The Library
The classification of bifurcations with hidden symmetries
Tools
Manoel, Míriam and Stewart, Ian, 1945. (2000) The classification of bifurcations with hidden symmetries. Proceedings of the London Mathematical Society , Vol.80 (No.1). pp. 198234. ISSN 00246115

PDF
WRAP_Manoel_classification_bifurcations.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (309Kb) 
Official URL: http://dx.doi.org/10.1112/S0024611500012156
Abstract
We set up a singularitytheoretic framework for classifying oneparameter steadystate bifurcations with hidden symmetries. This framework also permits a nontrivial linearization at the bifurcation point. Many problems can be reduced to this situation; for instance, the bifurcation of steady or periodic solutions to certain elliptic partial differential equations with Neumann or Dirichlet boundary conditions. We formulate an appropriate equivalence relation with its associated tangent spaces, so that the usual methods of singularity theory become applicable. We also present an alternative method for computing those matrixvalued germs that appear in the equivalence relations employed in the classification of equivariant bifurcation problems. This result is motivated by hidden symmetries appearing in a class of partial differential equations defined on an Ndimensional rectangle under Neumann boundary conditions.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Bifurcation theory, Differential equations, Nonlinear  Numerical solutions, Singularities (Mathematics), Geometry, Algebraic, Manifolds (Mathematics), Symmetry (Mathematics) 
Journal or Publication Title:  Proceedings of the London Mathematical Society 
Publisher:  Cambridge University Press 
ISSN:  00246115 
Date:  January 2000 
Volume:  Vol.80 
Number:  No.1 
Page Range:  pp. 198234 
Identification Number:  10.1112/S0024611500012156 
Status:  Peer Reviewed 
Access rights to Published version:  Open Access 
References:  1. R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, tensor analysis and applications (AddisonWesley, Reading, MA, 1983). 2. D. Armbruster and G. Dangelmayr, `Coupled stationary bifurcations in nonflux boundary value problems', Math. Proc. Cambridge Philos. Soc. 101 (1987) 167±192. 3. V. I. Arnold, Ordinary differential equations (MIT Press, Cambridge, MA, 1973). 4. J. W. Bruce, A. A. du Plessis and C. T. C. Wall, `Determinacy and unipotency', Invent. Math. 88 (1987) 521±554. 5. D. Crawford, M. Golubitsky, M. G. M. Gomes, E. Knobloch and I. Stewart, `Boundary conditions as symmetry constraints', Singularity theory and its applications, Warwick 1989 (ed. R. M. Roberts and I. N. Stewart), Vol. 2, Lecture Notes in Mathematics 1463 (Springer, Heidelberg, 1991) 63±79. 6. J. Damon, `The unfolding and determinacy theorems for subgroups of A and K', Mem. Amer. Math. Soc. 306 (1984). 7. G. Dangelmayr and D. Armbruster, `Steady states mode interactions in the presence of O�2�symmetry and in non¯ux boundary conditions', Multiparameter bifurcation theory (ed. M. Golubitsky and J. Guckenheimer), Contemporary Mathematics 56 (American Mathematical Society, Providence, RI, 1986) 53±68. 8. M. Field, M. Golubitsky and I. Stewart, `Bifurcations on hemispheres', J. Nonlinear Sci. 1 (1990) 201±223. 9. H. Fujii, M. Mimura and Y. Nishiura, `A picture of the global bifurcation diagram in ecological interacting and diffusing systems', Physica D 5 (1982) 1±42. 10. T. Gaffney, `New methods in the classification theory of bifurcation problems', Multiparameter bifurcation theory (ed. M. Golubitsky and J. Guckenheimer), Contemporary Mathematics 56 (American Mathematical Society, Providence, RI, 1986) 97±116. 11. M. Golubitsky, J. E. Marsden and D. Schaeffer, `Bifurcation problems with hidden symmetries', Partial differential equations and dynamical systems (ed. W. E. Fitzgibbon), Research Notes in Mathematics 101 (Pitman, San Francisco, 1984) 181±210. 12. M. Golubitsky and D. Schaeffer, Singularities and groups in bifurcation theory, Vol. 1, Applied Mathematical Sciences 51 (Springer, New York, 1985). 13. M. Golubitsky, I. Stewart and D. Schaeffer, Singularities and groups in bifurcation theory, Vol. 2, Applied Mathematical Sciences 69 (Springer, New York, 1988). 14. M. G. M. Gomes and I. Stewart, `Steady PDEs on generalized rectangles: a change of genericity in mode interactions', Nonlinearity 7 (1994) 253±272. 15. G. W. Hunt, `An algorithm for the nonlinear analysis of compound bifurcation', Philos. Trans. Roy. Soc. London 300 (1981) 443±471. 16. G. W. Hunt, `Symmetries of elastic buckling', Engrg. Struct. 4 (1982) 21±28. 17. M. Manoel and I. Stewart, `Degenerate bifurcations with Z2 � Z2symmetry', Internat. J. Bifur. Chaos Appl. Sci. Engrg. to appear. 18. J. N. Mather, `Stability of C 1 mappings, III. Finitely determined map germs', Inst. Hautes Études Sci. Publ. Math. 35 (1968) 127±156. 19. I. Melbourne, `The recognition problem for equivariant singularities', Nonlinearity 1 (1988) 215±240. 20. A. L. Onishchick and E. B. Vinberg, Lie groups and algebraic groups (Springer, Heidelberg, 1990). 21. V. PoeÁnaru, SingulariteÂs C 1 en preÂsence de symeÂtrie, Lecture Notes in Mathematics 510 (Springer, Berlin, 1986). 22. G. Schwarz, `Smooth functions invariant under the action of a Lie group', Topology 14 (1975) 63±68. 
URI:  http://wrap.warwick.ac.uk/id/eprint/836 
Actions (login required)
View Item 