = Xt+q
t , that is, using observations only up to

T − q + 1, including the smoothed values of ηt. The scale is set as v = 0.005.

Initial values for X(0)
T−q+1, ..., X

(0)
T are obtained by applying the state smoothing recursion de-

scribed in Durbin and Koopman (2012, 4.4.4) to the state equations (10) with θ set to the posterior

mode values computed as described above and β set as the OLS estimates using observations up

to T − q + 1 and ηt smoothed using the disturbance smoothing recursion in Durbin and Koopman

(2012, 4.5.3).

A.2 The Metropolis-in-Gibbs Algorithm:

1. Conditional on X(j−1)
T−q+1, ..., X

(j−1)
T , a draw of the DSGE parameters θ(j) is obtained using a

Metropolis step. A random walk candidate draw is:

% = θj−1 +$ where $ ∼ N(0, c2Σ̂θ),
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where c is set such that the acceptance rates are around 30%. The candidate draw is accepted

such that θj = % with probability:

α(%|θj−1) = min

{
1,

p(X(j−1)|%)p(%)

p(X(j−1)|θ(j−1))p(θ(j−1))

}
,

where p(X(j−1)|%) is the likelihood function computed at % using data on Xt up to T with

the last T − q + 1 observations from the previous draw.

2. Conditional on θ(j) and X(j−1)
T−q+1, ..., X

(j−1)
T , we obtain a draw of η(j)

1 , ..., η
(j)
T using a smoother.

Recall that ηt ∼ N(0, Q); therefore, we obtain draws for the DSGE innovation shocks as:

η
(j)
t ∼ N(η̂t|T , Q̂t|T ) for t = 1, ..., T,

where η̂t|T = E[ηt|X, θ(j)] and Q̂t|T = var[ηt|X, θ(j)] are computed using the disturbance

smoothing recursion of section 4.5.3 in Durbin and Koopman (2012).

3. Conditional on X(j−1)
T−q+1, ..., X

(j−1)
T and η(j)

1 , ..., η
(j)
T , draws are obtained for the data revision

parameters βi,v and σ
2
i,v for i = 1, ...,m and v = 1, ..., q using normal and inverse gamma and

closed-form solutions as in Koop (2003, ch. 4). The conditional draws are

β
(j)
i,v |σ

2
i,v, X, η

(j)
1 , ..., η

(j)
T ∼ N(βi,v, V i,v)

σ
2(j)
i,v |βi,v, X, η

(j)
1 , ..., η

(j)
T ∼ IG(s2

v,i, v̄)

where

V i,v = V −1
i,v +

((
σ2
i,v

)−1
(W ′v,iWv,i)

)−1

βi,v = V i,v(V
−1
i,v βi,v +

(
σ2
i,v

)−1
(W ′v,iZv,i))

s2
v,i =

T∑
j=1

(zv,i,t − w′v,i,tβ̂i,v)2 + vs2
v,i

v̄ = T + v
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4. Conditional on DSGE and data revision process parameter draws, we use the state-space

representation in (7) and (10) to draw X
(j)
T−q+1, ..., X

(j)
T . Recall that the full vector of state

disturbances is εt = [η′t, ξ
1′
t , ..., ξ

q−1′
t−q+2]′ and the variances of structural shocks innovations are

part of θ(j) and that variances of the data revision innovations are σ2(j)
i,v in the previous step.

We obtain smoothed draws of the state vector αt by first obtaining smoothed draws of εt as

ε
(j)
t ∼ N(ε̂t|T , P̂t|T ) for t = 1, ..., T,

where ε̂t|T and P̂t|T are computed with the disturbance smoothing recursion in Durbin and

Koopman (2012, 4.5.3). Then, we can obtain smoothed draws for the full state vector as:

α
(j)
t|T = T (θ(j), β(j))α

(j)
t−1|T +R(θ(j), β(j))ε

(j)
t−1|T for t = T − q + 2, ..., T

which include draws for X(j)
T−q+2|T , ..., X

(j)
T |T because they are state variables. The advantage

of this algorithm as suggested by Durbin and Koopman (2012, 4.9.3) is that we draw from a

multivariate normal of dimension r + (q − 1)m instead of dimension n+ 2(q − 1)m.

A.3 Convergence Analysis

This subsection provides analysis of the convergence performance of the Metropolis-in-Gibbs algo-

rithm for estimating the DSGE model of section 3 with the release-based approach in comparison

with the RWMH algorithm. Both algorithms are applied for a specification of the model in section 3

that assumes that data revisions are modelled only on output growth and inflation, q = 2, and there

is no serial correlation in the revisions (K(1) = 0). This specification has 36 θ (DSGE) parameters

and 18 β (data revisions) parameters, and was chosen because for this reasonably limited number of

parameters both algorithms can be easily applied, while for a large number of parameters (such as

the ‘Gibbs-M, q = 8’specification in sections 3-5), only the Metropolis-in-Gibbs is recommend. For

both algorithms, I computed 20,000 draws from four chains with different initial values randomised
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around posterior mode values. Then I remove the first 4,000 draws of each chain for initialization.

The scale parameter c is set within each algorithm to obtain the candidate draws for the DSGE

model such as the acceptance rate is around 30%, as suggested by Herbst and Schorftheide (2016)

to minimise the ineffi ciency factor.

Table 10 presents results for the ineffi ciency factor and the potential scale reduction factor

assuming that the model is estimated using the full sample (as in section 4.1). Average ineffi ciency

factors are around 2000 for the RWMH algorithm, but there are 1000 for DSGE parameters and

400 for data revision parameters with the Gibbs-M algorithm. This means we need fewer draws

for convergence with the Metropolis-in-Gibbs algorithm. These ineffi ciency values are compatible

with the ones in Herbst and Schorftheide (2016) in particularly if considering the large number

of parameters estimated. The potential scale reduction (PSR) factor in Table 10 compares the

convergence across chains. Convergence means values near 1. Average PSR values suggest that

the Metropolis-in-Gibbs algorithm has converged, while the RWMH algorithm needs a few more

replications. In sections 4 and 5, we present results for ‘MH, q = 2’specifications using a chain of

70,000 replications to take this issue into account. One could potentially improve the performance

of the RWMH algorithm following suggestions by Haario et al. (1999) and alternatives in Herbst

and Schorftheide (2016), but since convergence results support the Metropolis-in-Gibbs algorithm,

additional algorithm improvements are left for future research.

B Smets and Wouters (2007) Model

In this appendix, I describe the log-linearised Smets and Wouters (2007) model. All endogenous

variables present log-deviations from the steady state.

The endogenous variables are the following: output yt; consumption ct; labour, hours worked lt;

nominal interest rate rt; inflation πt; real wage wt; wage markup µw; price markup µp; investment

it;value of capital stock qt; capital installed kt; capital services used in production kst ; rental rate

of capital rkt ; and capital utilization costs zt. The seven shocks are the following: total factor
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productivity εat ; investment-specific technology ε
i
t; risk premium εbt ; exogenous spending ε

g
t ; price-

push εpt ; cost-push ε
w
t ; and monetary policyε

r
t .

1. Aggregate resource constraint: yt = cyct + iyit + zyzt + εgt

2. From the consumption Euler equation: ct = c1ct−1 + (1− c1)Etct+1 + c2(lt−Etlt+1)− c3(rt−

Etπt+1 + εbt)

3. From the investment Euler equation: it = i1it−1 + (1− i1)Etit+1 + i2qt + εit

4. Arbitrage equation for the value of capital: qt = q1Etqt+1 +(1− q1)Etr
k
t+1− (rt−Etπt+1 +εbt)

5. Production function yt = φb(αk
s
t + (1− α)lt + εat )

6. Capital used: kst = kt−1 + zt

7. Capital utilization costs: zt = z1r
k
t

8. Dynamics of capital accumulation: kt = k1kt−1 + (1− k1)it + k2ε
i
t

9. Firms’markup: µpt = α(kst − lt) + εat − wt

10. Phillips Curve: πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + εpt

11. Solution for rental-rate of capital: rkt = −(kt − lt) + wt

12. Workers’markup: µwt = wt −
[
σllt + 1

1−λ/γ (ct − λ/γct−1)
]

13. Wage dynamics: wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2πt + w3πt−1 − w4µ
w
t + εwt

14. Monetary Policy rule: rt = ρrt−1+(1−ρ){rππt+rY (yt−ypt )}+r∆y[(yt−ypt )−(yt−1−ypt−1)]+εrt

In order to link the parameters of the above equations with the structural parameters in Table

2, please refer to Smets and Wouters (2007).

The equations for the shocks are

1. exogenous spending: εgt = ρgε
g
t−1 + ηgt + ρgaη

a
t
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2. risk premium: εbt = ρbε
b
t−1 + ηbt

3. investment: εit = ρiε
i
t−1 + ηit

4. productivity: εat = ρaε
a
t−1 + ηat

5. price-push: εpt = ρpε
p
t−1 + ηpt − µpη

p
t−1

6. cost-push: εwt = ρwε
w
t−1 + ηwt − µwηwt−1

7. monetary policy: εrt = ρrε
r
t−1 + ηrt
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Figure 1: Variance decompositions computed with the released-based (q=8) and conventional 

approaches (at the posterior mean; after 40 quarters). 

Panel A: Output growth 

 

Panel B: Inflation 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

spending risk-premium invest. product. price-push wage-push monet. future
revisions

Proportion explained by each shock for each data maturity 1st

2nd

3rd

4th

5th

7th

8th

Conv

0

0.1

0.2

0.3

0.4

0.5

0.6

spending risk-premium invest. product. price-push wage-push monet. future
revisions

Proportion explained by each shock for each data maturity
1st

2nd

3rd

4th

5th

6th

7th

8th

Conv



46 
 

Panel C: Consumption growth 

 

Panel D: Investment growth 
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Figure 2: Variance decompositions computed for the revisions between the first release and final 

values (either q=2 or q=8; computed at the posterior mean; after 40 quarters). 
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Figure 3: Backcasts and forecasts with the release-based approach (q=8) at the 2008Q2 forecast 

origin with 90% intervals. 

(Grey line: values from the 2008Q2 vintage; line with square markers: final values – 8 quarters after 

the observational quarter)  
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 (Grey line: values from the 2008Q2 vintage; line with square markers: final values – available 8 

quarters after the observational quarter)  

Panel C: Consumer growth 

 

Panel D: Investment growth 
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Figure 4: Real-time gap estimates with 90% intervals: conventional and released-based (Gibbs-M, 

q=8) Approaches 

(black line: final estimates (the posterior mean) computed with each approach).  
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Table 1: Data sources.   

Name Computed with Data/Source 

𝐺𝐷𝑃𝑡 Real GDP; 
Population above 16. 

vintages from 1965Q4, Philadelphia Fed;  
 CNP16OV, FRED/St Louis. 

𝐶𝑜𝑛𝑠𝑡 Personal consumption expenditure; 
GDP deflator; 
Population above 16 

PCE, vintages from 1979Q4, ALFRED/St Louis; 
vintages from 1965Q4, Philadelphia Fed; 
CNP16OV, FRED/St Louis. 

𝐼𝑛𝑣𝑡 Fixed private investment; 
GDP deflator.  
Population above 16 

FPI, vintages from 1965Q4, ALFRED/St Louis;  
vintages from 1965Q4, Philadelphia Fed;  
CNP16OV, FRED/St Louis. 

𝑊𝑎𝑔𝑒𝑡 Hourly compensation; 
GDP deflator.  

COMPBNFB, vintages from 1997:Q1, ALFRED/St Louis. 
vintages from 1965Q4, Philadelphia Fed 

𝐻𝑜𝑢𝑟𝑠𝑡 Civilian employment; 
Average weekly hours; 
Population above 16. 

CE16OV, vintages from 1965Q4, ALFRED/St Louis;  
AWHNONAG, vintages from 1970Q1, ALFRED; 
CNP16OV, FRED/St Louis. 

𝑃𝑡 GDP deflator. vintages from 1965Q4, Philadelphia Fed. 

𝐹𝐹𝑅𝑡 Fed funds rate. FEDFUNDS, FRED/St Louis. 

Note: Dated Vintages from ALFRED were converted to quarterly data vintages by using the vintage available at the middle of the 

quarter to match the Philadelphia Fed real-time dataset. If source data is sampled monthly, data is converted to quarterly by 

averaging over quarter (before performing growth rates computation). Population and hours are converted to an index with 

base year in 1995.  
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Table 2: Characteristics of data revisions on output growth, inflation, consumption and investment growth (1984Q1-

2008Q3) 

Table 2A: Summary statistics for data revisions.  

 Δ𝑙𝑜𝑔𝐺𝐷𝑃 Δ𝑙𝑜𝑔𝑃 
Final: 𝑋𝑡

𝑡+2 𝑋𝑡
𝑡+8 𝑋𝑡

08𝑄4
 𝑋𝑡

𝑡+2 𝑋𝑡
𝑡+8 𝑋𝑡

08𝑄4
 

Mean 0.028 -0.002 0.065 0.024 0.057 0.026 

Stdev 0.171 0.338 0.359 0.089 0.150 0.170 

AC(1) -0.052 0.020 -0.124 0.007 0.126 0.112 

Q(4) 0.799 
[0.939] 

8.08 
[0.09] 

25.27 
[0.000] 

1.634 
[0.803] 

2.980 
[0.561] 

10.12  
[0.038] 

 Δ𝑙𝑜𝑔𝐶𝑜𝑛𝑠 Δ𝑙𝑜𝑔𝐼𝑛𝑣 

Final: 𝑋𝑡
𝑡+2 𝑋𝑡

𝑡+8 𝑋𝑡
08𝑄4

 𝑋𝑡
𝑡+2 𝑋𝑡

𝑡+8 𝑋𝑡
08𝑄4

 

Mean -0.005 -0.009 0.041 0.106 0.025 0.010 

Stdev 0.138 0.314 0.370 0.540 0.803 0.818 

AC(1) -0.125 0.055 0.045 0.007 0.041 0.030 

Q(4) 4.012 
[0.404] 

1.677 
[0.795] 

8.813 
[0.066] 

5.204 
[0.267] 

3.584 
[0.465] 

5.987 
[0.200] 

Note: The revisions are computed with the indicated final value minus the first release.  

Table 2B: Summary statistics for releases of different maturity. 

 Δ𝑙𝑜𝑔𝐺𝐷𝑃 Δ𝑙𝑜𝑔𝑃 

 𝑋𝑡
𝑡+1 𝑋𝑡

𝑡+2 𝑋𝑡
𝑡+8 𝑋𝑡

08𝑄4 𝑋𝑡
𝑡+1 𝑋𝑡

𝑡+2 𝑋𝑡
𝑡+8 𝑋𝑡

08𝑄4 

Mean 0.388 0.416 0.386 0.453 0.604 0.630 0.660 0.630 

Stdev 0.451 0.507 0.584 0.538 0.284 0.287 0.273 0.245 

AC(1) 0.246 0.256 0.285 0.155 0.465 0.457 0.536 0.453 

 Δ𝑙𝑜𝑔𝐶𝑜𝑛𝑠 Δ𝑙𝑜𝑔𝐼𝑛𝑣 

 𝑋𝑡
𝑡+1 𝑋𝑡

𝑡+2 𝑋𝑡
𝑡+8 𝑋𝑡

08𝑄4 𝑋𝑡
𝑡+1 𝑋𝑡

𝑡+2 𝑋𝑡
𝑡+8 𝑋𝑡

08𝑄4 

Mean 0.503 0.497 0.493 0.544 0.284 0.390 0.309 0.295 

Stdev 0.490 0.507 0.500 0.510 1.833 1.914 1.933 1.690 

AC(1) -0.140 -0.046 0.094 0.025 0.384 0.455 0.517 0.531 

 

Table 2C: Correlation between revisions  

 𝑋𝑡
𝑡+2 − 𝑋𝑡

𝑡+1 𝑋𝑡
𝑡+8 − 𝑋𝑡

𝑡+1 
 Δ𝑙𝑜𝑔𝐺𝐷𝑃 Δ𝑙𝑜𝑔𝑃 Δ𝑙𝑜𝑔𝐶𝑜𝑛𝑠 Δ𝑙𝑜𝑔𝐺𝐷𝑃 Δ𝑙𝑜𝑔𝑃 Δ𝑙𝑜𝑔𝐶𝑜𝑛𝑠 

Δ𝑙𝑜𝑔𝐺𝐷𝑃 1   1   
Δ𝑙𝑜𝑔𝑃 -0.07 1  -0.38 1  

Δ𝑙𝑜𝑔𝐶𝑜𝑛𝑠 0.23 -0.34 1 0.59 -0.42 1 
Δ𝑙𝑜𝑔𝐼𝑛𝑣 0.14 0.01 0.01 0.33 -0.23 0.29 
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Table 3: Priors and posteriors distributions of the DSGE parameters using the conventional and the released-based 

approaches. 

 Priors Conventional MH, q=2 Gibbs-M, q=2 Gibbs-M,q=8 

 density Par(1) Par(2) 0.05 mean 0.95 0.05 mean 0.95 0.05 mean 0.95 0.05 mean 0.95 

𝜑 normal 4.00 1.5 5.08 5.78 7.62 5.15 6.66 8.66 3.55 5.24 7.28 4.84 6.38 8.16 

𝜎𝑐 normal 1.5 0.37 0.51 0.65 1.26 0.46 0.59 0.85 0.38 0.50 0.66 0.48 0.63 0.83 

h beta 0.70 0.10 0.60 0.69 0.75 0.66 0.74 0.80 0.71 0.78 0.85 0.76 0.77 0.78 

𝜉𝑤 beta 0.50 0.10 0.76 0.80 0.85 0.71 0.78 0.86 0.73 0.79 0.86 0.69 0.76 0.83 

𝜎𝑙 normal 2.00 0.75 2.19 2.50 3.64 2.58 3.33 4.27 1.98 2.94 3.88 1.96 3.05 4.08 

𝜉𝑝 beta 0.50 0.10 0.84 0.87 0.90 0.79 0.85 0.90 0.78 0.83 0.88 0.79 0.85 0.89 

𝜄𝑤 beta 0.50 0.15 0.18 0.29 0.45 0.13 0.29 0.51 0.12 0.28 0.48 0.14 0.29 0.48 

𝜄𝑝 beta 0.50 0.15 0.16 0.41 0.62 0.14 0.27 0.40 0.16 0.31 0.45 0.19 0.37 0.53 

𝜓 beta 0.50 0.15 0.63 0.77 0.85 0.61 0.76 0.88 0.41 0.63 0.83 0.44 0.65 0.84 

Φ normal 1.25 0.12 1.46 1.54 1.69 1.37 1.50 1.69 1.32 1.48 1.65 1.40 1.55 1.71 

𝑟𝜋 normal 1.50 0.25 1.08 1.24 1.73 1.06 1.37 1.78 1.11 1.49 1.85 1.18 1.49 1.84 

𝜌 beta 0.75 0.10 0.82 0.84 0.89 0.83 0.86 0.89 0.83 0.87 0.90 0.82 0.86 0.89 

𝑟𝑦 normal 0.12 0.05 0.15 0.22 0.24 0.12 0.18 0.26 0.10 0.17 0.24 0.13 0.18 0.25 

𝑟Δ𝑦 normal 0.12 0.05 0.09 0.16 0.19 0.07 0.13 0.17 0.07 0.12 0.17 0.07 0.12 0.17 

𝜋̅ gam 0.62 0.10 0.56 0.65 0.71 0.52 0.62 0.71 0.50 0.61 0.71 0.57 0.65 0.72 

100(𝛽−1

− 1) 
gam 0.25 0.10 0.15 0.33 0.39 0.15 0.28 0.41 0.15 0.27 0.42 0.14 0.27 0.40 

𝑙 ̅ normal 0.00 2.00 -0.89 0.37 0.76 -1.43 0.01 1.00 -1.52 -0.44 0.52 -1.92 -0.30 1.00 

𝛾̅ normal 0.40 0.10 0.33 0.40 0.44 0.37 0.42 0.45 0.37 0.41 0.46 0.36 0.40 0.44 

𝛼 normal 0.30 0.05 0.13 0.16 0.19 0.11 0.14 0.19 0.06 0.09 0.13 0.07 0.11 0.15 

𝜌𝑎 beta 0.50 0.20 0.94 0.96 0.99 0.87 0.91 0.98 0.85 0.91 0.96 0.87 0.93 0.98 

𝜌𝑏 beta 0.50 0.20 0.53 0.81 0.89 0.67 0.79 0.90 0.73 0.84 0.91 0.63 0.77 0.88 

𝜌𝑔 beta 0.50 0.20 0.94 0.95 0.98 0.98 0.99 1.00 0.96 0.98 0.99 0.97 0.98 1.00 

𝜌𝑖 beta 0.50 0.20 0.54 0.72 0.79 0.43 0.58 0.76 0.16 0.36 0.54 0.46 0.61 0.74 

𝜌𝑟 beta 0.50 0.20 0.46 0.60 0.66 0.42 0.50 0.60 0.38 0.49 0.60 0.44 0.53 0.61 

𝜌𝑝 beta 0.50 0.20 0.39 0.46 0.54 0.65 0.74 0.83 0.71 0.75 0.79 0.51 0.60 0.67 

𝜌𝑤 beta 0.50 0.20 0.47 0.69 0.83 0.36 0.69 0.92 0.43 0.67 0.86 0.49 0.70 0.87 

𝜇𝑝 beta 0.50 0.20 0.23 0.42 0.52 0.63 0.69 0.76 0.62 0.68 0.74 0.32 0.49 0.61 

𝜇𝑤 beta 0.50 0.20 0.89 0.91 0.97 0.88 0.95 0.98 0.88 0.93 0.97 0.89 0.94 0.98 

𝜌𝑔𝑎 beta 0.50 0.20 0.17 0.39 0.48 0.20 0.33 0.49 0.10 0.22 0.33 0.17 0.30 0.43 

𝜎𝑎 invg 0.10 2.00 0.38 0.41 0.46 0.39 0.45 0.50 0.40 0.46 0.53 0.40 0.45 0.51 

𝜎𝑏 invg 0.10 2.00 0.07 0.09 0.14 0.06 0.09 0.12 0.06 0.08 0.11 0.07 0.09 0.13 

𝜎𝑔 invg 0.10 2.00 0.36 0.43 0.45 0.37 0.41 0.47 0.35 0.39 0.44 0.34 0.38 0.43 

𝜎𝑖 invg 0.10 2.00 0.28 0.32 0.42 0.27 0.39 0.47 0.45 0.59 0.72 0.29 0.39 0.49 

𝜎𝑟 invg 0.10 2.00 0.10 0.13 0.13 0.10 0.12 0.14 0.10 0.12 0.14 0.10 0.11 0.13 

𝜎𝑝 invg 0.10 2.00 0.13 0.16 0.17 0.14 0.17 0.20 0.14 0.17 0.21 0.12 0.14 0.17 

𝜎𝑤 invg 0.10 2.00 0.33 0.36 0.40 0.33 0.37 0.42 0.32 0.37 0.42 0.32 0.37 0.43 

 
Note: fixed values: 𝜆𝑤 = 1.5, 𝜀𝑤 = 10, 𝜀𝑝 = 10, 𝛿 = 0.025, 𝑔𝑌=0.18. See Appendix B for model equations. These 

results are based on observations from 1984Q1 up to 2008Q3. The three different release-based specifications are as 
follows. The ‘MH, q=2’ specification that employs a pure RWMH Algorithm, sets the revised value as the first-final 
(2nd release) and models revisions on output growth and inflation only. The ‘Gibbs-M, q=2’ employs the Metropolis in 
Gibbs algorithm described in the Appendix A, models data revisions on output growth, consumption and investment 
growth, and inflation, and sets the revised value as the first final. The Gibbs-M, q=8 is as the Gibbs-M, q=2, except 
that the revised value is only observed in the 8th release, that is, two years after the observation quarter.   
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Table 4: Release-based approach estimates of data revision processes parameters of output growth and inflation.  

 Priors MH, q=2 Gibbs-M, q=2 Gibbs-M, q=8 

 density Para(1) Para(2) 0.05 mean 0.95 0.05 mean 0.95 0.05 mean 0.95 

Μ1,𝑦 normal 0.10 0.20 -0.06 -0.03 0.00 -0.06 -0.03 0.00 -0.06 0.00 0.05 

Μ1,𝜋 normal 0.10 0.20 -0.04 -0.02 0.00 -0.04 -0.02 0.19 -0.09 -0.06 -0.03 

𝑘1,𝑦 normal 0.10 0.20 -0.08 0.06 0.21       

𝑘1,𝜋 normal 0.10 0.15 -0.10 0.06 0.19       

𝜎1,𝑦 invgamma 0.50 0.40 0.16 0.17 0.20 0.15 0.17 0.19 0.28 0.31 0.36 

σ1,𝜋 invgamma 0.20 0.40 0.08 0.09 0.11 0.08 0.09 0.10 0.13 0.15 0.17 

a1,𝑦,𝑔 normal -0.20 0.50 -0.12 -0.04 0.03 -0.07 0.01 0.10 -0.11 0.05 0.20 

a1,𝑦,𝑏 normal -0.20 0.50 -0.57 -0.24 0.08 -0.48 -0.05 0.37 -1.10 -0.37 0.30 

a1,𝑦,𝑖 normal -0.20 0.50 -0.06 0.03 0.10 -0.11 -0.05 0.01 -0.39 -0.22 -0.08 

a1,𝑦,𝑎 normal -0.20 0.50 -0.23 -0.16 -0.10 -0.05 0.01 0.08 -0.20 -0.07 0.06 

a1,𝑦,𝑝 normal -0.20 0.50 0.06 0.26 0.39 -0.35 -0.13 0.06 -0.32 0.10 0.52 

a1,𝑦,𝑤 normal -0.20 0.50 -0.06 0.01 0.10 -0.14 -0.05 0.04 -0.31 -0.14 0.03 

a1,𝑦,𝑟 normal -0.20 0.50 0.11 0.27 0.47 -0.30 -0.02 0.25 -0.21 0.29 0.78 

a1,𝜋,𝑔 normal -0.20 0.50 -0.08 -0.04 0.00 -0.06 -0.01 0.03 -0.09 -0.02 0.05 

a1,𝜋,𝑏 normal -0.20 0.50 -0.40 -0.16 -0.02 -0.24 -0.02 0.19 -0.25 0.07 0.39 

a1,𝜋,𝑖 normal -0.20 0.50 -0.09 -0.03 0.02 -0.02 0.01 0.04 0.00 0.07 0.15 

a1,𝜋,𝑎 normal -0.20 0.50 -0.02 0.01 0.06 -0.05 -0.02 0.02 -0.03 0.03 0.09 

a1,𝜋,𝑝 normal -0.20 0.50 -0.18 -0.08 0.03 -0.08 0.02 0.13 -0.26 -0.06 0.15 

a1,𝜋,𝑤 normal -0.20 0.50 -0.10 -0.05 -0.01 -0.06 -0.01 0.04 -0.07 0.00 0.08 

a1,𝜋,𝑟 normal -0.20 0.50 -0.01 0.15 0.29 -0.23 -0.09 0.06 -0.32 -0.09 0.15 

 
Note: See notes of Table 3. The prior values in the first columns are the ones employed in the MH estimation. The 
priors for the Gibbs-M versions are in the Appendix A. The parameters above are a subset of the parameters 
estimated with the Gibbs-M, q=2 and q=8 specifications since this table presents results for data revisions on 

output growth (y) and inflation (). They are parameters for the revision between the first release and the final 
values (either q=2 or q=8). .  
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Table 5: Coverage and calibration of backcasts for the last observation with the release-based approach  

  Coverage: 70% Coverage: 90% Berkowitz Test - uniformity 

 q=2 q=8 q=2 q=8 q=2 q=8 

Output gr. 22.5% 62.5% 45% 82.5% 0.006 0.000 
Inflation 52.5% 70% 72.5% 82.5% 0.003 0.213 
Consumption gr. 50% 52.5% 57.5% 72.5% 0.000 0.001 
Investment gr.  35% 72.5% 55% 90% 0.000 0.534 

 

Note: Computed for forecasting origins from 1999Q1 up to 2008Q1. The entries employ the Gibbs-M release-

based specifications for q=2 (2nd quarterly release is the final value) and q=8 (release published two years after the 

observational quarter is the final value). Estimation was carried out with expanding windows over the out-of-

sample period. Entries for Berkowitz test are p-values.  

 

 

 

 

 

 

Table 6: Coverage and calibration of one and four-quarter ahead forecasts with the conventional (conv) and release-

based (RB) approaches.  

 Coverage 70% Coverage 90% Berkowitz Test - uniformity 

 q=2 q=8 q=2 q=8 q=2 q=8 

 Conv. RB Conv. RB Conv. RB Conv. RB Conv. RB Conv. RB 

h=1 

Output gr. 82.5% 77.5% 65% 77.5% 92.5% 90% 90% 90% 0.067 0.189 0.187 0.680 

Inflation 65% 75% 62.5% 70% 77.5% 85% 82.5% 87.5% 0.226 0.173 0.804 0.991 

Consumption gr. 60% 65% 55% 72.5% 87.5% 82.5% 82.5% 90% 0.193 0.013 0.087 0.228 

Investment gr.  72.5% 80% 47.5% 82.5% 97.5% 92.5% 67.5% 92.5% 0.170 0.055 0.002 0.039 

Fed rate 67.5% 72.5% 67.5% 65% 82.5% 82.5% 82.5% 85% 0.034 0.039 0.034 0.010 

h=4 

Output gr. 70% 67.5% 70% 72.5% 85% 85% 87.5% 82.5% 0.974 0.664 0.652 0.493 

Inflation 57.5% 75% 75% 72.5% 82.5% 90% 85% 90% 0.871 0.008 0.926 0.582 

Consumption gr. 67.5% 67.5% 60% 70% 77.5% 82.5% 85% 77.5% 0.141 0.078 0.059 0.388 

Investment gr.  62.5% 70% 52.5% 77.5% 87.5% 87.5% 82.5% 87.5% 0.170 0.346 0.192 0.513 

Fed rate 40% 42.5% 40% 42.5% 52.5% 60% 52.5% 57.5% 0.000 0.000 0.000 0.000 

Note: See notes of Table 5.  
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Table 7: Comparing release-based and conventional approaches in forecasting: equal accuracy tests based on MSFEs 

and logscores.  

 q=2 q=8 

 RMSFE ratio MSFE test Logscore test RMSFE ratio MSFE test Logscore test 

out. gr., h=1 1.07 1.190 
[0.883] 

0.90 
[0.815] 

0.88 -0.937 
[0.174] 

-1.13 
[0.129] 

               h=2 1.09 1.406 
[0.920] 

1.35 
[0.912] 

1.00 0.065 
[0.526] 

-0.222 
[0.412] 

               h=4 1.02 1.067 
[0.858] 

-0.568 
[0.284] 

1.08 0.517 
[0.697] 

0.971 
[0.834] 

inflation, h=1 1.03 0.659 
[0.745] 

0.186 
[0.574] 

1.07 0.320 
[0.626] 

0.29 
[0.614] 

                 h=2 1.08 1.218 
[0.888] 

1.51 
[0.935] 

1.04 0.183 
[0.573] 

0.57 
[0.718] 

                 h=4 1.10 1.102 
[0.865] 

1.79 
[0.964] 

1.22 0.954 
[0.829] 

1.231 
[0.891] 

cons. gr., h=1 1.02 0.268 
[0.606] 

0.273 
[0.608] 

0.76 -1.668 
[0.048] 

-1.506 
[0.066] 

                 h=2 1.04 0.605 
[0.727] 

1.005 
[0.843] 

0.81 -1.287 
[0.099] 

-1.031 
[0.151] 

                 h=4 1.02 0.316 
[0.624] 

-1.064 
[0.144] 

1.04 0.194 
[0.577] 

-0.043 
[0.483] 

inv. gr., h=1 1.07 0.738 
[0.77] 

2.182 
[0.985] 

0.58 -3.07 
[0.001] 

-2.893 
[0.002] 

              h=2 1.11 1.236 
[0.892] 

2.212 
[0.987] 

0.67 -2.088 
[0.019] 

-1.988 
[0.023] 

              h=4 1.08 1.255 
[0.895] 

0.894 
[0.816] 

1.27 0.684 
[0.753] 

0.287 
[0.613] 

Fed rate, h=1 1.02 0.454 
[0.675] 

-0.25 
[0.400] 

1.04 1.680 
[0.954] 

1.514 
[0.935] 

                 h=2 0.98 -0.581 
[0.281] 

-0.51 
[0.306] 

1.01 0.895 
[0.815] 

-0.291 
[0.386] 

                 h=4 0.98 -0.780 
[0.218] 

-1.18 
[0.120] 

1.02 1.024 
[0.847] 

-0.089 
[0.464] 

 

Notes: The RMSFE ratio column is the ratio between the release-based and the conventional RMSFEs. 

The following two columns are t-statistics of the Diebold and Mariano test of equal accuracy with the 

loss function indicated.  The values in brackets are p-values. The forecasting model under the null is the 

DSGE model estimated with the conventional approach and the models under the alternative are the 

released-based Gibbs-M specifications with q=2 and q=8. The t-statistics are based on 38 observations 

for forecasting origins from 1999Q1 up to 2008Q2 (vintage dates).  
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Table 8: Comparing release-based alternative specifications and conventional approaches in forecasting: equal 

accuracy tests based on logscores 

 Output growth Inflation Fed rate 

 h=1 h=2 h=4 h=1 h=2 h=4 h=1 h=2 h=4 

Gibbs-M, q=2;  
only y and p 

0.41 
[0.660] 

0.866 
[0.807] 

-1.32 
[0.093] 

-0.249 
[0.401] 

0.44 
[0.671] 

1.37 
[0.916] 

-1.82 
[0.034] 

0.82 
[0.795] 

-1.16 
[0.121] 

Gibbs-M, q=8, 
only y and p  

-0.895 
[0.185] 

0.519 
[0.698] 

0.811 
[0.791] 

0.350 
[0.636] 

0.68 
[0.754] 

1.293 
[0.902] 

-0.367 
[0.357] 

-1.258 
[0.104] 

-0.925 
[0.178] 

MH, q=2 -2.15 
[0.016] 

-0.377 
[0.353] 

-1.014 
[0.155] 

-0.583 
[0.280] 

-0.284 
[0.389] 

1.424 
[0.922] 

1.096 
[0.864] 

1.984 
[0.970] 

-0.309 
[0.379] 

MH, q=2 
Stoch trend 

-1.19 
[0.116] 

0.712 
[0.762] 

0.837 
[0.799] 

-1.223 
[0.111] 

0.639 
[0.739] 

0.708 
[0.760] 

-1.586 
[0.056] 

-0.196 
[0.422] 

-0.741 
[0.229] 

 

Notes: see notes of Table 7. These entries are t-statistics of for the test of equal accuracy for the difference in log 

scores. Negative values means that the release-based approach indicated in the first column is more accurate than 

the conventional approach. Values in brackets are p-values. The release-based alternative specifications considered 

in this Table are described in details in section 5.3.  
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Table 9: Comparing release-based and conventional approaches in forecasting over the 2008-2013 period: equal 

accuracy tests based on MSFEs and logscores.  

 q=2 q=8 

 RMSFE ratio MSFE test Logscore test RMSFE ratio MSFE test Logscore test 

out. gr., h=1 1.01 0.143 
[0.557] 

-0.20 
[0.421] 

0.63 -1.589 
[0.056] 

-1.405 
[0.080] 

               h=2 1.10 0.910 
[0.819] 

0.246 
[0.597] 

0.65 -1.180 
[0.119] 

-0.993 
[0.161] 

               h=4 1.00 -0.014 
[0.495] 

-0.613 
[0.270] 

0.38 -1.133 
[0.129] 

-1.159 
[0.123] 

inflation, h=1 0.96 -0.532 
[0.297] 

-1.286 
[0.099] 

0.98 -0.055 
[0.478] 

-0.888 
[0.187] 

                 h=2 0.87 -1.103 
[0.135 

-0.389 
[0.349] 

0.80 -0.877 
[0.190] 

-1.168 
[0.122 

                 h=4 0.78 -1.396 
[0.081] 

-0.693 
[0.244] 

0.75 -0.892 
[0.186] 

-0.793 
[0.214] 

cons. gr., h=1 1.07 0.590 
[0.723] 

1.038 
[0.850] 

0.72 -0.937 
[0.174] 

-0.961 
[0.168] 

                 h=2 1.28 1.063 
[0.856] 

-1.107 
[0.134] 

0.68 -1.269 
[0.102] 

-0.258 
[0.398] 

                 h=4 1.14 0.607 
[0.728] 

0.792 
[0.786] 

0.44 -1.247 
[0.106] 

-1.283 
[0.100] 

inv. gr., h=1 0.98 -0.271 
[0.393] 

-1.043 
[0.149] 

0.66 -1.187 
[0.118] 

-0.290 
[0.386] 

              h=2 0.99 -0.267 
[0.395] 

0.363 
[0.642] 

0.73 -0.688 
[0.252] 

-0.983 
[0.163] 

              h=4 1.05 0.563 
[0.713] 

-0.223 
[0.412] 

0.41 -1.230 
[0.109] 

-1.344 
[0.090] 

Fed rate, h=1 0.99 -0.277 
[0.391] 

1.185 
[0.882] 

1.06 1.198 
[0.885] 

1.803 
[0.964] 

                 h=2 0.92 -1.150 
[0.125] 

-0.644 
[0.260] 

1.08 1.610 
[0.946] 

1.847 
[0.968] 

                 h=4 0.92 -0.898 
[0.185] 

-0.805 
[0.211] 

1.12 1.550 
[0.939] 

1.892 
[0.971] 

 

Notes: The RMSFE ratio column is the ratio between the release-based and the conventional RMSFEs. 

The following two columns are t-statistics of the Diebold and Mariano test of equal accuracy with the 

loss function indicated.  The values in brackets are p-values. The forecasting model under the null is the 

DSGE model estimated with the conventional approach and the models under the alternative are the 

released-based Gibbs-M specifications with q=2 and q=8. The t-statistics are based on 21 observations 

for forecasting origins from 2008Q3 up to 2013Q3 (vintage dates).  
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Table 10: Convergence Analysis  

 Metropolis-in-Gibbs RWMH 

        
 InEff PSR InEff PSR InEff PSR InEff PSR 

mean 1067 1.15 436 1.06 2122 1.26 2029 1.27 

median  277 1.01 70 1.01 1822 1.15 1822 1.15 

10% quantile 95 1.00 17 1.00 566 1.03 412 1.03 

90% quantile 3344 1.44 670 1.07 3881 1.53 4063 1.71 

 

Notes: These values are computed for the DSGE model described in section 3 and assuming that only 

data revisions of output growth and inflation are modelled, q = 2 and no serial correlation in the 

revisions.  is the vector 36 DSGE parameters and  is the vector of 18 data revision parameters. InEff is 

the inefficiency factor computed with autocorrelation lag length of 15. PSR is the potential scale 

reduction that measures convergence by comparing within-chain and between-chain variance of the 

draws.  Results are based on four chains of 20,000 draws with different starting values where the first 

4,000 draws are removed before the computation of the statistics in the table.  
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Online Appendix Tables:  

Table A1: Variance Decomposition of First Released and Revised data 

Table A1A: Output Growth 

 Conventional Gibbs-M, q=8 Gibbs-M, q=2 MH, q=2 

  Initial Revised Initial Revised Initial Revised 

η_g 0.448 
[0.40;0.27] 

0.344 
[0.31;0.26] 

0.350 
[0.40;0.22] 

0.314 
[0.28; 0.24] 

0.306 
[0.31;0.22] 

0.409 
[0.45;0.28] 

0.363 
[0.41;0.27] 

η _b 0.019 
[0.01; 0.23] 

0.023 
[0.00;0.08] 

0.030 
[0.01;0.10] 

0.023 
[0.00;0.10] 

0.023 
[0.00;0.10] 

0.025 
[0.01; 0.09] 

0.023 
[0.01;0.09] 

η _i 0.085 
[0.03; 0.23] 

0.018 
[0.02;0.15] 

0.075 
[0.01;0.23] 

0.040 
[0.01;0.25 

0.079 
[0.01;0.28] 

0.110 
[0.01; 0.33] 

0.079 
[0.01;0.28] 

η _a 0.404 
[0.51;0.25] 

0.377 
[0.31;0.38] 

0.510 
[0.55;0.43] 

0.565 
[0.61;0.38] 

0.554 
[0.63;0.37] 

0.398 
[0.43; 0.26] 

0.501 
[0.52;0.34] 

η _p 0.003; 
[0.01;0.00] 

0.003 
[0.01;0.00] 

0.005 
[0.00;0.00] 

0.009 
[0.01;0.01] 

0.007 
[0.00;0.01] 

0.003 
[0.00; 0.01] 

0.004 
[0.00;0.01] 

η _w 0.001 
[0.01; 0.02] 

0.006 
[0.04;0.00] 

0.003 
[0.00;0.02] 

0.003 
[0.01;0.01] 

0.004 
[0.00;0.01] 

0.002 
[0.00; 0.01] 

0.002 
[0.00;0.01] 

η _r 0.041 
[0.05;0.02] 

0.020 
[0.03;0.01] 

0.027 
[0.02;0.00] 

0.027 
[0.05;0.01] 

0.027 
[0.04;0.02] 

0.029 
[0.04;0.01] 

0.029 
[0.04;0.02] 

𝜉(𝑖)
(1)

  0.209 
[0.29;0.11] 

 0.019 
[0.03;0.01] 

 0.024 
[0.04;0.01] 

 

Table A1B: Inflation 

 Conventional Gibbs-M, q=8 Gibbs-M, q=2 MH, q=2 

  Initial Revised Initial Revised Initial Revised 

η_g 0.002 
[0.00; 0.01] 

0.003 
[0.11;0.01] 

0.001 
[0.04;0.00] 

0.001 
[0.08;0.00] 

0.000 
[0.05;0.00] 

0.010 
[0.09;0.00] 

0.002 
[001;0.00] 

η _b 0.001 
[0.00; 0.03] 

0.001 
[0.00;0.01] 

0.001 
[0.00;0.00] 

0.002 
[0.00;0.01] 

0.002 
[0.00;0.01] 

0.001 
[0.00; 0.01] 

0.001 
[0.00;0.01] 

η _i 0.004 
[0.01; 0.02] 

0.028 
[0.00;0.07] 

0.002 
[0.00;0.01] 

0.003 
[0.01;0.02] 

0.001 
[0.00;0.00] 

0.009 
[0.00; 0.03] 

0.002 
[0.00;0.02] 

η _a 0.069 
[0.13;0.04] 

0.048 
[0.13;0.05] 

0.063 
[0.12;0.04] 

0.053 
[0.17;0.02] 

0.045 
[0.10;0.02] 

0.029 
[0.14;0.02] 

0.035 
[0.14;0.02] 

η _p 0.538 
[0.28; 0.51] 

0.364 
[0.19;0.28] 

0.441 
[0.40;0.30] 

0.472 
[0.30;0.34] 

0.483 
[0.42;0.33] 

0.495 
[0.23; 0.35] 

0.559 
[0.45;0.35] 

η _w 0.381 
[0.62;0.35] 

0.418 
[0.38;0.54] 

0.483 
[0.43;0.65] 

0.450 
[0.40;0.61] 

0.462 
[0.41;0.64] 

0.434 
[0.45; 0.62] 

0.395 
[0.38;0.62] 

η _r 0.005 
[0.00; 0.01] 

0.008 
[0.02;0.00] 

0.008 
[0.01;0.00] 

0.006 
[0.02;0.00] 

0.006 
[0.02;0.00] 

0.005 
[0.00; 0.02] 

0.006 
[0.03;0.00] 

𝜉(𝑖)
(1)

  0.129 
[0.17;0.04] 

 0.012 
[0.02;0.00] 

 0.017 
[0.03;0.01] 
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Table A1C: Consumption Growth 

 

 

 

 

 

 

 

 

 

 

 

Table A1D: Investment Growth 

 

 

 

 

 

 

 

 

 

 

Note: Entries are the proportion of the unexpected variation explained by each shock computed at the posterior 

mean of the parameters. Values in squared brackets are the variance decompositions computed respectively at 

the 5% and 95% quantiles of the parameters. These are long-run variance decompositions (after 40 quarters). They 

are computed for the innovations to the following shocks: η_g is a spending shock; η _b is a risk premium shocks; 

η _i is the investment-specific shock; η _a is the productivity shock; η _p is a price-push shock; η _w is a wage push 

shock; η _r is the monetary policy shock; 𝜉(𝑖)
(1)

 is the data revision specific shock to each one of the four variables, 

and it is an innovation to the difference between the first release and the truth.  The variance decompositions are 

computed for four spectifications: the conventional approach (no data revision modelling) and three release-

based specifications: MH, q=2; Gibbs-M, q=2 and Gibbs-M, q=8. Details of these specifications are described in 

section X. Entries in the column “initial” are values for first-releases and in the column “revised” are for true (final) 

values.  

  

 

 Conventional Gibbs-M, q=8 Gibbs-M, q=2 

  Initial Revised Initial Revised 

η_g 0.252 
[0.21;0.06] 

0.166 
[0.28;0.07] 

0.171 
[0.17;0.12] 

0.169 
[0.25;0.09] 

0.155 
[0.18;0.10] 

η _b 0.05 
[0.01;0.56] 

0.052 
[0.00;0.21] 

0.071 
[0.01;0.23] 

0.033 
[0.00,0.19] 

0.038 
[0.00;0.19] 

η _i 0.106 
[0.03;0.05] 

0.116 
[0.08;0.14] 

0.060 
[0.01;0.14] 

0.095 
[0.05;0.17] 

0.064 
[0.01;0.18] 

η _a 0.491 
[0.69;0.26] 

0.328 
[0.30;0.33] 

0.632 
[0.77;0.43] 

0.648 
[0.63;0.48] 

0.693 
[0.75;0.46] 

η _p 0.003 
[0.003;0.001] 

0.003 
[0.00;0.01] 

0.006 
[0.00;0.01] 

0.007 
[0.01;0.00] 

0.006 
[0.00;0.00] 

η _w 0.005 
[0.000;0.02] 

0.019 
[0.06;0.03] 

0.007 
[0.00;0.03] 

0.005 
[0.01;0.04] 

0.005 
[0.00;0.03] 

η _r 0.091 
[0.07;0.05] 

0.031 
[0.03;0.02] 

0.053 
[0.04;0.04] 

0.032 
[0.04;0.02] 

0.039 
[0.04;0.03] 

𝜉(𝑖)
(1)

  0.285 
[0.26;0.19] 

 0.011 
[0.01;0.01] 

 

 Conventional Gibbs-M, q=8 Gibbs-M, q=2 

  Initial Revised Initial Revised 

η_g 0.000 
[0.00;0.002] 

0.000 
[0.01;0.00] 

0.000 
[0.02;0.00] 

0.001 
[0.02;0.01] 

0.001 
[0.01;0.00] 

η _b 0.006 
[0.00;0.065] 

0.003 
[0.00;0.01] 

0.007 
[0.00;0.02] 

0.005 
[0.00;0.02] 

0.007 
[0.00;0.03] 

η _i 0.928 
[0.88;0.90] 

0.543 
[0.21;0.78] 

0.937 
[0.85;0.96] 

0.888 
[0.71;0.92] 

0.954 
[0.90;0.95] 

η _a 0.034 
[0.08;0.01] 

0.016 
[0.03;0.01] 

0.035 
[0.06;0.01] 

0.013 
[0.02;0.01] 

0.015 
[0.02;0.01] 

η _p 0.003 
[0.003;0.001] 

0.002 
[0.00;0.00] 

0.004 
[0.01;0.00] 

0.004 
[0.01;0.00] 

0.006 
[0.01;0.00] 

η _w 0.005 
[0.002;0.010] 

0.010 
[0.03;0.01] 

0.004 
[0.02;0.01] 

0.007 
[0.03;0.01] 

0.007 
[0.02;0.01] 

η _r 0.025 
[0.031;0.008] 

0.007 
[0.01;0.00] 

0.013 
[0.04;0.00] 

0.009 
[0.03;0.00] 

0.012 
[0.04;0.01] 

𝜉(𝑖)
(1)

  0.420 
[0.70;0.19] 

 0.072 
[0.19;0.03] 
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Table A2: Variance Decomposition of Data Revision Processes  

 Output Growth Revisions Inflation Revisions Consumption 
Growth 

Investment Growth 

 Gibbs-M, 
q=8 

Gibbs-M, 
q=2 

MH, q=2 Gibbs-M, 
q=8 

Gibbs-M, 
q=2 

MH, q=2 Gibbs-M, 
q=8 

Gibbs-M, 
q=2 

Gibbs-M, 
q=8 

Gibbs-M, 
q=2 

η_g 0.004 
[0.02;0.08] 

0.004 
[0.05; 0.16] 

0.018 
[0.13;0.01] 

0.014 
[0.22;0.03] 

0.029 
[0.22;0.06] 

0.206 
[0.37;0.00] 

0.006 
[0.06;0.02 

0.038 
[0.15;0.05] 

0.000 
[0.01;0.01]  

0.021 
[0.07;0.00] 

η _b 0.001 
[0.00;0.00] 

0.000 
[0.00;0.01] 

0.002 
[0.00;0.00] 

0.000 
[0.00;0.01] 

0.000 
[0.00;0.01] 

0.008 
[0.00;0.01] 

0.000 
[0.00;0.00] 

0.004 
[0.00;0.00] 

0.000 
[0.00;0.00]  

0.001 
[0.00;0.00] 

η _i 0.098 
[0.11;0.02] 

0.258 
[0.36;0.01] 

0.007 
[0.01;0.15] 

0.166 
[0.00;0.41] 

0.174 
[0.07;0.65] 

0.121 
[0.13;0.03] 

0.085 
[0.09;0.01] 

0.333 
[0.37;0.00] 

0.000 
[0.00;0.01]  

0.006 
[0.01;0.12] 

η _a 0.017 
[0.11;0.01] 

0.006 
[0.05;0.21] 

0.508 
[0.55;0.20] 

0.058 
[0.04;0.19] 

0.098 
[0.29;0.04] 

0.032 
[0.03;0.56] 

0.084 
[0.19;0.00] 

0.014 
[0.12;0.13] 

0.015 
[0.05;0.00]  

0.001 
[0.03;0.02] 

η _p 0.000 
[0.00;0.01] 

0.012 
[0.03;0.00] 

0.028 
[0.00;0.07] 

0.002 
[0.02;0.01] 

0.004 
[0.01;0.04] 

0.025 
[0.00;0.04] 

0.002 
[0.00;0.02] 

0.010 
[0.03;0.01] 

0.001 
[0.01;0.00] 

0.004 
[0.00;0.02] 

η _w 0.034 
[0.12;0.00] 

0.039 
[0.15;0.02] 

0.000 
[0.02;0.09] 

0.000 
[0.11;0.07] 

0.028 
[0.19;0.05] 

0.249 
[0.30;0.02] 

0.049 
[0.13;0.00] 

0.016 
[0.03;0.08] 

0.014 
[0.04;0.00] 

0.027 
[0.07;0.0] 

η _r 0.001 
[0.00;0.01] 

0.000 
[0.01;0.01] 

0.007 
[0.00;0.02] 

0.002 
[0.02;0.00] 

0.013 
[0.02;0.00] 

0.022 
[0.00;0.08] 

0.003 
[0.13;0.02] 

0.018 
[0.00;0.08] 

0.000 
[0.00;0.00] 

0.001 
[0.00;0.00] 

𝜉(𝑖)
(1)

 0.844 
[0.64;0.86] 

0.681 
[0.36;0.58] 

0.430 
[0.28;0.46] 

0.758 
[0.59;0.28] 

0.654 
[0.20;0.15] 

0.336 
[0.13;0.31] 

0.770 
[0.53;0.92] 

0.566 
[0.23;0.64] 

0.969 
[0.90;0.97] 

0.938 
[0.81;0.84] 

Note: See notes of Table A1.  These variance decompositions are for revisions defined as the difference between the 

first release and the fully revised value (true values).   

 


