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Abstract
The viral population of HIV-1, like many pathogens that cause systemic infection, is struc-

tured and differentiated within the body. The dynamics of cellular immune trafficking

through the blood and within compartments of the body has also received wide attention.

Despite these advances, mathematical models, which are widely used to interpret and pre-

dict viral and immune dynamics in infection, typically treat the infected host as a well-mixed

homogeneous environment. Here, we present mathematical, analytical, and computational

results that demonstrate that consideration of the spatial structure of the viral population

within the host radically alters predictions of previous models. We study the dynamics of

virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially

segregated patches, representing T cell areas connected by circulating blood and lymph.

The dynamics of the system depend critically on the interaction between CTLs and infected

cells at the within-patch level. We show that for a wide range of parameters, the system

admits an unexpected outcome called the shifting-mosaic steady state. In this state, the

whole body’s viral population is stable over time, but the equilibrium results from an underly-

ing, highly dynamic process of local infection and clearance within T-cell centers. Notably,

and in contrast to previous models, this new model can explain the large differences in set-

point viral load (SPVL) observed between patients and their distribution, as well as the rela-

tively low proportion of cells infected at any one time, and alters the predicted determinants

of viral load variation.

Author Summary

When a person is infected with HIV, the initial peak level of virus in the blood is usually
very high before a lower, relatively stable level is reached and maintained for the duration
of the chronic infection. This stable level is known as the set-point viral load (SPVL) and is
associated with severity of infection. SPVL is also highly variable among patients, ranging
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from 100 to a million copies of the virus per mL of blood. The replicative capacity of the
infecting virus and the strength of the immune response both influence SPVL. However,
standard mathematical models show that variation in these two factors cannot easily
reproduce the observeddistribution of SPVL among patients. Standard models typically
treat infected individuals as well-mixed systems, but in reality viral replication is localised
in T-cell centres, or patches, found in secondary lymphoid tissue. To account for this pop-
ulation structure, we developed a carefully parameterisedmetapopulation model.We find
the system can reach a steady state at which the viral load in the blood is relatively stable,
representing SPVL, but surprisingly, the patches are highly dynamic, characterised by
bursts of infection followed by elimination of virus due to localised host immune
responses. Significantly, this model can reproduce the wide distribution of SPVLs found
among infected individuals for realistic distributions of viral replicative capacity and
strength of immune response. Our model can also be used in the future to understand
other aspects of chronic HIV infection.

Introduction

In 1979, Bormann and Likens introduced the concept of the shifting-mosaic steady state
(SMSS) to describe biomass in forested ecosystems. This concept was based on the intuition
that although the patches comprising the forested ecosystemmight each be in different phases
of ecological succession due to past disturbance events, the biomass of the whole forest will be
at an equilibrium [1,2]. We suggest that for pathogens that cause systemic infection, such as
HIV or hepatitis C virus, the viral population, host cells, and the immune system form a com-
plex ecosystemwithin the host, with localized succession dynamics. We focus on HIV, charac-
terized by rapid dynamics and trafficking between localized sites of replication in the body.
The hypothesis that HIV is at SMSS in some individuals explains why viral loads vary so dra-
matically among patients, why only a small proportion of patients are natural controllers, and
why a relatively low proportion of cells are infected during chronic infection.

Set-point viral load (SPVL) is the approximately constant viral load observedduring early
chronic asymptomatic infection. It varies by four orders of magnitude between patients [3] and
is the most commonly used and robust predictor of the severity of infection [4,5]. Factors that
have been implicated in determining SPVL include how rapidly the virus replicates and infects
new cells [6–8], the efficacy of the cytotoxic T lymphocyte (CTL) immune response [9], and
the activation rate of susceptible cells [10,11], all of which, in vivo, are probably influenced by a
combination of viral and host factors [12,13]. However, using standard models of HIV within-
host dynamics, in which the virus, susceptible and infected cells, and CTLs are assumed to be
well mixed, these factors only mildly affect the SPVL unless the virus is close to extinction [14–
17]. Introducing more complicated functions to describe the rate at which CTLs accumulate in
response to the number of infected cells can help to explain more of the variation in SPVL [18–
22], as can small differences in a large number of parameters [20]. Even with these models,
though, it is still hard to explain orders of magnitude differences in SPVLs without fine-tuning
parameters, and especially to reproduce the left tail of the distribution composed of patients
with low viral loads. As a further refinement to these models, incorporating activation of cells
from a viral reservoir can explain very low viral loads (below the level of detection by conven-
tional assays) for parameters in which otherwise the virus is expected to go extinct, e.g.,
[22,23], although not the large number of patients with low viral loads but above the level of
detection.
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HIV replication is focused in the secondary lymphoid organs, such as the lymph nodes
(LNs), the spleen, and the gut [24]. At an even finer scale, replication is likely centered within
the T cell areas of these organs, such as the Malpighian bodies found in the spleen [25] and
Peyer’s patches in the gut [24]. Genetic analysis has revealed that the genetic composition of
the viral population differs among these sites of replication, even at very fine scales [25,26], and
that this differentiationmight well be transient [27]. This has led to the speculation that the
within-host structure of HIV is best thought of as a metapopulation, in which T cell areas can
be considered patches of HIV replication, and with long-range migration of the virus among
these patches via the blood [28–30]. This differentiation is formally supported by calculations
of FST (a measure of the genetic differentiation among groups or patches) from viruses in the
spleen, which reveals high levels of differentiation in most patients and is suggestive of a
within-host metapopulation structure [30].

Here, we develop a metapopulation model of within-host HIV dynamics during chronic
infection in which within-patch dynamics are explicitly incorporated, and which we investigate
in the form of population-based stochastic simulations. To gain further analytical insight, we
also derive a mathematically tractable analytical approximation in which within-patch dynam-
ics are nested within a model of between-patch dynamics, using a time-since-infection frame-
work to link the two scales [31,32]. We show that for a wide range of parameters, the system as
a whole reaches a steady state even though the patches themselves are not necessarily at equi-
librium. The dynamics of the system at the whole patient (between-patch) level depend criti-
cally on the interaction betweenCTLs and infected cells at the within-patch level. If the CTL
response is able to clear infected cells from patches before a within-patch steady state is estab-
lished, the metapopulation can reach a dynamic SMSS, at which the whole body’s viral popula-
tion is stable over time but the overall equilibrium results from an underlying, highly dynamic
process of local infection and clearance within T-cell centers. If the CTL response is not able to
clear infected cells from patches, the system will reach a full equilibrium (FE), at which all of
the patches, as well as the system as a whole, are at equilibrium. In contrast to the correspond-
ing single-patch model, the metapopulation model can explain the distribution of SPVLs
observed among patients due to modest differences in viral infectivity and the strength of the
CTL response without model fine-tuning.

Results

In our model of HIV chronic infection, we assume viral replication is centered in a large num-
ber of discrete patches, representing T-cell zones within the secondary lymphoid tissues (Fig
1). Susceptible CD4+ T cells, infected CD4+ T cells, and HIV-specific CTLs (which target
infected CD4+ T cells) continuously traffic through these patches via the blood, with the accu-
mulation of HIV-specific CTLs within patches when infected cells are present. As the number
of CTLs increases, so does the rate at which infected cells are killed, until a maximum rate of
killing is reached. Because the presence of a reservoir of latently infected, long-lived resting
CD4+ T cells is well established [33] and can explain very low viral loads, e.g., [22,23], we also
include a reservoir in the model to investigate the impact this might have on the dynamics of
HIV infection. The model is describedby Eqs 1.1–1.5 (Methods) and is parameterised using
detailed observational data (Methods and Table 1).

We investigated the behavior of the model for differing values of viral infectivity, 1 � β�
20 per day, and the maximum rate at which HIV-specific CTLs kill infected cells within a
patch, 0 � k � 20 per day (see Methods). These two factors are associated with variation in
SPVL among patients and are reasonably expected to vary among individuals due to both
host and viral factors [6–9,12]. We also investigated three values of the “effective migration
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rate” Me, which describe the rates at which the cells transit between the patches via the
blood.

Dynamical Behavior of the Metapopulation Model

To investigate the behavior of the model, we first developed a simulation based on a stochastic
counterpart of the set of ordinary differential equations that describe the metapopulation
model (Eq 1.1–1.5). To accommodate heterogeneity among patches, for each simulation, we
sampled viral infectivity for each patch from a uniform distribution with mean b in the range
0.5b–1.5b, thus implicitly assuming some patches are more densely packed with T cells than
others (seeMethods, S1 Simulation Code, and S1 Data). Depending on b, and the maximum
strength of the immune response, k, the dynamics of the metapopulation typically converges to
one of three stationary states: a disease-free trivial stationary state, a “full equilibrium” (FE) at

Fig 1. The trafficking of lymphocytes through a patch. Susceptible CD4+ T cells, infected CD4+ T cells, and

cytotoxic T lymphocyte (CTL) cells continually traffic through the patches in the metapopulation. We assume a

constant input of susceptible cells and HIV-specific CTLs from the blood into the patches and therefore that CD4

+ T cell production and CTL production are able to compensate for any losses. In contrast, the inflow of infected

cells into a patch is directly proportional to the total number of infected cells in the blood plus, if present, the

number of latently infected resting CD4+ T cells in the reservoir; immediately after being infected by the virus, a

small proportion of CD4+ T cells enter into a resting state, thus becoming part of the reservoir, and reenter general

circulation when reactivated [34,35]. Since little is known about the trafficking of latently infected resting CD4+ T

cells, upon reactivation, we make the simplifying assumption that these cells directly enter patches. Infected and

susceptible CD4+ T cells exit patches at the same per capita rate, as do CTLs in the absence of infected cells.

However, if infected CD4+ T cells are present, egress of HIV-specific CTLs (but not other CTLs) is prevented,

resulting in their gradual accumulation due to the continued immigration of CTLs from the blood. As HIV-specific

CTLs accumulate, the rate at which infected cells are killed due to the CTL response increases, and if this rate of

killing is sufficiently high, infected cells will eventually be eliminated from the patch and, subsequently, egress of

HIV-specific CTLs from the patch will resume. Blue circles represent susceptible cells, orange stars represent HIV-

specific CTLs, and red circles represent infected cells.

doi:10.1371/journal.pbio.1002567.g001
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which the patches and the metapopulation as a whole are at a stationary state (Fig 2A), and an
SMSS in which the number of infected cells and HIV-specific CTLs in some, or all, of the patches
fluctuates, but the total number of infected cells is relatively constant (Fig 2B). To gain a sense of
the dynamics of the model when at SMSS, we have provided an animation (S1 Animation).

Insights from the Analytical Approximation to the Metapopulation Model

Although analytical expressions for the disease-free equilibrium and FE of the metapopulation
model can be found directly from the differential equations, this is not possible for the SMSS.
We derived a deterministic,mathematically tractable approximation to the full metapopulation
model, assuming all patches are identical, using a time-since-infection framework (see S1
Text). Which of the three metapopulation steady states is established, disease-free, FE, or SMSS
can be understood by considering the within-patch dynamics (Fig 3). When an infected cell
entering a patch fails to establish a local burst of infection, the metapopulation is at the disease-
free equilibrium.When an infected cell establishes a non-zero endemic equilibrium in a patch,
the metapopulation is at FE.When an infected cell establishes a local burst of infection, which
is then cleared by the CTL response, the metapopulation will be at SMSS if these local bursts

Table 1. Model parameters.

N Number of patches 10,000 See

Methods

M Per capita rate at which CD4+ T cells leave the blood and enter patches 48 per day [36]

xB Number of susceptible cells in the blood 1.67 x 107 See

Methods

γi Probability that a cell leaving the blood or reactivating from the latent reservoir enters patch i 1/N 8 i

βi Per capita infectivity in patch i, b ¼
P

ibi=N Variable [1–20] per

day

See

Methods

d Death rate of susceptible cells 0.01 per day [37,38]

ε Rate that lymphocytes exit patches 2.5 per day [39,40]

xmaxi Number of susceptible cells in a patch in the absence of infection, xmaxi ¼ gi M xB=ðd þ εÞ 3.2 x 108/N See

Methods

λ Proportion of CD4+ T cells that enter a resting state upon infection 0.001 [34,35]

a Activation rate of latently-infected resting CD4+ T cells 0.001 per day [34,35]

ω Proportion of activated resting CD4+ T cells that produce infectious virions 0.01 [41]

δ Death rate of infected cells within patches 1 per day [42,43]

δB Death rate of infected cells in the blood 1 per day [42,43]

Me Effective migration rate, Me = ε M/(M + δB) 2.4 per day

k Maximum rate that CTLs kill infected cells within a patch Variable [0–20] per

day

See

Methods

zmax Maximum number of CTLs that a patch can accommodate 1x1011/N See

Methods

c CTL immigration rate constant 0.5 per day See

Methods

δL Death rate of latently infected resting CD4+ T cells 0.0005 per day [34]

L Fixed reservoir size (number of latently infected CD4+ T cells) assumed in analytical approximation and single

patch model

0 or 107 [44]

p Production rate of virions in the blood 5x104 per day [45]

r Removal rate of virions from the blood 23 per day [46]

VolB Volume of blood in a typical human adult 5000ml

All values assume “high” Me

doi:10.1371/journal.pbio.1002567.t001
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can propagate from patch to patch and sustain the infection. In mathematical terms, the
“patch-to-patch” reproduction number (RP), the number of patches that are colonized as a
result of a typical single burst in an otherwise fully susceptible host, must be greater than one
(otherwisedisease-free equilibrium occurs). This is analogous to the concept of R0 in epidemi-
ology, where an epidemic will not be sustained if the number of people that a typical person
infects, in a totally susceptible population, is less than one [47]. Which of these equilibria
occurs depends critically on the infectivity of the virus, β, and the maximum strength of the
CTL response, k (see S1 Text for details).

As an additional observation, the proportion of susceptible cells that are infected within a
patch is low for most of the parameter values we tested (often less than 5%, Fig 3A), in agree-
ment with what is observed at sites of HIV replication during chronic infection [48]. This is in
contrast to most well-mixedmodels, in which almost all susceptible cells are expected to be
infected (although see [19] for an exception). This disparity occurs because of the high rates at
which CD4+ T cells traffic through the patch (with a mean residence time of about 10 hours),
and because there is insufficient time to infect a large number of susceptible cells when within-
patch bursts of infection are short lived. During acute infection, a much larger proportion of
CD4+ T cells tend to be infected than in chronic infection (up to 60% of memory CD4+ T cells
[49,50]), probably because the full force of the host immune system is yet to kick in [49]. In

Fig 2. Examples of simulation dynamics. (A) Full equilibrium (FE). (B) Shifting mosaic steady state (SMSS). A

total of 10,000 patches were simulated, with the left panel showing the number of infected cells in two of these

patches (red and blue lines, left-axis) and the total number of infected cells in the whole metapopulation, summed

over all the patches and the blood, but not the reservoir (black line, right-axis; note this is on a Log10 scale). The

right panel shows the CTL response, measured as the rate at which CTLs kill infected cells in each of these two

patches, which is proportional to the number of CTLs in the patches. (A) Viral infectivity, b = 13 per day, maximum

strength of the CTL response, k = 10 per day. (B) b = 8 per day, k = 10 per day. We assumed a high effective

migration rate (Me = 2.4 per day). The simulation was initiated with 108 infected cells randomly distributed among

the patches and no reservoir. See Table 1 for all other parameters.

doi:10.1371/journal.pbio.1002567.g002
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agreement with this observation, if we set the immune response in our model to be very weak
(k = 1 per day; see Fig 3B), the CTL response fails to control the viral infection and about half
of the activated cells in a patch will be infected (unless the infectivity of the virus is extremely
low). Because in this low immunity scenario the viral population is target-cell limited, once the
within-patch dynamics have reached equilibriumwe see little variation in the proportion of
cells that are infected for large differences in viral infectivity (β).

It is also interesting to note, from Fig 3, that although the maximum strength of the CTL
response in a patch, k, might be relatively high, the actual rate at which CTLs kill infected cells
(measured as k � z(τ)/zmax, where z(τ) is the number of HIV-specific CTLs in the patch at time
τ since the patch was infected, and zmax is the maximum possible number of HIV-specific
CTLs the patch can hold) is often much lower. This might, in part, explain the large discrep-
ancy between different estimates of the rate at which CTLs kill infected cells (seeMethods).

Number of Infected Cells during Chronic Infection

We next assessed the impact that a metapopulation structure has on the number of infected
cells within an infected individual during chronic infection, which is assumed to be the station-
ary state number of infected cells in our models. Specifically, we compared the metapopulation

Fig 3. Examples of within-patch dynamics for a single colonization event used for the analytical approximation. (A) Maximum strength of the CTL

response, k = 5 per day. For high levels of viral infectivity β = 9, 10 per day (purple and black lines, respectively), an initial burst of infection is followed by a

long-term endemic state. The CTL response is the rate at which CTLs kill infected cells, which is proportional to the number of HIV-specific CTLs in the

patch. This increases due to the prevention of egress of HIV-specific CTLs, but even when the maximum rate of CTL killing, k, is reached, this is not

sufficient to clear the infected cells from the patch. Even though levels of viral infectivity are high, only a small proportion of cells are infected. For moderate

levels of infectivity, β = 5, 6, 7, 8 per day (orange, green, cyan, and blue lines, respectively), an initial burst of infection also occurs, accompanied by an

increase in the strength of the CTL response. Eventually, the rate of CTL killing becomes sufficiently high to eliminate the infected cells from the patch, and

subsequently the HIV-specific CTLs egress from the patch. For lower levels of infectivity, bursts of infection fail to establish. (B) Maximum strength of the

CTL response, k = 1 per day. For moderate and high levels of viral infectivity (β = 5, 6, 7, 8, 9, 10 per day), an endemic state is now reached, and a much

higher proportion of cells are infected compared to when k = 5 per day. Equations describing the within-patch dynamics are found in S1 Text, and model

parameters are as described in Table 1.

doi:10.1371/journal.pbio.1002567.g003
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simulation model with the analytical approximation of this model and the equivalent single-
patch differential equation model in which lymphocytes are assumed to traffic between one
well-mixed patch and the blood (seeMethods).

We first consider the total number of infected cells for different values of viral infectivity, β,
and the maximum strength of the CTL response, k, in the absence of a reservoir of latently-
infected resting CD4+ T cells (Fig 4, columns 1 and 2). Significantly, for a large range of param-
eters, spatial structure enables the viral population to persist at an SMSS in the metapopulation
model, whereas extinction is predicted in the single-patch model for the same parameters (Fig
4). Moreover, when the metapopulation is at SMSS, a broad range in the number of infected
cells is predicted for relatively small changes in β and k. In contrast, the single-patch model
exhibits strong threshold-like behavior, where the number of infected cells is typically either
zero (low β, high k) or very high (high β, low k), with intermediate viral loads only possible
when the parameters are close to the virus “extinction threshold” [15]. Note that we have pre-
sented results for both low and high effectivemigration rates (Me) among patches. The lowMe

scenario is used to check the analytical approximation, because it most closely reflects the
assumption of no patch super-infection required for the analytical approximation (achieved by
increasing the death rate in the blood from a realistic δB = 1 per day to δB = 432 per day; see
Methods). The highMe scenario reflects estimates of lymphocyte traffickingmade from experi-
mental data (seeMethods and Table 1).

Wide variations in the number of infected cells occur at SMSS because colonized patches
are, for most of the time, in a near-exponentially growing phase (Fig 2). Thus, modest differ-
ences in viral infectivity and the strength of the CTL response translate into very large differ-
ences in the total number of cells infected during a burst of infection. In other words, when the
system is at FE, the virus is close to carrying capacity within each of the patches, and is there-
fore sensitive to parameter values that affect this carrying capacity (e.g., the rate at which sus-
ceptible cells enter patches). However, at SMSS, the system becomesmuch more sensitive to
parameter values that affect the rate at which the number of infected cells and, by proxy, the
viral population grows (e.g., β and k).

If a reservoir is present (Fig 4, columns 3 and 4), the same qualitative arguments apply,
although the virus does not go extinct (at least in the short term) because it is maintained at
very low levels by the reactivation of cells from the reservoir. In the parameter range in which
local bursts of infection are possible but RP is less than one, more infected cells are maintained
in the metapopulation compared to the single-patch model, in which localized bursts of infec-
tion are not expected. This has similarities to the verbal argument proposed by Grossman et al.
[28], who suggested that a reservoir is needed for HIV to persist within hosts at low SPVLs.

The wide variations in the number of infected cells observed in the metapopulation station-
ary state are robust to the key unknowns in the model, specifically the number of patches (S1
and S2 Figs) and the effectivemigration rate (Me; S3 and S4 Figs), although, as expected, the
threshold-like behavior of the model increases ifMe is substantially increased or if the number
of patches decreases. Due to uncertainties in how HIV-specific CTLs accumulate in patches,
we also analysed an alternative to the “CTL immigration” metapopulation model described
here, which we call the “CTL proliferation” metapopulation model. In this alternative version
of the model, CTLs accumulate within patches due to local proliferation rather than the immi-
gration of CTLs from outside of the patch (see S1 Text and S5–S9 Figs). Although this also has
the effect of increasing the threshold-like behavior of the model, a broad range in viral loads is
still observed,making our conclusions robust to this fundamental change in the modeling
assumptions. It is noticeable from the simulation dynamics (Fig 2B) that at SMSS the number
of infected cells at the population level can oscillate, suggesting the dynamics among patches
are synchronized. However, the level of synchrony among patches is generally quite modest, as
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is the amplitude of the oscillations (S1–S4, S6–S9 Figs; see S1 Text for further discussion).
Although with increasing patch heterogeneity these oscillations are likely to be eroded, it is
tempting to speculate that differences in viral load measurements taken during untreated
chronic infection for individual patients might partly reflect these dynamics.

Testable Predictions

We have presented a model of the within-host metapopulation structure of HIV during
untreated chronic infection. Conceptual models such as this should aid understanding, but also
make qualitative and/or quantitative testable predictions that enable discrimination from other
plausible models; in this case, the single patch model. Here, we outline four testable predictions
of the metapopulation model: two of them are supported by available data, while the other two
require further data collection and analysis to be tested.

(i) Distribution of set-point viral loads among individuals in a population
Because this is a model of chronic infection, the most pertinent clinical data to test the

model is the distribution of SPVLs observed among individuals.We fitted the metapopulation
simulation and the corresponding single patch deterministicmodel to the distribution of
patient SPVL measured amongst seroconverters in the Netherlands (S1 Table). Using the
quasi-steady state assumption that the number of virions is proportional to the number of
infected cells [16], and using the same reasoning as [45], we calculated the SPVL predicted by

our models as approximately y�B
p

r�VolB

� �
, where y�B is the mean number of infected cells in the

blood at stationary state, p is the production rate of virions from infected cells (5x104 per day
[45]), r is the removal rate of virions from the blood (23 per day [46]), and VolB is the volume
of blood in a typical human adult (5 litres). Since data on the distribution of β and k among
patients is lacking, we assumed truncated normal distributions (see S1 Text for full details). For
each set of parameters describing the distribution of β and k, the likelihoodwas computed as
the product, over all SPVL values in the data, of the probability this SPVL value occurred
under the model (S2 Data). The distribution of the Netherlands data and the maximum likeli-
hood distributions for the single patch and metapopulation models are shown in Fig 5, and the
bivariate marginal likelihoodprofiles are shown in S10 Fig.

For all distributions of β and k that we examined, the likelihood of the metapopulation
model is considerably higher than that of the single patch model (S10 Fig). The poor fit of the
single patch model is largely due to the large number of natural controllers it predicts (which
we have defined as patients with SPVLs<1,000 per ml). Among the Netherlands seroconver-
ters, 5.8% of patients are natural controllers. The maximum likelihoodmetapopulation model
predicts 3.3% of patients should be natural controllers, whereas the maximum likelihood single
patch model predicts 27% should be natural controllers. Additionally, the bivariate marginal

Fig 4. Total number of infected cells for varying viral infectivity, β, and maximum CTL response, k. The density plots in the top three rows show the

number of infected cells at stationary state for different β and k (note that in the simulations, mean viral infectivity varies across patches, and therefore mean

viral infectivity b ¼ b is plotted). Results are shown without and with a reservoir included in the model, and for a low effective migration rate (Me = 0.25 per

day, δB = 432 per day) and a high effective migration rates (Me = 2.4 per day, δB = 1 per day). For the single patch model, the black line shows the extinction

threshold above which the viral population cannot be sustained in the absence of a reservoir. For the analytical approximation, the area between the solid

black lines shows where introduction of infection in an uncolonised patch is followed by a within-patch burst, and the dashed line indicates where the patch

reproduction number RP = 1, thus distinguishing whether, in the absence of a reservoir, the virus goes extinct or an SMSS can be sustained. To the right of

the SMSS region, a full equilibrium (FE) is predicted, and to the left, a trivial equilibrium exists. The areas in white are those where no infected cells are

present. For the simulation, the area between the black solid lines shows where an SMSS is observed, defined as where both the viral population has not

gone extinct and the mean CTL response across all patches is less than 99% of the maximum CTL response. The bottom two rows are transects across the

density plots shown above them, with either viral infectivity held constant (β = 10 per day) or the maximum strength of the CTL response held constant

(k = 10 per day). Single patch model, grey-scale gradient and back transect line; analytical approximation of the metapopulation model, red-scale gradient

and red transect line; simulation of the metapopulation model, blue-scale gradient and blue transect dots. All other parameters are as described in Table 1.

doi:10.1371/journal.pbio.1002567.g004
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likelihood surfaces are much flatter for the metapopulation compared to the single patch
model, and therefore the metapopulation is much more robust to uncertainties in the true dis-
tributions of β and k (since high likelihood values are observed for a broad range of distribu-
tions). Although the metapopulation model is a much better fit to the data and captures well
the left-tail in the distribution of SPVLs, it predicts a bimodal distribution that is not evident in
the data, suggesting there are aspects of the biology that our model is not yet capturing, includ-
ing heterogeneity among patches within a patient [40], non-normal and/or non-independent
distributions of β and k among patients, and the role of other host and viral factors. Interest-
ingly, the alternative CTL proliferation version of the model has the largest maximum likeli-
hood value of all the models considered and does not predict a high proportion of natural
controllers or a strong bimodal distribution, although the bivariate marginal likelihood surfaces
are less flat than for the CTL immigrationmodel (S10 Fig). Given these differences, future
work should focus on which mechanism(s) best describes how CTLs accumulate within
patches.

(ii) Distribution of infected cells within individuals
A prediction of the metapopulation model is that the number of infected cells should be

unevenly distributed among potential sites of HIV replication at any one moment in time
when at SMSS. The distribution of HIV in human spleens shows this pattern [25,51]. Addition-
ally, observation of the spleens of simian immunodeficiencyvirus (SIV)-infectedmacaques
[52] shows that virus with high replicative capacity is found in most, if not all, potential sites of
replication (i.e., consistent with a FE), but that virus of low replicative capacity is not (i.e., con-
sistent with SMSS). More direct evidencemight come from real-time observation of individual
sites of potential infection in vivo, from which we would predict the number of infected cells to
increase and decrease in a succession of local epidemics intermittently controlled by the
immune system, but this data is so far unavailable.

(iii) Genetic structure of the viral population within individuals
Previous studies have shown that the effective population size,Ne, of HIV is much lower

than consensus population size [53,54], and that Fst values (a measure of population subdivi-
sion) are high in the spleen, with values ranging from 0.08 to 0.6 in different patients [30].

Fig 5. Predicted distributions of set-point viral load (SPVL) among a cohort of patients. (A) Histogram of the observed frequencies of SPVL among

seroconverters in the Netherlands (S1 Table). Because of differences in the sensitivities of viral load tests, we pooled all individuals with a viral load less than

103 per ml. (B) Maximum log-likelihood distribution of SPVLs for the single patch model given the Netherlands seroconverter data, with log Lðmb ¼ 14;sb ¼

4;mk ¼ 15;sk ¼ 3jDataÞ = -5386. (C) Maximum log-likelihood distribution of SPVLs for the 10,000 patch metapopulation model given the Netherlands

seroconverter data, with log Lðmb ¼ 14; sb ¼ 4;mk ¼ 15;sk ¼ 3jDataÞ = -4,013. For (B) and (C), viral infectivity, β, and the maximum CTL immune response,

k, are assumed to be distributed according to truncated normal distributions, with probability density functions f (β; μβ,σβ,βmin,βmax) and f (k; μk,σk,kmin,kmax),

respectively, where βmin = 1.05 per day, kmin = 0 per day, and βmax = kmax = 20 per day (see S1 Text). For both the metapopulation and single patch models,

a viral reservoir is assumed to be present and the effective migration rate is assumed to be high (Me = 2.4 per day). All other parameters are as described in

Table 1.

doi:10.1371/journal.pbio.1002567.g005
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These data provide strong evidence that HIV exhibits metapopulation dynamics that are char-
acterised by colonisation and extinction of virus in potential sites of replication [30]; the same
dynamics seen in the metapopulation model at SMSS. To formally test whether the metapopu-
lation model can explain observedNe and FST values, it will be necessary to extend the model to
include explicit evolutionary processes, an analysis that will be a focus of future work. Another
feature of HIV infections are the ladder-like time-resolved phylogenies observedduring the
course of infection [55,56]. The metapopulation model could be further extended to test
whether phylogenies predicted by the model are different from those predicted from a single
patch model, and whether these more closely resemble observedphylogenies.

(iv) The dynamics of chronic infection
A prediction of the metapopulation model is that we might expect to see oscillations in viral

load over short time-scales in patients with intermediate SPVLs. Testing this prediction would
require obtaining viral load data from very frequently sampled individuals during chronic
infection (every 1 or 2 weeks) and testing statistically for periodic oscillations. Unfortunately,
suitable data is not yet publicly available. If these oscillations were found, it would be strong
evidence for an SMSS type process, but we note that the absence of oscillations would not be
strong evidence against SMSS; the within-host environment is likely to be much more hetero-
geneous than we have modelled, which would dampen out oscillations, and stochastic effects
and errors in viral load estimates would mask any underlying oscillations.

Note that our model does not generate testable predictions regarding early infection dynam-
ics, as it does not include biological features that are likely prominent in that phase, such as
HIV-specific CTL accumulation, CD4+ T cell loss at the systemic level, and evolution of CTL
escape. Similarly, our model does not generate testable predictions on the impact of antiretrovi-
ral therapy (ART), since both in the metapopulation and single patch models the viral load
decline is rapid and driven by the death of infected cells, which is unaffected by patch structure,
and by CTL killing (simulation not shown). Furthermore, for both models, the rate of viral
load decline is much faster than observed in patients unless very low rates of CTL killing (k
<< 1 per day) are assumed, although it has been shown that adding an eclipse phase to single
patch models can reconcile high values of k with the data [57].

Discussion

We have developed a within-host metapopulation model of chronic HIV infection in which
viral replication is focusedwithin T cell centers, derived a mathematically tractable approxima-
tion, and ran stochastic simulations. For a broad range of parameters, the virus can be main-
tained at equilibrium even though the patches themselves are not at equilibrium. This quasi-
equilibrium represents an SMSS, a concept first described35 years ago by Bormann and Likens
[1] to describe the biomass in forested ecosystems. Importantly, this model can easily account
for the broad distribution of SPVLs observedamong patients and the low proportion of suscep-
tible cells that are infected during chronic infection due to differences in the replicative capacity
of the virus (because of either host or viral factors) and the strength of the CTL response. More-
over, the model can explain why only a small number of patients (about 5%) go on to control
the virus in the absence of therapy (<1000 virions per ml) after the initial burst of viremia dur-
ing acute infection.

As well as explaining the wide range of viral loads observed among patients during chronic
infection, our model also gives insight into the marked changes in viral load seen between
acute, chronic, and late-stage infection. Around the peak of acute infection, when host immune
responses against the virus are still weak [49], or during late stage infection, when the immune
system has essentially collapsed, we suggest that within-patient dynamics are probably close to
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FE. The small impact of viral replication rate on FE viral load might explain why peak viremia
tends to be similar among patients and why a large proportion of CD4+ T cells become infected
with virus [49,50]. In contrast, during chronic infection, immune responses against the virus
are much more effective; thus, we propose a large proportion of patients will be at an SMSS,
with small differences in the strength of the host immune response and the infectivity of the
virus explaining the broad ranges in viral loads. It is important to recognize that the metapopu-
lation model we have presented here has been used to describe the chronic phase of HIV infec-
tion, during which, unlike during acute and late stage infection, the system can be assumed to
be at a steady state. To fully test how a metapopulation structuremight affect the predicted
dynamics of the model over the entire course of the infection, and to fit it against early and late
infection clinical data, would require further processes, such as HIV-specific CTL accumula-
tion, CD4+ T cell loss at the systemic level, or evolution of CTL escape, to be modeledmecha-
nistically or, at least, as external driving factors carefully parameterized from data. In both
cases, incomplete biological knowledge would likely require strong assumptions to be made in
parameter values and model structure.

In terms of caveats, we should also recognize that the proliferation and trafficking of lym-
phocytes around the body via the blood, lymph, secondary lymphoid tissues, and nonlymphoid
tissues is complex and incompletely understood [36,58]. This matters because the dynamics of
multitrophic systems can depend crucially on the precise assumptions used to formulate the
model [19], and the within-patch processes modelled here are no different. Despite these gaps
in our knowledge, the observations that not all T cell zones contain infected cells [51], that
HIV is spatially and genetically structured in the body over very small spatial scales [25,26,52],
that this structuremight not be stable over time [27], that higher fitness clones tend to co-local-
ise but lower fitness clones do not [52], the small effective population size of HIV compared to
the actual population size [53,54], and high values of FST [30] together provide compelling evi-
dence that the HIV within-host landscape is highly dynamic and characterised by local bursts
of viral replication.

Although we have focused here on HIV, it is likely that consideration of within-patient spa-
tial structure will also have implications for other chronic viruses, such as Hepatitis C, in which
infection of hepatocytes in the liver is spatially structured [59], and where the number of hepa-
tocytes infected correlates with viral load [60]. More generally, we think this model is useful in
explaining immunopathogenesis, because it naturally explains large variations in viral load. It
is also likely to be useful for studying viral evolution, and because it alters the predicted deter-
minants of viral load to viral and host factors (β and k), it will lead to different evolutionary
predictions. In a metapopulation that is at SMSS, viral evolution is expected to proceed quite
differently from viral evolution in an admixed system at equilibrium.Mathematical modeling
has provided many clinically useful insights into HIV dynamics; improved models are likely to
give rise to improved insights.

Methods

Here, we first present the set of ordinary differential equations on which the stochastic full
metapopulation model is based. Because the SMSS solution of the full model cannot be found
directly from the ordinary differential equations, we also derive a deterministic nested analyti-
cal approximation of the model (S1 Text) and study its equilibria (S1 Text).

The Full Metapopulation Model

The full metapopulation model consists of a set of ordinary differential equations describing
the number of susceptible cells xi(t), infected cells, yi(t), and HIV-specific CTLs zi(t) in each
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patch i at time t, as well as the number of infected cells in the blood, yB(t), and the number of
latently infected long-lived resting CD4+ T cells, L(t), which we refer to as the reservoir. We do
not model the number of free virions and instead use the steady-state assumption that the
number of free virions is proportional to the number of infected cells [16].

dxiðtÞ
dt
¼ gi M xB �

xiðtÞ
xmaxi

bi yi tð Þ � d þ ε½ � xi tð Þ ðEq1:1Þ

dyiðtÞ
dt
¼ 1 � lð Þ

xiðtÞ
xmaxi

bi yi tð Þ þ gi M yBðtÞ þ o a LðtÞ½ � � dþ εþ k
ziðtÞ
zmaxi

� �

yi tð Þ ðEq1:2Þ

dyBðtÞ
dt
¼
P

j ε yjðtÞ � M yB tð Þ � dB yB tð Þ ðEq1:3Þ

dziðtÞ
dt
¼ c zmaxi 1 �

ziðtÞ
zmaxi

� �

� ε zi tð Þ1yiðtÞ¼0 ðEq1:4Þ

dLðtÞ
dt
¼
P

i l
xiðtÞ
xmaxi

bi yiðtÞ � aþ dLð Þ L tð Þ ðEq1:5Þ

Eq 1.1 describes the dynamics of susceptible cells in patch i. Although CD4+ T cell count
falls during the course of chronic infection, this decline is slow, particularly compared to the
short durations of 100 days that we consider in our simulations, and at a good approximation
the loss of CD4+ T cells is compensated for by their production through thymus-dependent
and -independent pathways [61,62]. In addition, CTL and CD4+ T cell counts vary by a rela-
tively small amounts among HIV-infected patients compared to the orders of magnitude dif-
ferences in viral load [63]. We therefore assume that susceptible cells enter patches at a
constant rate, γiM xB, where xB is the constant total number of susceptible cells in the blood,M
is the rate at which cells leave the blood and enter patches, and γi is the probability that these
cells enter patch i (∑i γi = 1). Viral infectivity in patch i is given by βi, xmaxi ¼ giM xB=ðd þ εÞ is
the number of susceptible cells expected in patch i in the absence of infection, d is the death
rate of susceptible cells, and ε is the rate at which lymphocytes exit patches.

In deriving the transmission term, we have assumed that patches have a fixed volume (pro-
portional to xmaxi ) and used the reasoning that virions released from an infected cell are more
likely to reach other cells if the target cell population is more dense. Furthermore, once cells are
infected by HIV, the CD4 is down-regulated on the cell surface, thus substantially reducing the
probability of cell superinfection [64] and suggesting that free virions are only mildly “wasted”
on already infected cells. Therefore, we assumed the number of susceptible cells infected by a
single infected cell is bi xiðtÞ=xmaxi , which increases with the number (and density) of susceptible
cells. The denominator xmaxi appears explicitly, rather than being subsumed into βi, so that the
value of βi gives the maximum number of infections per day generated by a single infected cell.

Eqs 1.2 and 1.3 describe the dynamics of infected cells in patch i and in the blood, respec-
tively. Here, λ is the proportion of cells that become long-lived upon infection and thus enter
the reservoir, a is the activation rate of latently infected resting CT4+ T cells,ω is the propor-
tion of activated cells that produce infectious virions, δ and δB are the death rates of infected
cells within patches and in the blood, respectively, k is the maximum rate at which infected
cells can be killed by CTLs (achieved when CTLs are at a maximum density within a patch),
and zmaxi is the maximum number of CTLs that patch i can accommodate.We assume that all
patches are well connected, so that an infected cell egressing from a patch is as likely to enter a
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patch a long distance away as it is to enter an adjacent patch. Although this is clearly a simplifi-
cation of the true trafficking pattern of infected cells [40], this is a reasonable first approxima-
tion, because significant migration of activated CD4+ T cells occurs over long ranges via the
blood [36]. In addition, we also define the effectivemigration rate,Me, which is the rate at
which infected cells leave a patch multiplied by the probability that an infected cell leaving a
patch successfully enters a new patch, such thatMe = εM/(M + δB). Note that we assume that
latently infected resting CD4+ T cells enter patches at random immediately upon reactivation.
Although little is known about how resting CD4+ T cells circulate, their trafficking patterns are
probably similar to other CD4+ T cells [36,65,66], and because these cells are long-lived, we
can assume to a good approximation that they are randomly distributed among patches.

From experimental data, we know that HIV-specific CTLs accumulate at sites containing
HIV-producing cells [48], although it is not clear whether CTL accumulation is due to
increased rates of entry, e.g., [40], or lower rates of egress, e.g., [67–69]. In Eq 1.4, we assume
that the maximum rate at which HIV-specific CTLs enter patches is c zmax, with this rate grad-
ually falling to zero as the patch reaches its maximum carrying capacity, zmax; we impose a
maximum carrying capacity on the patches, because otherwise the number of CTLs would
grow without bound. The indicator function 1yiðtÞ¼0 takes the value 1 when yi(t) = 0 and 0 oth-
erwise. Thus, HIV-specific CTLs are assumed to egress from patches at the same rate as CD4+
T cells, ε, if the patch contains no infected cells, but egress is prevented if infected cells are pres-
ent [69]. We do not specificallymodel non-HIV-specific CTLs, because evidence suggests that
only the egress of pathogen-specificCTLs is prevented in the presence of localized infection
[69], and, thus, in the absence of co-infections, the number of non HIV-specific CTLs is
expected to remain constant in all patches. Although we do not model the proliferation of
HIV-specific CTLs within patches here, in the supplemental text we present a “CTL prolifera-
tion” version of the model in which this process is included. Since most CTL escape mutations
probably sweep through the viral population during early infection [70–72], we also ignore the
appearance of CTL escape mutations during chronic infection. Although such mutations do
occur and sweep through within-host populations, they do so only slowly, suggesting their
selective advantage is relatively weak [73].

Finally, Eq 1.5 describes the dynamics of the reservoir compartment, containing the set of
latently infected resting CD4+ T cells, which die at rate δL. A list of all of the parameters and
their values is given in Table 1. This metapopulation model has some similarities to a recently
published model of HIV infection in a network of lymphoid tissues [74], with the crucial differ-
ence that in our model local colonisation and extinction dynamics are observeddue to the
localised killing of infected cells as a consequence of the accumulation of CTLs within patches.

Population-Based Simulation of the Full Metapopulation Model

We wrote a fully stochastic population-based simulation in C++ based on Eqs 1.1–1.5 and with
a time step of 0.0001 to 0.001 days, depending on parameters (S1 Simulation Code). The num-
ber of events of each type (infection, death, and migration) occurringduring a time step was
drawn from either binomial or multinomial distributions as appropriate. We chose this simula-
tion method rather than using Gillespie-type simulation to increase computational efficiency.
Because this is intended to be a model of the chronic, asymptomatic phase of infection, all sim-
ulations were initiated with 108 infected cells distributed evenly across the patches, so as to rep-
resent the large viral load associated with the end of the acute phase of infection [75]. We also
assume that the number of HIV-specific CTLs has reached equilibrium at the systemic level
(reflected in the constant parameter c) and that any CTL escape mutations have already swept
through the viral population (enabling us to assume k is also constant), although the patches
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themselves are initiated with no HIV-specific CTL present. Because a large reservoir of long-
lived latently infected cells is established during the early phases of infection [76], the simula-
tions were initiated with a reservoir size of 107, if included [44]. We introduced heterogeneity
among the patches by sampling the values of βi in patch i from the uniform distribution on
[0.5 b, 1.5 b]. For all other parameters, the patches are assumed to be identical. Because for
almost all parameter values the system reaches a steady state well before 40 days, the stationary
number of infected cells was calculated by averaging the total number of infected cells in the
metapopulation between days 60 and 100 from the start of the simulation. See S1 Data for the
output from all the simulations.

Single-Patch Model

We want to compare the results of the metapopulation model with the equivalent model, in
which we have a single well-mixed tissue. The equations describing the single patch model are
obtained by settingN = 1 and dropping index i from Eqs 1.1–1.5.

At equilibrium, the total number of infected cells is therefore given by:

Y�tot ¼ max
B
b
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; 0
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infected cells is instead given by:
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Estimation of Parameters

Viral infectivity within patches, β, can be estimated from published values of R0 (the within-
host basic reproduction number of HIV in the absence of a CTL response). Specifically, assum-
ing infected cells spend the vast majority of the time within patches, β� δ R0, where δ is the
CTL-independent death rate of infected cells within patches. Since δ� 1 per day [42,43], β�
R0. For HIV, estimates of R0 vary between 2 and 26 [77,78], giving us estimates of β between 2
and 26 per day. Noting that only two of the 51 patients included in these studies had an R0
higher than 20, and because in vitro measures of viral infectivity vary by more than a factor of
10 among patients [79], as does replicative capacity [80], taking a range of β values between 1
and 20 per day is likely to reasonably capture the heterogeneity among patients.

Estimating the maximum rate at which CTLs kill infected cells, k, is more problematical, with
estimates in the literature ranging between 0.1 per day to 500 per day, depending on whichmeth-
ods and which viruses are used [81,82]. Estimates for HIV-1 range between 0.1 and 10 per day
[81], but there is still considerable uncertainty as to how best to analyse available data, and partic-
ularly how the inclusion of high rates of CTL killing during the eclipse phase of the cell infection
cycle (i.e., before viral production has started) alters the interpretation of the data [57]. In addi-
tion, we are interested in the maximum rate of CTL killing in very localized areas of the body,
not the average rate of killing at the systemic level that is estimated from in vivo data, and there-
fore even the higher estimates for HIV-1 might underestimate k. We therefore take a range of k
between 1 and 20 per day to reflect heterogeneity among individuals, with the caveat that it is
important to recognize the uncertainties surrounding the choice of this range of values.
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We interpret patches as the T cell areas in secondary lymphoid organs, such as lymph
nodes, the spleen, and Peyer’s patches. Lymph nodes often contain several physically separated
T cell areas [83], the number of which will depend on the size of the lymph node. In mice,
there are about 1.6 T cell areas per lymph node on average [84]. Because the lymph nodes of
humans are about 100 times heavier than those of mice, and there are 550 or so lymph nodes
in adult humans, there are likely to be many thousands of patches in the lymph nodes of
humans. In the spleen of a mouse there are about 10 Malpighian bodies, which are nodules of
white pulp that contain many lymphocytes. Because a human spleen weighs about 1,500 times
more than a mouse spleen, it also could easily contain thousands of patches. Finally, there are
about 100–200 Peyer’s patches in a human gut [85]. Although by these rough calculations
there could be, as an upper estimate, 100,000 patches in a human adult, in the main text we
have used an estimate of N = 10,000, which is probably correct within an order of magnitude
and makes the simulations computationally feasible. Because we do not yet have a full under-
standing of lymphocyte trafficking, patches might also be interpreted as larger areas within
which there could be rapid movement of lymphocytes (a whole lymph node, for example).
Therefore, we also investigate how the system behaves for N = 1,000 and N = 100 (see S1 Text).

To estimate the number of susceptible cells in the blood, xB, we first assume that the CD4
+ T cell count in the blood of an HIV infected individual has fallen to a third of those in a
healthy adult, giving a count of 333 cells per mm3. Although HIV is capable of infecting unacti-
vated CD4+ T cells [86], we only consider replication in activated CD4+ T cells, since this is
much more efficient. If we assume that 1% of CD4+ T cells are activated and a typical blood
volume is 5 liters, this gives us xB = 1.67 x 107. The residence time of CD4+ T cells in the blood
(including the vasculature of non-lymphoid tissue) is about 30 min [36], giving us a per capita
migration rate,M = 48 per day.

Estimates from experimental data suggest that the residence time of lymphocytes in second-
ary lymphoid tissue is in the order of about 10 hours [39,40], and therefore we use a value of ε
of 2.5 per day in our core parameters. In the spleen, residence time has been estimated to be
shorter than this [39,40] giving a faster rate of egress from patches in the spleen. However, by
our calculations, there are about 10 times more patches in the lymph nodes than in the spleen,
and, in addition, a faster rate of egress will result in fewer infected cells; thus, the overall num-
ber of infected cells in the metapopulation will be driven by the longer duration patches.

To estimate the maximum number of HIV-specific CTLs per patch, we first note there are
approximately 1x1011 CTLs in a typical human adult, many of which reside in secondary lym-
phoid tissue [24]. Since HIV-infected individuals have, on average, twice as many CTLs in the
blood as uninfected individuals [87], and about 10% of these are HIV specific [88], then the
average patch will have about 2x1010/N CTLs, whereN is the number of patches. If the maxi-
mum carrying capacity of any individual patch is 5 times this, then a ballpark figure for zmax is
1x1011/N. Note that the within-patch dynamics depend on the CTL immigration parameter, c,
and the density of CTLs in a patch (ziðtÞ=zmaxi ), not the absolute value of zmax. We use a value
of c = 0.5, as this means the number of CTLs within a patch typically reaches a maximum in
between 1 and 4 days, in line with empirical observations [89]. Using these values, we can esti-
mate the number of HIV-specific CTLs expected in an uninfected patch, z0 ¼ c zmaxi =ðcþ εÞ =
1.67 x 106, ifN = 10,000 and all patches are identical.

All other parameters are estimated directly from the literature (see Table 1).

Supporting Information

S1 Animation. An example of the dynamics of the metapopulation at shifting mosaic
steady state for 100 of the 10,000 patches simulated.The simulated metapopulation was
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initialisedwith 108 infected cells randomly distributed among the patches, and the animation
spans 60 days (day 40 to day 100 of the simulation). The coloured discs inside each circle repre-
sent the Log10 number of infected cells in each of the patches, with the colour getting darker
and the radius getting larger as the Log10 number of infected cells increases. The maximum
number of infected cells in any of the patches is approximately 103. Any patches with fewer
than 10 infected cells are kept white, because otherwise the constant “flicking” of the cells
betweenwhite and pale yellow is very distracting.We assume all patches are well connected
due to migration via the blood, so patches that are in close proximity in the animation are
equally connected as those that are a distance apart. The patches experiencing the biggest
bursts of infection are characterised by the largest values of β in [0.5 b, 1.5 b] = [5,15], and no
patches reach a steady state. Although there are oscillations in the total number of infected
cells, which are apparent when watching the animation, these are relatively minor at the scale
of the whole metapopulation (see S1 Fig). We have assumed a high effectivemigration rate (Me

= 2.4 per day), no reservoir, b = 10 per day, and k = 13 per day. All other parameters are as in
Table 1.
(MP4)

S1 Data. Output data from themetapopulation simulations. Each file gives the output from
the simulations indicated by the filename: low migration (ms1, db432); high migration (ms1,
db1); very high migration (ms10, db1); number of patches (np); reservoir (storage); no reser-
voir (nostorage); CTL immigrationmodel (CTLimmig); CTL proliferation model (CTLprolif);
b (beta1, beta2, . . .). Within each file, there are 21 simulations for (k = 0,1,..,20), and data is
output each day. For measures of synchrony, the final entry should be used. SeeMethods and
S1 Simulation Code for further details.
(ZIP)

S2 Data. Likelihoodcalculationsgiven observed frequencies of SPVL among seroconverters
in the Netherlands (S1 Table). Each row in the files gives the likelihoodof the model (for spec-
ified b, standard deviation of b among patients, mean k, standard deviation of k among
patients). The three files represent the 10,000 patch CTL immigrationmodel; the 10,000 patch
CTL proliferation model; and the single patch model. A reservoir is assumed to be present in
all cases. All other parameters are as in Table 1. See S1 Text for further details.
(ZIP)

S1 Fig. Steady state for the metapopulation simulation in the absence of a reservoir for dif-
ferent numbers of patches.Total number of infected cells, synchrony among patches, and
amplitude of oscillations are shown. The blue density plots in the top row show the number of
infected cells at steady state (note that mean viral infectivity varies across patches, and therefore
mean viral infectivity b ¼ b is plotted). The areas in white are where no infected cells are pres-
ent. The green density plots in the second row give a measure of synchrony among patches,
measured between days 60 and 100, where 1 is completely synchronised and 0 is no synchrony
(see S1 Text). The high levels of synchrony found towards the origin arise because the system
has not reached steady state by day 60, and therefore do not reflect oscillatory behavior for
these parameters. The red density plots in the third row show the relative amplitude of oscilla-
tions in the Log10 number of infected cells at steady state, where 1 means the amplitude of the
oscillations is equal to the maximum number of infected cells measured, and 0 means the num-
ber of infected cells remains constant (see S1 Text). For all of the density plots, the area between
the black solid lines shows where an SMSS is observed, defined as where both the viral popula-
tion has not gone extinct and the mean CTL response across all patches is less than 99% of the
maximum CTL response, k. The bottom two rows are transects across the density plots shown
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above them, with either viral infectivity held constant (β = 10 per day) or the maximum strength
of the CTL response held constant (k = 10 per day). Number of infected cells, blue-scale gradient
and blue dots. Synchrony, green-scale gradient and green dots. Amplitude, red-scale gradient
and red dots. Simulations were initiated with 108 infected cells.We assume a high effective
migration rate (Me = 2.4 per day). All other parameters are as described in Table 1.
(PDF)

S2 Fig. Steady state for themetapopulation simulation in the presence of a reservoir for dif-
ferent numbers of patches. Similar to S1 Fig except the simulations were initializedwith a reser-
voir of 107 latently infected resting CD4+ T cells. All other parameters are as described in Table 1.
Note that in the presence of a reservoir the virus cannot go extinct. The high relative amplitude
found at low viral loads is a consequence of infecting cells stochastically leaving the reservoir. As
the number of patches decreases, the effect of this stochasticity becomesmore pronounced.
(PDF)

S3 Fig. Steady state for the metapopulation simulation in the absence of a reservoir for dif-
ferent effectivemigration rates. Similar to S1 Fig except the number of patches is always
10,000 and instead the effectivemigration rate,Me, is varied. LowMe = 0.25 per day, highMe =
2.4 per day, very highMe = 25 per day. All other parameters are as described in Table 1.
(PDF)

S4 Fig. Steady state for themetapopulation simulation in the presence of a reservoir for dif-
ferent effectivemigration rates. Similar to S1 Fig, except the simulations were initializedwith
a reservoir of 107 latently infected resting CD4+ T cells, the number of infected cells is always
10,000, and instead the effectivemigration rate,Me is varied. LowMe = 0.25 per day, highMe =
2.4 per day, very highMe = 25 per day. All other parameters are as described in Table 1. Note
that in the presence of a reservoir the virus cannot go extinct.
(PDF)

S5 Fig. Examples of within-patch dynamics for a single colonization event used for the ana-
lytical solution of the CTL proliferationmodel.Maximum strength of the CTL response,
k = 5 per day. Viral infectivity β (per day) = 10, black; 9, purple; 8, blue; 7, cyan; 6, green; 5,
orange; 4, brown. For a description of the CTL proliferation model see S1 Text. All parameters
are as described in Table 1, except c = 0.001 per day, and g, a measure of CTL proliferation,
equals 1 per day, and with ε = 2.5 per day.
(PDF)

S6 Fig. Steady state for the metapopulation simulation of the CTL proliferation model in
the absence of a reservoir and for different numbers of patches. Similar to S1 Fig except
c = 0.001 per day, and g, a measure of CTL proliferation, equals 1 per day. For a description of
the CTL proliferation model see S1 Text. All other parameters are as described in Table 1.
(PDF)

S7 Fig. Steady state for the metapopulation simulation of the CTL proliferation model in
the presence of a reservoir and for different numbers of patches. Similar to S1 Fig except
c = 0.001 per day, g, a measure of CTL proliferation, equals 1 per day, and the simulations were
initializedwith a reservoir of 107 latently infected resting CD4+ T cells. For a description of the
CTL proliferation model see S1 Text. All other parameters are as described in Table 1.
(PDF)

S8 Fig. Steady state for the metapopulation simulation of the CTL proliferation model in
the absence of a reservoir and for different effectivemigration rates. Similar to S1 Fig except
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c = 0.001 per day, g, a measure of CTL proliferation, equals 1 per day, the number of patches is
always 10,000, and instead the effectivemigration rate,Me is varied. LowMe = 0.25 per day,
highMe = 2.4 per day, very highMe = 25 per day. For a description of the CTL proliferation
model see S1 Text. All other parameters are as described in Table 1.
(PDF)

S9 Fig. Steady state for the metapopulation simulation of the CTL proliferation model in
the presence of a reservoir and for different effectivemigration rates. Similar to S1 Fig
except c = 0.001 per day, g, a measure of CTL proliferation, equals 1 per day, the simulations
were initializedwith a reservoir of 107 latently infected resting CD4+ T cells, the number of
infected cells is always 10,000, and instead the effectivemigration rate,Me is varied. LowMe =
0.25 per day, highMe = 2.4 per day, very highMe = 25 per day. For a description of the CTL
proliferation model see S1 Text. All other parameters are as described in Table 1. Note that in
the presence of a reservoir the virus cannot go extinct.
(PDF)

S10 Fig. Maximum log-likelihooddistributions of set-point viral load for the Single Patch,
10,000 patch CTL Immigration, and 10,000 patch CTL Proliferationmodels and the bivari-
ate marginal likelihood surfaces given the Netherlands seroconverter data. The CTL Immi-
gration model is the standard metapopulation model used throughout the manuscript, by
which CTLs accumulate within patches due to immigration. The CTL proliferation model is a
variant of this model, in which CTLs accumulate due to local proliferation within patches (see
S1 Text). Viral infectivity, β, and the maximum CTL immune response, k, are assumed to be
distributed according to truncated normal distributions, with probability density functions f (β;
μβ,σβ,βmin,βmax) and f (k; μk,σk,kmin,kmax), respectively, where βmin = 1.05 per day, kmin = 0 per
day, and βmax = kmax = 20 per day (see S1 Text). Single Patch model, maximum logLðmb ¼

14; sb ¼ 4; mk ¼ 15; sk ¼ 3jDataÞ = -5,386. CTL Immigrationmodel maximum log Lðmb ¼

14; sb ¼ 4; mk ¼ 15; sk ¼ 3jDataÞ = -4,013. CTL Proliferation model maximum logLðmb ¼

11; sb ¼ 1; mk ¼ 12; sk ¼ 2jDataÞ = -3,768. For all models, the viral reservoir is assumed to be
present and the effectivemigration rate,Me, is assumed to be high (Me = 2.4 per day). All other
parameters are as described in the Table 1.
(PDF)

S1 Simulation Code.C++ code for the metapopulation simulations.
(CPP)

S1 Table. Observedset-point viral loads among seroconverters in the Netherlands.We
thank Stichting HIVMonitoring for sharing this data.
(CSV)

S1 Text. Supplementarymethods.
(PDF)
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