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Abstract

Citation indices are regularly used to inform critical decisions about promotion,

tenure, and the allocation of billions of research dollars. Nevertheless, most indices

(e.g., the -index) are motivated by intuition and rules of thumb, resulting in unde-

sirable conclusions. In contrast, five natural properties lead us to a unique new index,

the Euclidean index, that avoids several shortcomings of the -index and its successors.

The Euclidean index is simply the Euclidean length of an individual’s citation list. Two

empirical tests suggest that the Euclidean index outperforms the -index in practice.
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1. Introduction

Citation indices attempt to provide useful information about a researcher’s publication record

by summarizing it with a single numerical score. They provide government agencies, depart-

mental and university committees, administrators, faculty, and students with a simple and

potentially informative tool for comparing one researcher to another, and are regularly used

to inform critical decisions about funding, promotion, and tenure. With decisions of this

magnitude on the line, one should approach the problem of developing a good index as sys-

tematically as possible. Doing so here, we are led to a unique new index.1 This new index,

called the Euclidean index, is simply the Euclidean length of an individual’s citation list.
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Oswald, Herakles Polemarchakis, and the editor Debraj Ray and three anonymous referees for helpful com-
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1Clearly, reducing a research record to a single index number entails a loss of information. Consequently,

no single index number is intended to be sufficient for making decisions about funding, promotion etc. It is

but one tool among many for such purposes. But it is enough to hold the view that no tool should move one

toward unsound or inconsistent decisions and it is this principle that forms the basis of our analysis.



Perhaps the best-known citation index beyond a total citation count is the -index (Hirsch

2005). A scholar’s -index is the number,  of his/her papers that each have at least 

citations. By design, the -index limits the effect of a small number of highly cited papers,

a feature which, though well intentioned, can produce intuitively implausible rankings. For

example, consider two researchers, one with 10 papers, each with 10 citations (-index = 10),

and another with 8 papers, each with 100 (or even 1000) citations (-index = 8).

Improvements to the -index have been suggested. Consider, for example, the -index

(Egghe 2006a, 2006b), which is the largest number  such that the total citation count of the 

most cited papers is at least 2. The -index is intended to correct for the insensitivity of the

-index to the number of citations received by the most cited papers. Many other variations

have been suggested since. Yet, like the -index, they are ad hoc measures based almost

entirely on intuition and rules of thumb with insufficient justification given for choosing them

over the infinitely many other unchosen possibilities. But for a novel empirical approach to

selecting among a new class of -indices, see Ellison (2012, 2013).2

To illustrate the difficulties that can arise when a systematic approach to choosing an

index is not followed, let us consider the very practical and well-recognized problem of

comparing the records of individuals in different fields or subfields.3 There is compelling

evidence to suggest that for such comparisons to be meaningful, one must rescale each

individual’s citation list by dividing each entry in it by the average number of citations in

that individual’s field. Indeed, Radicchi et. al. (2008) observe that while the distributions

of citations vary widely across a variety of fields (from agricultural economics to nuclear

physics), after rescaling by the average number of citations within a field, the distributions

all become virtually identical (see Section 4).

With this in mind, suppose that two macroeconomists,  and  are being considered

for a single position and it is noted that  has the higher -index and so should be the

preferred candidate. But before a final decision is made, a second position as well as a

new candidate,  become available. Candidate  however, is an industrial organization

economist and so a rescaling of the citation lists is necessary to compare the three records

across the two fields. But a serious difficulty arises. The rescaling has reversed the ranking

of the two macroeconomists. That is, applying the -index to the rescaled lists produces the

ranking:  preferred to  preferred to  and it is now entirely unclear which one of the

two macroeconomists should be hired!

2Ellison (2013) introduces the following class of generalized Hirsch indices. For any    0 and for any

citation list, () is the number of papers,  that each have at least 
 citations. Ellison estimates  and

 so that () gives the best fit in terms of ranking economists at the top 50 U.S. universities in a manner

that is consistent with the observed labor market outcome. Ellison (2012) is a follow-up paper that instead

uses data on computer scientists.
3See, e.g. Radicchi et. al. (2008) and the references therein.
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But do such reversals occur in practice? According to data collected by Ellison (2013),4

the average number of citations per paper among macroeconomists at the top 50 U.S. uni-

versities is 98, while among IO economists it is 55.5 That is, macroeconomists are cited

1.8 (= 9855) times more often per paper, on average, than IO economists. Applying the

-index to Ellison’s (2013) data, both before and after reducing the macroeconomists’ cita-

tions by a factor of 1.8, we find that 95% of them experience at least one pairwise ranking

change with another macroeconomist and 60% of them experience at least one strict ranking

reversal (see Figure 3 in Section 5).6 7 So, for the -index, the problem of ranking reversals

is quite real.

To avoid this and other difficulties, we take an axiomatic approach in our search for an

index.8 The methodology of this approach is to select, with care, a number of basic properties

that an index should have. The advantage of this approach is that it focuses attention on

the properties that an index should possess rather than the functional form that it should

take. After all, it is the properties we desire an index to possess that should determine its

functional form, not the other way around. The five properties that we identify are quite

natural for the problem at hand and lead uniquely to the Euclidean index.

Still, one might wonder how well the Euclidean index performs in practice relative to the

-index. To get a sense of this with Ellison’s (2013) data, we assigned a score to each index

by considering how well its ranking of economists at the top 50 U.S. universities matched

the NRC’s ranking of the departments in which they are employed. More specifically, we

increased an index’s score by 1 whenever its ranking of two economists agreed with the NRC’s

ranking of their departments and we decreased an index’s score by 1 otherwise, ignoring all

ties.9 The Euclidean index outscored the -index in this test and it also outscored a whole

family of indices that satisfy a strict subset of our axioms (see Figure 4 in Section 5).10 Thus,

4See Section 5 for more details.
5These figures pertain to individuals who are classified by Ellison (2013) as being in a unique field, in this

case either IO or macroeconomics. There are 88 out of 226 such macroeconomists and 64 out of 120 such IO

economists.
6The changes in rank that occur in the data often arise between individuals with similar initial -indices.

Such reversals are then less likely to occur between two randomly chosen individuals. Of course recruitment

targets are not chosen at random. To the extent that departments tend to consider individuals of similar

stature, and to the extent that the h-index is positively correlated with stature, the frequency of reversals

reported here is potentially quite relevant in practice.
7One might instead suggest rescaling the -index itself since this will not affect the within-field ranking.

But unless one can justify why the -index is preferable to an ordinally equivalent index, say  +
√
 this

adjustment too will lead to difficulties. See Section 4.
8We are certainly not the first to do so. See e.g., Queseda, 2001; Woeginger, 2008a and 2008b; Marchant,

2009a, 2009b; and Chambers and Miller (2014). But in each of these cases, except Marchant 2009b, the

stated goal is to provide axioms for a pre-existing citation index. As far as we are aware, the functional form

that our axioms identify has not been proposed for use as a citation index until now.
9That is, we assign scores according to Kendall’s (1938) rank correlation coefficient.
10All of the indices in the family outscore the -index.
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at least with respect to this test, the Euclidean index performs rather well.

The Euclidean index is intended to judge an individual’s record as it stands. It is not

intended as a means to predict an individual’s record at some future date. If a prediction

is important to the decision at hand (as in tenure decisions, for example) then separate

methods must first be used to obtain a predicted citation list to which our index can then

be applied.11

Finally, it should be noted that our index is ordinal. Indeed, we would argue that virtually

all citation indices are ordinal because they do not provide decision makers (administrators,

tenure committees, funding committees, etc.) with information such as individual  is

“worth twice as much” as individual  On the other hand, citation indices can and do

provide usefully interpretable ordinal information such as “ is equivalent to an individual

who receives twice as many citations as  on every paper” (see Section 3.1). It is up to

decision-makers to apply this interpretable information to decide how much  should be

paid relative to  or how much teaching  should be assigned relative to  or how much

funding  should receive relative to  etc. Given our ordinal perspective, we will have little

to say about assigning scores to scholarly journals (e.g., Palacios-Huerta and Volij, 2004 and

2014) since such scores are typically used to translate publications from distinct journals

into a common cardinal currency.

The rest of the paper proceeds as follows. In Section 2, we list the five properties that

characterize the Euclidean index. Section 3 contains the statement of our main result as

well as a brief discussion of the roles of each property. Section 4 discusses the important

issue of how to eliminate the well-recognized biases that arise when comparing citation

lists of individuals from different fields or subfields. Understanding this issue is central to

understanding why we introduce the property that we call “scale invariance.” Section 5

provides the details of the two empirical exercises described above.

2. Five Properties for Citation Indices

In this section, we present five properties that lead to a unique index. Unless otherwise

stated, these properties should be thought of as pertaining to citation lists whose cited

papers differ only in their number of citations but otherwise have common characteristics,

e.g., year of publication, field, number of authors, etc. Taking into account differences in

such characteristics is an important issue that is touched upon in Section 4.

Citation indices work as follows. First, an individual’s record is summarized by a finite

list of numbers, typically ordered from highest to lowest, where the -th number in the list

11We thank Glenn Ellison for helpful discussions on this point.
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is the number of citations received by the individual’s -th most highly cited paper. The list

of citations is then operated upon by some index function to produce the individual’s index

number. As already mentioned in the introduction (see also Section 4), one must sometimes

rescale one individual’s citation list to adequately compare it to another individual’s list.

Consequently, one must be prepared to consider noninteger lists. We therefore take as our

domain the set L consisting of all finite nonincreasing sequences of nonnegative real numbers.

Any element of L is called a citation list.12

A citation index is any continuous function,  : L→ R that assigns to each citation list

a real number.13 Consider first the following four basic properties. A discussion of them

follows.

1. Monotonicity. The index value of a citation list does not fall when a new paper with

sufficiently many citations is added to the list.

2. Independence. The index’s ranking of two citation lists does not change when a new

paper is added to each list and each of the two new papers receives the same number

of citations.

3. Depth Relevance. It is not the case that, for every citation list, the index weakly

increases when any paper in the list is split into two and its citations are divided in

any way between them.

4. Scale Invariance. The index’s ranking of two citation lists does not change when each

entry of each list is multiplied by any common positive scaling factor.

The first property, monotonicity, says that for each citation list there is a number (which

can depend on the list) such that the index does not fall if a new paper with at least that

number of citations is added to the list. All indices that we are aware of satisfy this property.

In fact, all indices that we are aware of satisfy the stronger property that they weakly increase

when any new paper is added, regardless of how few citations it receives. In contrast, our less

restrictive monotonicity property allows (but does not require) the index to fall if a new but

infrequently cited paper is added. Note that monotonicity says nothing about the behavior

of the index when an existing paper receives additional citations.

12Implicit in the convention to list the numbers in decreasing order is that the index value would be the

same were the numbers listed in any other order.
13Continuity means that for any citation list , if a sequence of citation lists 1 2  each of whose length

is the same as the finite length of  converges to  in the Euclidean sense, then (1) (2)  converges to

() The use of the Euclidean metric here is not important. Any equivalent metric, e.g., the taxicab metric,

would do.
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The second property, independence, is natural given that our index is intended to compare

the records — as they currently stand — of any two individuals.14 It says, in particular, that

a tie between two records cannot be broken by adding identical papers to each record. The

-index fails to satisfy independence. For example, if individual  has 10 papers with 10

citations each, and  has 5 papers with 15 citations each, then  ’s -index is 10 and ’s

is 5 But if they each produce 10 identical new papers that receive 15 citations each, then

’s -index is still 10 but ’s -index increases from 5 to 15. Note that the independence

property is agnostic about the effect on the index of adding new papers. Independence allows

that adding identically cited papers to two records could separately increase or decrease the

indices, so long as the rankings are not reversed.

It is often suggested that a good index should encourage “quality over quantity,” i.e.,

encourage a smaller number of highly cited papers over a larger number of infrequently cited

papers. The third property, depth relevance, takes a very weak stand on this important

trade-off. It says that it should not be the case that for any fixed number of citations, the

index is maximized by spreading them as thinly as possible across as many publications as

possible. Depth relevance is satisfied by all indices that we are aware of with the exception

of the total citation count.

When distinct fields have significantly different average numbers of citations per paper,

citation lists must be rescaled in order to make meaningful cross-field comparisons (see

Section 4). The fourth property, scale invariance, ensures that the final ranking of the

population is independent of whether the lists are scaled down relative to the disadvantaged

field or scaled up relative to the advantaged field. Because the -index is not scale invariant

it can, as already observed in the introduction, reverse the order of individuals in the same

field when their lists are adjusted to account for differences across fields (Section 5 illustrates

this with empirical data).

In addition to the four basic properties above, let us now introduce a fifth property that

we call “directional consistency.” It is motivated as follows.

Consider two individuals with equally ranked citation lists who, over the next year, each

receive the same number of additional citations on their most cited paper, and the same

number but fewer additional citations on their second most cited paper, etc. Suppose that

at the end of the year their lists remain equally ranked. Directional consistency requires that

if their papers continue to accrue citations at those same yearly rates, then their lists will

continue to remain equally ranked year after year. The formal statement is as follows.

14Marchant (2009b) appears to be the first to apply this independence property to the bibliometric index

problem.
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5. Directional Consistency ∀   ∈ L if () = () and ( + ) = ( + ) then

(+ ) = ( + ) for all   115

Observe that each of properties 1-5 is ordinal in the sense that if an index satisfies any

one of the properties, then any monotone transformation of that index also satisfies that

property. The independence of properties 1-5 is established in the next section following the

statement of Theorem 3.1.

3. The Euclidean Index

Call two citation indices equivalent if one of them is a monotone transformation of the other.

We now state our main result, whose proof is in the appendix.

Theorem 3.1. A citation index satisfies properties 1-5 if and only if it is equivalent to the

index that assigns to any citation list, (1  ), the numbervuut X
=1

2 

Since this number is the Euclidean length of (1  ), we may call this index the Euclidean

index, and we denote it by 

It may be helpful to briefly discuss the roles of properties 1-5. Even though we make

no such assumption directly, properties 1-4, together with continuity, imply that the index

strictly increases when any existing paper receives additional citations. Independence then

implies that the (continuous) index must be equivalent to one that is additively separable

(a direct application of Debreu 1960). The symmetry built into the index (see footnote

12) implies that the summand in the additively separable representation consists of a single

common function, which must be strictly increasing. Scale invariance then implies that the

index must be equivalent to an index of the form (
P

=1 

 )
1

for some   0 and depth

relevance implies that   1 Thus, as Part I of the proof of Theorem 3.1 shows (see the

appendix), properties 1-4 determine the index up to the single parameter   1. Property 5

pins  down to the value  = 216

15If, for example,  ∈ R+ ∩L and  ∈ R+ ∩L and    then +  = (1+ 1  +  +1  ).
16It is interesting to note that properties 1-4 alone imply that for any two lists   ∈ L∩R if 1 ≥ 1 and

1+2 ≥ 1+ 2 and ... 1+ + ≥ 1+ +  with at least one inequality strict, then the index must

rank  strictly above  This follows directly from Hardy et. al.’s (1934) well-known result on second-order

stochastic dominance since
P

=1 

 is an increasing and strictly convex function for any   1 Thus, some

lists can be compared without appealing to property 5.
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While the functional form (
P

=1 

 )
1

is novel for citation indices, it has a long tra-

dition in other areas. It is an  norm from classical mathematics, a CES utility function

as derived in Burk (1936), an Atkinson (1970) measure of income inequality, and a Foster

et. al. (1984) poverty index. In addition, there are several well-known axiomatic charac-

terizations already in the literature, including Burk (1936), Roberts (1980), and Blackorby

and Donaldson (1982). The main ingredients of each of these characterizations include as-

sumptions of continuity, symmetry, independence, coordinatewise monotonicity, and scale

invariance. In contrast, we do not impose any monotonicity conditions on the coordinates of

the index function. The monotonicity property specified here is quite distinct from those in

the literature because it refers to the effect of increasing the dimension of the vector that is

being evaluated. For example, the index function
P

(− 10)3 is not an increasing function
of any of its coordinates, yet it satisfies our monotonicity property because adding a paper

with more than 10 citations increases the index. Relatedly, the literature cited above focuses

on domains whose dimension is fixed at a particular value of  (and it is often assumed

that  ≥ 3) whereas our analysis must include and patch together all possible dimensions
 ∈ {1 2 } Finally, we provide a novel condition that isolates the value  = 2
Properties 1-5 are independent. That is, that no single property is implied by the other

four. This can be demonstrated by displaying, for each property, a citation index that

satisfies the other four properties but is not equivalent to the Euclidean index identified in

Theorem 3.1. Finding five such indices is not difficult.17

3.1. Linear Homogeneity

Of all the equivalent indices satisfying properties 1-5, only the Euclidean index () =

(
P

 
2
 )
12

and its positive multiples are homogeneous of degree 1. This turns out to be

convenient.

For example, suppose that the Euclidean index of  is twice that of  i.e., () = 2()

How might one describe how the two lists compare to one another in terms that would be

helpful to an administrator or someone outside the field in question? The answer is that one

could say that “list  is as good as the list that has as many papers as in  but receives

twice as many citations on each of them.”

The reason that this statement is correct is that, by linear homogeneity, 2() = (2)

Therefore, () = 2() if and only if () = (2) and this last equality means precisely

17For example,  = 1 satisfies all properties but monotonicity;  = max(1  ) satisfies all properties

but independence;  =
P

=1  satisfies all properties but depth relevance;  =
P

=1 
2
 +  satisfies all

properties but scale invariance; and  =
P

=1 
3
 satisfies all properties but directional consistency. In

addition, the lexicographic order satsifies all properties but continuity. None of these indices is equivalent to

the Euclidean index.
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what is stated in the quotation marks in the previous paragraph.

Thus, the Euclidean index,  is particularly convenient because the ratio,  of the

Euclidean index of  to that of  tells us that “list  is as good as the list that has as many

papers as list  but receives  times as many citations on each of them.” In particular, if an

individual’s Euclidean index is twice that of the median Euclidean index in his field, then

the individual is equivalent to one who produces twice as many citations per paper as the

median researcher in his field.

4. Why Rescale the Lists?

Our justification for the scale invariance property rests on the claim that the appropriate

way to adjust for differences in fields is to divide each entry in an individual’s citation list

by the average number of citations in that individual’s field. We now support this claim by

reviewing the work in this direction due to Radicchi et. al. (2008).18

no. of citations c

Fig. 1: Histograms of raw citations across fields in 1999, where c0 is the
average number of citations per paper published in 1999 in that field. (From
Radicchi et. al., 2008).

% of field’s papers
with c citations

In Figure 1, we reproduce Figure 1 in Radicchi et. al. (2008), showing normalized

(relative to the total number of citations) histograms of unadjusted citations received by

papers published in 1999 within each of 5 fields out of 20 considered. The main point of

this figure is to show that the distributions of unadjusted citations differ widely across fields.

For example, in Developmental Biology, a publication with 100 citations is 50 times more

frequent than in Aerospace Engineering. However, after adjusting each citation received by

a year-1999 paper by dividing it by the average number of citations of all the year-1999

18It should be noted that, for the most part, Radicchi et. al. hold fixed the year of publication so that

the age of the papers considered is the same.
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papers in the same field, the distinct histograms in Figure 1, remarkably, align to form single

histogram, shown in Figure 2 (in both Figures, the axes are on a logarithmic scale).19

We encourage the reader to consult the Radicchi et. al. paper for details, but let us

point out that several statistical methods are used there to verify what seems perfectly clear

from the figures, namely, that dividing by the average number of citations per paper in one’s

field corrects for differences in citations across fields in the very strong sense that, after the

adjustment, the distributions of citations are virtually identical across fields.20

no. of adjusted citations c/c0

Fig. 2: Histograms of adjusted citations across fields in 1999.
(From Radicchi et. al., 2008).

% of field’s papers
with c/c0 citations 

4.1. Why not rescale the index itself?

Another way to adjust for differences in fields might be to adjust the index itself. For example,

a popular method for comparing -indices across fields is to divide each individual’s -index

by the average -index in his/her field.21 This produces, for each individual, an adjusted -

index, called the -index in the literature, that is then used to compare any two individuals in

the population, regardless of field. This adjustment has the obvious but important property

19A consequence of this alignment is that the suggested adjustment is unique in the following sense.

Restricting to papers published in 1999, let ̃ denote the random variable describing the distribution of

citations in field  and let ̄ denote its expectation. The suggested adjustment is to divide any field 

paper’s number of citations,  by ̄  giving the adjusted entry ̄  If any increasing functions 1 2 

align the distributions across fields — i.e., are such that the adjusted random variables 1(̃1) 2(̃2)  all

have the same distribution — then there is a common increasing function  such that () = 
³


̄

´
for

every 
20In Radicchi et al. (2008), the common histogram in Figure 2 is estimated as being log normal with

variance 1.3 (the mean must be 1 because of the rescaling).
21This -index adjustment is suggested by Kaur et. al. (2013) and it is used by the online citation

analysis tool “Scholarometer” (see http://scholarometer.indiana.edu), whose popularity for computing and

comparing the -indices of scholars across disciplines seems to be growing.
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that it does not affect the ranking of individuals within the same field. The following example

shows, however, that the final ranking of the population depends on the particular numerical

representation of the -index that is employed.

Example 4.1. There are two mathematicians, 1 and 2 and two biologists, 1 and

2 with each individual representing half of his field. Their -indices are 2 8, 7 and 27,

respectively so that their ranking according to the raw -index is

1 ≺ 1 ≺2 ≺ 2 (4.1)

where ≺ means “is ranked worse than.” To compare mathematicians to biologists, let us

divide each of the mathematician’s indices by their field’s average ((2+8)2 = 5) and divide

each of the biologist’s -indices by their field’s average ((7 + 27)2 = 17) The resulting

adjusted indices, , are respectively, 0.4, 1.6, 0.41, and 1.58, producing the final adjusted

ranking,

1 ≺ 1 ≺ 2 ≺2 (4.2)

But suppose that instead of starting the exercise with the -index, we start with the

monotonic transformation ∗ =  +
√
 The ∗-indices of 12 1 and 2 are, respec-

tively, 2+
√
2 8+

√
8 7+

√
7 and 27+

√
27 i.e., 3.4, 10.8, 9.6, and 32.2, yielding the same

ranking (4.1) as the ordinally equivalent -index.

However, if for ∗ we follow the same procedure and divide each individual’s ∗-index by

the average ∗ in his/her field (i.e., divide the mathematicians’ ∗-indices by 7.1 and divide

the biologists’ by 20.9), then the final adjusted ranking becomes,

1 ≺1 ≺2 ≺ 2 (4.3)

Comparing (4.2) with (4.3), we see that the ranking of 1 and 1 and of 2 and 2

depend on which of the ordinally equivalent indices  or ∗ that one begins with.22 Absent a

compelling argument for choosing one over the other, one must conclude that this adjustment

procedure is not well-founded.

22Indeed, the ranking in (4.2) is impossible to obtain through any rescaling of the mathematicians’ and the

biologists’ ∗ indices because there is no   0 such that (2 +
√
2)  (7 +

√
7)  (27 +

√
27)  (8 +

√
8)
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5. Two Empirical Exercises

We conclude by providing the details of the two empirical exercises described in the Intro-

duction.23 In both exercises we rely on a dataset constructed by Glen Ellison who graciously

made it available to us. Ellison (2013) describes his data as follows: “The dataset includes

citation records of almost all faculty at the top 50 economics departments in the 1995 NRC

ranking. Faculty lists were taken from the departmental websites in the fall of 2011. Citation

data for each economist were collected from Google Scholar. Economists were classified into

one or more of 15 subfields primarily by mapping keywords appearing in descriptions of re-

search interests on departmental or individual websites. Slightly less than half of economists

are classified as working in a single field.”

When one looks, even casually, at Ellison’s citation data, one cannot help but notice the

large differences in the average numbers of citations across fields, from a high of 108 per

paper in international trade to a low of 30 per paper in economic history. To correct for

these differences when comparing scholars from different fields, one must first rescale the

individual citation lists, as explained in section 4, by dividing each scholars’ citations, paper

by paper, by the average number of citations in that paper’s field. For scholars whose papers

are in a single field, all citations should be divided by the average number of citations in

that field.

Our first exercise illustrates that use of the -index can lead to serious practical problems

when efforts are made to correct for differences in fields of study because rescaling has a

nontrivial effect on the -index’s within-field rankings. In this exercise we restricted attention

to individuals in Ellison’s (2013) data who are classified as working in a single field. For the

88 individuals who are classified as macroeconomists, the average number of citations per

paper is 97.9, while the average number of citations per paper for the 64 IO economists is

55.17. Therefore, to adequately compare macroeconomists to IO economists one must scale

down the macroeconomists’ citation lists by a factor of (979)(5517) = 177

Figure 3 shows that the -index’s within-field ranking of macroeconomists is nontriv-

ially affected by this rescaling. Each numbered space on the horizontal axis corresponds

to a macroeconomist, with space  denoting the macroeconomist with the -th highest -

index before rescaling. The heights of the bars indicate either the total number of ranking

changes (lighter colored bars) or the number of strict ranking reversals (darker colored bars)

experienced by each macroeconomist as a result of rescaling.

For example, after rescaling all of the macroeconomists’ lists, macroeconomist number

47 experiences 8 within-field strict ranking reversals and a total of 13 within-field ranking

23We are very grateful to the editor and referees for encouraging us to include some empirical facts along

with our theoretical analysis.
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changes. That is, there are 8 macroeconomists (the height of the darker-colored bar) who

either have a strictly higher -index than macroeconomist 47 before rescaling but a strictly

lower -index after or vice versa; and there are 5 additional macroeconomists (for a total of

13 the height of the lighter-colored bar) who either have the same -index as macroeconomist

47 before rescaling but a different -index after or vice versa.

While a number of macroeconomists experienced no ranking changes at all (e.g., macro-

economist number 1 was top-ranked both before and after rescaling), 95% of the 88 macro-

economists experienced at least one pairwise change in their -index ranking as a result of

rescaling, and 60% experienced at least one strict pairwise ranking reversal. In contrast, the

Euclidean index, being scale invariant, generates the same within-field ranking of macro-

economists before and after rescaling.

Fig. 3: The h‐index is susceptible to ranking changes after rescaling for 
differences in fields.
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Our second exercise is intended to provide an empirically relevant and reasonably objec-

tive comparison between the Euclidean index and the -index. Inspired by Ellison (2013),
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and again using his data, we tested each index to see how well its ranking of economists

at the top 50 U.S. universities matched the NRC’s ranking of the departments in which

they are employed. To do this, we first rescaled the citation lists of each economist by the

average number of citations in his/her field (with economic history as the numeraire). We

then assigned a score to each index as follows. Starting from a score of zero, we increased

an index’s score by 1 whenever its strict ranking of two economists agreed with the NRC’s

strict ranking of their departments and we decreased an index’s score by 1 otherwise, ig-

noring all ties. Summing all the +1’s and −1’s and then dividing by the total number of
distinct pairs of economists yields the index’s score, a number between −1 and +1. That is,
we computed Kendall’s (1938) rank correlation coefficient (or “tau coefficient”) between the

ranking of economists according to each of the two indices’ (-index and Euclidean index)

and the NRC’s ranking of their departments.

The Euclidean index outscored the -index in this test, producing a score of 01846, over

14% higher than the -index’s score of 01614. And both indices’ rankings of economists

reject (with a p-value of 04% for the Euclidean index and 26% for the -index) the null

hypothesis of mutual independence with the NRC’s ranking.24

In addition to testing the Euclidean index against the -index, we tested the Euclidean

index against a whole family of indices that nest the Euclidean index. Specifically, we

computed Kendall’s rank correlation coefficient between the ranking of economists given by

the “-index” (
P

=1 

 )
1

with   1 and the NRC’s ranking of their departments. We

did this for all values of  between 1 and 4 The family of -indices with   1 is precisely

the family of indices that satisfy properties 1-4 (see the discussion following Theorem 3.1 in

Section 3).

24Under the null hypothesis of mutual independence between an index’s ranking and the NRC’s ranking,

the scores are (see Kendall 1938) well approximated by a normal distribution with mean zero and standard

deviation 2(3
√
) = 0071, where  = 88 is the number of economists who are classified as working in the

single field of macroeconomics.
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Fig. 4: The Euclidean index outperforms the h‐index in 
matching labor market data.

Figure 4 (solid line) graphs the value of Kendall’s correlation coefficient as a function of 

For comparison, we have also included in Figure 4 the value of Kendall’s coefficient achieved

by the Euclidean index (solid dashed line) and the lower value achieved by the -index

(dotted line). As is evident from the figure, for all values of  between 1 and 4, Kendall’s

coefficient for the -index is larger than that for the -index. Moreover, Kendall’s coefficient

achieves its maximum value of 01849 when  = 185 a value of  that is remarkably close

to the value of  = 2 that defines the Euclidean index. Thus, the Euclidean index, in

addition to outscoring the -index, outscores a whole family of indices satisfying properties

1-4, namely the family of -indices for values of   1 that are not too close to 185.

A. Appendix

Proof of Theorem 3.1. Since sufficiency is clear, we focus only on necessity. We separate

the proof of necessity into two parts. Part I imposes only properties 1-4, and shows that the

index must be equivalent to
P

 

 for some   1 Part II shows that for any   1 the

index
P

 

 satisfies property 5 only if  = 2

Proof of Part I. Suppose that the (continuous) citation index  : L → R satisfies

properties 1-4. For every  it will be convenient to extend  from the set of nonincreasing

and nonnegative -vectors to all of R
+ by defining, for any (1  ) ∈ R

+ (1  ) :=

(12 ) where  is -th order statistic of 1   Thus  is now defined on the

extended domain L∗ := ∪R
+ in such a way that it is symmetric; i.e., if  ∈ L∗ is a

permutation of 0 ∈ L∗ then () = (0) Clearly, the extended function  satisfies the

extensions to L∗ of properties 1-4, and for any  ≥ 1 its restriction to R
+ is continuous. We

work with the extended index  from now on.

Let us first show that adding a paper with zero citations leaves the index unchanged.

Let  be any element of L∗ We wish to show that () = ( 0) By depth relevance, there

is a list (1 ) ∈ L∗ where  may be the empty list, and there are numbers 1 2 ≥ 0
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with 1 + 2 = 1 such that (1 )  (1 2 ) By independence, (1)  (1 2) and

by scale invariance, (1)  (1 2) for all   0 Taking the limit as  → 0+ gives,

by continuity, that (0) ≥ (0 0) Applying independence once gives ( 0) ≥ ( 0 0) and

applying it again gives () ≥ ( 0) For the reverse inequality note that by monotonicity,

there is   0 such that ( 0) ≥ (0) By scale invariance, ( 0) ≥ (0) for all   0

Taking the limit as → 0+ gives, by continuity, that (0 0) ≥ (0) Then, by independence,

( 0 0) ≥ ( 0) and applying independence once more gives ( 0) ≥ () as desired.

We next show that (1)  (0) By monotonicity, there is   0 such that ( 0) ≥
(0) Since by the previous paragraph ( 0) = (), we have () ≥ (0) Since   0

scale invariance implies that (1) ≥ (0) It remains to show that (1) 6= (0) Suppose,

by way of contradiction, that (1) = (0) Then, by scale invariance, (1) = (0) for all

1 ≥ 0 Then for all 2 ≥ 0 by independence, (1 2) = (2 0) = (2) = (0) where

the second equality follows from the previous paragraph. Continuing in this manner shows

that (1  ) = (0) for all  and all 1   ≥ 0 contradicting depth relevance. We
conclude that (1)  (0)

We next show that, for every  ≥ 1  is strongly increasing on R
+ i.e.,

(0 −)  ( −) ∀ ∈ R
+ ∀ and ∀0   (A.1)

To establish (A.1) it suffices to show, by independence, that 0   implies (
0
) 

(); note that  and 0 here are real numbers (e.g.,  is a list consisting of 1 paper

with  citations). By scale invariance, it then suffices to show that (1)  
³

0

´
 So, let

 = 
0
  1 and suppose, by way of contradiction, that () ≥ (1) Then   0 since

(1)  (0) as shown above. Hence, we may apply scale invariance to () ≥ (1) using the

scaling factor  Doing so  times gives (+1) ≥ () ≥  ≥ () ≥ (1) Taking the limit

as  →∞ of (+1) ≥ (1) implies, because  is continuous and   1, that (0) ≥ (1) But

this contradicts (1)  (0) and so establishes (A.1).

For any  ≥ 1 let  : R
+ → R be the restriction of  to R

+ For any subset  of {1  }
and for any  ∈ R

+ let  = ()∈ and let 
 = {1  }\

We next show that  satisfies Blackorby and Donaldson’s (1982) “complete strict sepa-

rability” condition.25 That is, ∀ 0  ∈ R
+ and ∀ ⊆ {1  }

(  ) ≥ (  ) iff (
0
  ) ≥ (

0
  ).

26 (A.2)

To see that (A.2) holds, note that (  ) ≥ (  ) iff (  ) ≥ (  ) iff () ≥
() iff (0  ) ≥ (0  ) iff (

0
  ) ≥ (

0
  ) as desired, where the second and

third equivalences follow from independence.

Because, for each  the continuous and symmetric function  : R
+ → R satisfies (A.1),

(A.2) and scale invariance, we may apply Theorem 2, part (i), in Blackorby and Donaldson

(1982) (see also Theorem 6 in Roberts 1980) to conclude that for all  ≥ 3 there exist

25Or, equivalently, Debreu’s (1960) “factor-independence” condition.
26Where, e.g.,  = ()∈ 
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 ∈ R and a strictly increasing  : R++ → R such that,

() = 

⎛⎝ÃX




! 1


⎞⎠  for all  ∈ R
++

where we adopt the convention that (
P

 

 )

1
 := Π if  = 0 From this we may conclude

that  is equivalent to (
P

 

 )

1
 on the strictly positive orthant R

++

We claim that   0 Indeed, let () = (1  1 ) ∈ R
+ and suppose first that

  0 Then lim→0+ (
P

(())
)

1
 = 0 Consequently, because the functional form of

 above implies that (1 0  0) ≤ (()) we have (1 0  0) ≤ lim→0+ (()) =

lim→0+ 
³
(
P

(())
)

1


´
 (

1
 ) = (1) holds for any   0 where the strict

inequality follows because  is strictly increasing and lim→0+ (
P

(())
)

1
 = 0  

1
 .

Hence, (1 0  0) ≤ lim→0+ (1) = (0  0) which contradicts (A.1). A similar

argument holds for  = 0

Hence, for every  ≥ 3  is strictly positive and  is equivalent to
P

=1 

 on R

++

But since both  and
P

=1 

 are continuous on R

+ we may conclude that  is equivalent

to
P

=1 

 on R

+ And because adding a paper with zero citations does not change the

value of the index, we may further conclude that  = +1 for all  ≥ 3
Thus, we have so far shown that there exists   0 such that, for any  ≥ 3 and for any

lists   ∈ R
+ of the same length  () ≥ () iff

P

=1 

 ≥

P

=1 

  It remains only to

characterize the index when comparing lists whose common length is less than 3, and when

comparing lists of different lengths. But such comparisons can be made by first adding zeros

to the two lists to be compared so that the lengths of the resulting lists are equal and at

least 3. Since adding zeros does not affect the value of the index the correct comparison can

now be obtained by applying to the lengthened lists the function
P

 

 . Hence, we may

conclude that  is equivalent to the index that assigns to any citation list (1  ) ∈ L∗ of
any length  the number

P

=1 

 .

It remains only to show that   1. But this follows from depth relevance because

0   ≤ 1 implies (1 + 2) ≥ (1 + 2)
 ∀1 2 ≥ 0 which implies (1 + 2) +

P
 


 ≥

(1+2)
+
P

 

 for all nonnegative  = (1  ) which implies (1 2 ) ≥ (1+2 )

and so depth relevance fails.27 This completes the proof of Part I.

Proof of Part II. We must show that if   1 and () =
P

 

 satisfies property 5,

then  = 2 In fact, we will show the even stronger result that if   1 and
P

 

 satisfies

property 5 for lists of length 2 then  = 2 So, from now on we restrict attention to lists of

length 2 i.e., to vectors in L ∩R2+
Let  = ((12)1 (12)1) and let  = (1 0) Then,

() = () = 1

By Lemma A.1 below, there exists 1  1 such that

((12)1 + 1)
 + ((12)1 + 1) = (1 + 1)

 + 1 (A.3)

27For  ∈ (0 1] the function (1 + 2 ) − (1 + 2)
 has nonnegative partial derivatives when 1 2  0

and so it achieves a minimum value of 0 on R2+ at, for example, 1 = 2 = 0
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Since 1  1 the vector (1 1) is in L ∩R2+ Letting  = (1 1), (A.3) says that,

(+ ) = ( + )

Therefore, by property 5, we must have,

(+ ) = ( + ) ∀  1

That is,

((12)1 + 1)
 + ((12)1 + ) = (1 + 1)

 +  ∀  1

Dividing this equality by  letting  = (12)1 and letting  = 1 gives

(+ 1)
 + (+ 1) = ( + 1)

 + 1 ∀ ∈ (0 1) (A.4)

Assume, by way of contradiction, that  is not a positive integer. Then, for any integer

 = 1 2 3  we may differentiate (A.4)  times with respect to  and take the limit of the

resulting equality as  → 0 giving

(1)
− +  = (1)

− (A.5)

Solving for 1 gives,

1 =

µ


1− 

¶ 1
−

=
¡
2 − 1¢ 1

−  (A.6)

where the second equality uses the definition  = (12)1

Since (A.6) holds for every  = 1 2 3  it must also hold in the limit as  → ∞ We

claim that

lim
→∞

¡
2 − 1¢ 1

− = 21 (A.7)

To see this, replace  with the continuous variable  ∈ (1∞) and take the limit of the log
of the expression of interest. This gives,

lim
→∞

log
¡
2 − 1¢ 1

− = lim
→∞

log
¡
2 − 1¢
 − 

= lim
→∞

¡
2 − 1¢−1 2 log(21)

1

= log(21)

where the second equality follows by l’Hopital’s rule This proves (A.7).

Since, (A.6) must hold, in particular, for  = 1 and also in the limit, we must have

21 =
¡
21 − 1¢ 1

1− 

Raising both sides to the power 1−  gives,

2(1−) = 21 − 1
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Since the left-hand side is (12)(21) we obtain

(12)(21) = 1

or, equivalently,

21 = 2

But this last equality implies that  = 1 which is a contradiction since   1. Hence, 

must be an integer greater than 1

Next, assume by way of contradiction, that  6= 2 i.e., that  is an integer greater than
2 Since (A.6) is valid for all  = 1   − 1 it is valid, in particular for  =  − 1 and
 =  − 2 ≥ 1 Hence, ¡

2(−1) − 1¢ 1
(−1)− =

¡
2(−2) − 1¢ 1

(−2)− 

which is equivalent to,

(2(2−1)− 1)−1 = (2(2−2)− 1)−12

which, after cross-multiplying and squaring, is equivalent to

2(2−2)− 1 = (2(2−1)− 1)2
= 4(2−2)− 4(2−1) + 1

Gathering terms, this is equivalent to,

0 = 2(2−2)− 4(2−1) + 2
= 2(2−1 − 1)2

which is a contradiction, because the last expression on the right-hand side is positive for all

finite values of   1 We conclude that  = 2

Lemma A.1. There exists 1  1 that solves (A.3).

Proof. Since the functions in (A.3) are continuous, it suffices to show: (a) when 1 = 1 in

(A.3), the the left-hand side is larger than the right-hand side, and (b) the right-hand side

of (A.3) is larger than the left-hand side for all 1 sufficiently large.

Starting with (a), set 1 = 1 in (A.3). We wish to show that

2((12)1 + 1)  2 + 1 (A.8)

The left-hand side of (A.8) is equal to (1+21) Taking the -th root of both sides, we see

that (A.8) holds iff,

1 + 21  (2 + 1)1

which can be re-written as,

(1 + 0)1 + (1 + 1)1  (2 + 1)1

But this last strict inequality holds by the Minkowski inequality for the vectors (1 0) (1 1)

and (2 1) under the  norm k(1 2)k = (1 + 

2)
1 with  =   1 because (1 0) and
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(1 1) are not proportional.28 This establishes (A.8) and therefore (a). We now turn to (b).

Let  = (12)1 It suffices to show that,

lim
→∞

[(1 + ) − (+ )] = +∞

We can establish this limit as follows.

lim
→∞

[(1 + ) − (+ )] = lim
→0+

[(1 +
1


) − (+ 1


)]

= lim
→0+

[( + 1) − ( + 1)]


= lim
→0+

[( + 1)−1 − ( + 1)−1]
−1

= +∞

where the third equality follows by l’Hopital’s rule because   0 and the fourth since the

numerator of the third line tends to 1−  0 and the denominator tends to 0 from the right

because   1. This proves (b).
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