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1. Introduction

Within the last ®fteen years it has become apparent that certain kinds of
bifurcation problem can be understood by exploiting `hidden' symmetries related
to an extended problem. For example, the one-parameter bifurcation of steady or
periodic solutions to certain elliptic partial differential equations with Neumann or
Dirichlet boundary conditions can be seen as part of the more general question of
solutions with periodic boundary conditions. This point was ®rst realized by Fujii
et al. [9]. Many authors have since developed this idea to understand certain
bifurcation phenomena observed in the original problem that would not be
expected if only the symmetries of the domain were taken into account. The
source of non-genericity in these bifurcations is the existence of an extended
problem, de®ned on a larger domain and having a larger symmetry group. Field et
al. [8] establish this extension property for partial differential equations

ut � F�u; l� � 0 �1:0:1�
de®ned by second-order quasilinear elliptic operators in divergent form under
Neumann or Dirichlet boundary conditions on a manifold D. They present a large
class of pairs of manifolds D Ì eD where extra symmetries obtained from the
extension to the larger manifold change the genericity of the original problem in
the smaller manifold. They let eD be any smooth, compact, connected, Riemannian
n-manifold without boundary acted upon by a group of re¯ections which divideseD into several connected components. The smaller manifold with boundary, D, is
one of these connected components. They also show that the extension procedure
preserves the regularity of solutions of (1.0.1), so smooth solutions on D
correspond to smooth solutions on eD that are invariant under these re¯ections. In
this setting, they prove that symmetries present in eD change the generic properties
of the original problem de®ned on D, in the sense that unexpected degeneracies in
the original problem are explained by symmetries that occur in the extended
domain but are not apparent in the original problem.

Crawford et al. [5] consider reaction-diffusion equations invariant under
translations and re¯ections of the domain with Neumann or Dirichlet boundary
conditions. For this case there is a natural way to extend the domain to introduce
a larger symmetry group, and the authors discuss how these symmetries are
related to the unexpected behaviour present in the original problem. Gomes and
Stewart [14] apply the extension results of [8] to study the mode interaction of
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two steady state modes for (1.0.1), where u: RN ´ R! R, l is the bifurcation
parameter, and P is an elliptic operator de®ned on an appropriate function space.
The motivation is the study of steady solutions de®ned on an N-dimensional
rectangle satisfying Neumann boundary conditions. They prove that for most
mode numbers the Liapunov±Schmidt reduced equations for this problem have
exactly the same form as the equations deduced by Armbruster and Dangelmayr
[2, 7] when N � 1. In § 4 we use the results of [14] to explain how the singularity
theory for this problem can similarly be reduced to germs de®ned on a 1-
dimensional domain. The appropriate way to deal with the bifurcation of steady
states of the original problem is to restrict the extended problem, which possesses
a compact Lie group G of symmetries, to those steady solutions that are invariant
under a subgroup S of G. We formulate this idea more precisely in § 2.

The in¯uence of hidden symmetries on the singularity theory of steady-state
bifurcations has so far been studied only in a few special cases, notably [2].
Before moving on to this topic, we set up some notation. Throughout, the word
`germ' refers to a germ de®ned at the origin. Denote by h: �V ´ R; 0� ! W a one-
parameter smooth germ de®ned on a ®nite-dimensional vector space V and taking
values on a ®nite-dimensional vector space W . If h�0; 0� � 0, we write
h: �V ´ R; 0� ! �W ; 0�. For G a compact Lie group acting linearly on V , we say
that a one-parameter smooth germ ef : �V ´ R; 0� ! R is G-invariant ifef �gx; l� � ef �x; l�; for all g 2 G;

and we denote by EG the ring of such germs. If G also acts linearly on W , theneg: �V ´ R; 0� ! W is G-equivariant (or commutes with the action of G) ifeg�gx; l� � geg�x; l�; for all g 2 G:

Most of this paper refers to equivariant germs for which V � W , and in this case we
assume that the actions of G on the source and on the target are the same. We assume
throughout that G acts trivially on the parameter space R. Denote by ~EG the module
of G-equivariant smooth germs eg: �V ´ R; 0� ! V over the ring EG. Finally, de®ne a
bifurcation problem on V to be a smooth germ h: �V ´ R; 0� ! �V ; 0� whose
derivative �dh�0;0 with respect to x at �0; 0� is singular.

It is well known (see, for instance, [12]) that the equivariant version of the
Liapunov±Schmidt reduction procedure preserves the symmetries of a G-equivariant
problem. It therefore reduces the study of steady-state bifurcation of a partial
differential equation to the bifurcation of zeros of a germ de®ned on a ®nite-
dimensional vector space. This space is isomorphic to the critical eigenspace (kernel
of the linearized operator) provided that this kernel is ®nite dimensional, and provided
that certain other standard technical requirements hold. The essential idea of the
Liapunov±Schmidt reduction is that steady-state bifurcations of certain partial
differential equations (such as those studied in [2, 5, 14, 8]) can be projected onto
a ®nite-dimensional vector space. As we discuss in § 2, a bifurcation problem g with
hidden symmetries admits a G-equivariant extension eg. So throughout this paper, eg is
assumed to be a Liapunov±Schmidt reduced germ obtained by the procedure just
described.

2. Hidden symmetries

The notion of hidden symmetries was ®rst formalized by Golubitsky et al. [11]
using slightly different terminology. These authors were mainly motivated by two
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papers of Hunt [15, 16] which describe the buckling of a right circular cylinder
under end loading in terms of the parabolic umbilic catastrophe. Hunt notes that
the parabolic umbilic appears in a context where some less degenerate
singularities (such as the elliptic or hyperbolic umbilic) would appear more
likely. Golubitsky et al. [11] explain Hunt's result in terms of an extra symmetry
that occurs on a particular subspace, and generalize Hunt's procedure. However,
they do not attempt to develop the singularity theory for this context, which is the
main purpose of this paper.

Let G be a compact Lie group acting linearly on an n-dimensional vector space
V and let eg: �V ´ R; 0� ! V be a G-equivariant germ. For a subgroup S Í G,
recall that the ®xed-point subspace of S is

Fix S � fx 2 V : jx � x; "j 2 Sg: �2:0:1�
The isotropy subgroup of x0 2 V is Sx 0

� fj 2 G: jx0 � x0g. The normalizer of a
subgroup S in G is N�S� � fg 2 G: gÿ1Sg � Sg, and this is a subgroup of G
that contains S.

We are interested in zeros of eg: �V ´ R; 0� ! V that are invariant under the
action of a subgroup S of G. By equivariance we have eg�Fix S ´ R� Í Fix S.
Therefore, in order to ®nd S-invariant solutions to eg�x; l� � 0, we can restrict the
domain to Fix S and ®nd zeros there. We therefore study zeros of the germ

g: �Fix S ´ R; 0� ! Fix S �2:0:2�
de®ned to be the restriction of eg to Fix S ´ R.

Remark 2.1. Most classi®cations in the literature have been performed in the
context of G-equivariant bifurcation problems eg: �V ´ R; 0� ! V , when the group
of symmetries G satis®es Fix G � f0g. Many useful results derive from this
property; for example, this is one of the hypotheses of Theorem XIII.3.5 of [13]
which implies the Equivariant Branching Lemma [13, Theorem XIII.3.3], one of
the most important existence theorems for solutions to equivariant bifurcation
problems. We similarly assume that Fix G � 0. In fact, we assume that, for all l,

g�0; l� � 0: �2:0:3�
Both conditions are equivalent since g�0; l� � 0 if and only if eg�0; l� � 0, andeg�0; l� � 0 if and only if Fix G � f0g; see [13]. As we discuss later, assumption
(2.0.3) implies that the group of L-contact equivalences (De®nition 3.2) is a
geometric subgroup in the sense of Damon [6]. It will become clear that (2.0.3) is
not a necessary assumption when L� 0 (that is, when we are interested in the
classi®cation of germs with trivial linearization at the origin), but for convenience
we assume it throughout.

We now turn to hidden symmetries. The normalizer N�S� leaves Fix S invariant
(and when S is an isotropy subgroup of G, then N�S� is the largest subgroup of G
with this property). For this reason, elements in N�S� are called the apparent
symmetries in Fix S, the domain of the problem. Now, the existence of the
extension eg of g implies that not all symmetries in the equation g � 0 are so
obvious as the symmetries in N�S�. The idea is as follows. Let g 2 G and suppose
that g does not leave Fix S invariant (so g 62 N�S�), but

�g ´ Fix S�Ç Fix S 6� f0g: �2:0:4�
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Then there exists a non-trivial x 2 Fix S such that gx 2 Fix S. Henceeg�x; l�; eg�gx; l� 2 Fix S. But these are just g�x; l� and g�gx; l� respectively.
Since eg is G-equivariant, it follows that

g�gx; l� � gg�x; l�:
Therefore the symmetry g of eg places an extra condition on g, in addition to those
conditions imposed by the apparent symmetries in N�S�. In fact, it is
straightforward to see that g is N�S�-equivariant, but the discussion above implies
that the elements in N�S� are not all the symmetries to be taken into account to
ensure that g can be extended to a G-equivariant eg. We call the extra element g
satisfying (2.0.4) a hidden symmetry for g. The precise de®nition is as follows.

De®nition 2.2. Let g: �Fix S ´ R; 0� ! Fix S be a one-parameter smooth
germ extendible to a G-equivariant smooth germ eg: �V ´ R; 0� ! V , where V is a
®nite-dimensional vector space. A hidden symmetry of g is a non-zero element g
in G such that g does not leave the whole subspace Fix S invariant, but
�g ´ Fix S�Ç Fix S 6� f0g.

The following proposition describes one case where the existence of a G-
equivariant extension does not imply any extra symmetry in the original problem.

Proposition 2.3. Hidden symmetries do not occur when S is a maximal
isotropy subgroup.

Proof. Suppose that g 2 G is a hidden symmetry. It is easy to see that
W � �g ´ Fix S�Ç Fix S is itself a ®xed-point subspace, namely the ®xed-point
subspace of the subgroup eS generated by S and gSgÿ1. Since g 62 N�S�, then W
is a proper subspace of Fix S. By assumption, there exists x 2W with x 6� 0. Since
S Í S x and S is maximal, we get S � S x. Also, x 2W � Fix eS, so eS Í S x. Hence,eS Í S. Therefore, Fix S Í Fix eS � W , a contradiction.

Remark 2.4. The absence of hidden symmetries does not imply that every
smooth N�S�-equivariant g on Fix S extends to a G-equivariant eg on V , even if S
is a maximal isotropy subgroup. The standard example is G � D5 in its standard
action on R2 � C. This example is described in [13, Exercise XII.4.11, p. 49], but
there is a typographical error, with x3 in place of x2. We therefore sketch the
reasoning. The G-equivariant mappings take the formeg�z� � p�zz; Re�z5��z� q�zz; Re�z5��z4;

for a coordinate z in C and smooth p and q. The restriction of eg to R ´ f0g �
Fix Zk

2 is

g�z� � p�x2; x5�x� q�x2; x5�x4

whose Taylor expansion ( jet) lacks the term x2. Here k ´ z � z. The group S � Z k
2 is

a maximal isotropy subgroup with normalizer N�S� � S, acting trivially on Fix S.
So every smooth function of x is an N�S�-equivariant. Therefore the polynomial
N�S�-equivariant h�x� � x2 does not extend to a smooth D5-equivariant.

The obstacle is smoothness: by Tychonoff's theorem and averaging over D5 , the
map h extends to a continuous D5-equivariant.
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We end this section by setting up some further notation. Let m denote the
dimension of Fix S, x the coordinates of Fix S, and l the distinguished parameter.
It is well known (see [13]) that the G-invariants form a ring and the G-equivariants
form a module over this ring. What we need here is a variation of this result. We
have a subgroup S of G and we want to consider the restrictions of the G-
invariants and G-equivariants to Fix S ´ R. It remains true that the restricted
invariant germs form a ring, and the restricted equivariant germs form a module
over this ring.

Let

EG�Fix S� � f f : �Fix S ´ R; 0� ! R: f � ef jFix S ´R for some ef 2 EGg:
Schwarz [22] proves that there is a ®nite set of polynomials generating the ring of
G-invariant smooth germs, in the sense that any G-invariant smooth germ is the
germ of a smooth function of those generators, so it also follows that there exists
a ®nite set of polynomials generating EG�Fix S�. We shall denote by M the

maximal ideal in EG�Fix S� of germs that vanish at the origin. Also, let ~EG�Fix S�
denote the module over EG�Fix S� of G-equivariant smooth map germs on V ´ R

when restricted to Fix S ´ R. Notice that, since Fix G � f0g, any g 2 ~EG�Fix S�
satis®es g�0; l� � 0, for all l, so we de®ne

~EG�Fix S� � fg: �Fix S ´ R; 0� ! �Fix S; 0�: g � eg jFix S ´R for some eg 2 eEGg:
By PoeÁnaru's theorem [21], there exists a ®nite set of polynomials generating the
module of G-equivariant smooth germs over the ring EG, so it also follows that
there exists a ®nite number of generators with polynomial entries for the module
~EG�Fix S� over the ring EG�Fix S�. Finally, let El denote the ring of function
germs depending only on l, and let Ml denote the ideal of germs in El that
vanish at the origin.

3. Singularity theory

The aim of this section is to set up a singularity-theoretic approach for the
classi®cation of symmetric bifurcation problems that combine two types of
constraint: hidden symmetries, and restrictions on the linearization. We adapt
results from singularity theory found mainly in [4, 6, 10, 13], and throughout this
section we assume some familiarity with these papers.

3.1. The equivalence relation

In this subsection we de®ne an appropriate equivalence relation for the classi®cation
of bifurcation problems with hidden symmetries whose linearization at the origin is a
®xed singular matrix L, not necessarily the zero matrix. The de®nition is given in
§ 3.1.2. First we make a remark concerning the group of contact equivalences

motivating the de®nition of the module E
$

G�Fix S� of families of diffeomorphisms
that we use to de®ne the L-equivalence relation; see expression (3.1.4).

3.1.1. Matrix germs in the classi®cation
Recall the de®nition of Mather's group of contact equivalences [18]. Let C be

the group of diffeomorphism germs H on Rn ´ R p which leave ®xed the
projection on Rn and preserve the subspace Rn ´ f0g. Any H 2 C is of the form
H�x; y� � �x; H1�x; y�� where H1: �Rn ´ R p; 0� ! �R p; 0� satis®es H1�x; 0� � 0.
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Note that C acts on the set of map germs g: �Rn; 0� ! �R p; 0� by
H ´ g�x� � H1�x; g�x��. Let R denote the group of diffeomorphism germs on Rn.
The group of contact equivalences is the semidirect product K � R ´ C. It is well
known [18] that the orbits of C coincide with the orbits of that subgroup for
which the germs H1 are families of matrix-valued germs. This property also holds
for the equivariant case, and we state this result as it appears in [13].

Proposition 3.1. Let Q: �V ´ R ´ V ; 0� ! �V ; 0� be a parametrised family of
diffeomorphism germs; that is, for each �x; l� 2 V ´ R, Q�x; l; ´ � is a diffeo-
morphism germ on V. If Q�gx; l; gy� � gQ�x; l; y�, for all g 2 G, then for any
G-equivariant germ eg: �V ´ R; 0� ! V we have

Q�x; l; eg�x; l�� � eS�x; l�eg�x; l�;
where eS is a smooth matrix-valued germ, eS�0; 0� is an invertible matrix, andeS�gx; l�gy � geS�x; l�, for all g 2 G.

Proof. See [13, Proposition XIV.1.5].

Once again, as discussed in § 2 for the de®nition of a problem with hidden
symmetry, the appropriate way to de®ne an equivalence relation in this context is
to make explicit the existence of a G-equivariant extension. In other words, from
the symmetry imposed on the bifurcation problems in our context, we consider the
families of diffeomorphisms on Fix S ´ R arising as matrix germs S: �Fix S ´ R; 0� !
Hom�Fix S; Fix S� corresponding to matrix germs eS: �V ´ R; 0� ! Hom�V ; V � as
given in Proposition 3.1. To accomplish this, consider the action of G on
Hom�V ; V � de®ned by

g ´ M � gMgÿ1;

and let eS: �V ´ R; 0� ! Hom�V ; V � �3:1:1�
be a G-equivariant smooth matrix-valued germ, that is,eS�gx; l�g � geS�x; l� for all g 2 G: �3:1:2�
Denote by E

$
G the module of germs (3.1.1) satisfying (3.1.2). We now consider

the matrix-valued germs on Fix S ´ R:

S: �Fix S ´ R; 0� ! Hom�Fix S; Fix S�
given by

S�x; l� � eS�x; l�jFix S for all x 2 Fix S; �3:1:3�
where eS 2 E

$
G. We denote E

$
G�Fix S� the module of such matrix-valued germs,

that is,

E
$

G�Fix S� � fS: �Fix S ´ R; 0� ! Hom�Fix S; Fix S�:
S�x; l� � eS�x; l�jFix S for some eS 2 E

$
Gg: �3:1:4�

PoeÁnaru's theorem [21] implies that E
$

G�Fix S� is a ®nitely generated module
over the ring EG�Fix S�.
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3.1.2. The appropriate equivalence relation
In the classi®cation and recognition of bifurcation problems we are interested in

preserving various properties of the associated germs under some equivalence
relation. For instance, when symmetry is present, the equivalence relation is
required to preserve this symmetry. In our case, the germs are de®ned on Fix S
and admit a G-equivariant extension to V . In addition, for a particular singular
matrix L, we want to classify germs g such that �dg�0;0 � L, so we require the
equivalence relation to preserve this matrix too.

De®nition 3.2. Let L be a ®xed but arbitrary m ´ m singular matrix. Let g be

a bifurcation problem in ~EG�Fix S�. We say that h 2 ~EG�Fix S� is L-contact

equivalent to g, or simply equivalent to g, if there exist S 2 E
$

G�Fix S�,
F 2 ~EG�Fix S� and L 2 El such that

h�x; l� � S�x; l�g�F�x; l�; L�l��;
where

(i) F�0; 0� � 0,

(ii) L�0� � 0 and L0�0� > 0,

(iii) S�0; 0� and �dF�0;0 are invertible matrices in the same connected
component as the identity in GL�m�,

(iv) S�0; 0�L�dF�0;0 � L.

When L�l� � l we say that h is L-strongly equivalent to g.

Remark 3.3. 1. This de®nition applies to all g 2 E
$

G�Fix S�, whether or not
�dg�0;0 � L. However, note that if �dh�0;0 � L and h1 is L-contact equivalent to h,
then �dh1�0;0 � L.

2. As we mentioned in § 2 we always assume Fix G � f0g, so condition (i) is
automatically satis®ed. The assumptions that S�0; 0� and �dF�0;0 are in the connected
component of the identity, and that L0�0� > 0, are stability-preserving conditions.

Denote by KL the group of equivalences de®ned above:

KL �f�S; F; L�2 E
$

G�Fix S� ´ E
$

G�Fix S� ´ El:

S; F; L satisfy conditions (i)ÿ�iv�g: �3:1:5�
Writing Ji � �Fi; L i�, for i � 1; 2, we see that the action of KL on E

$
G�Fix S� is

induced by group multiplication �S2; J2� ´ �S1; J1� � �S2 ´ �S1 ± J2�; J1 ± J2�.
When h is L-contact equivalent to g we write h ,KL

g, or simply h , g when the
group KL of equivalences is clear from the context.

Although the action of KL is de®ned on the whole space ~EG�Fix S�, in practice we
are mainly interested in the orbit KL ´ g under KL of a germ g in the af®ne subspace

~EL
G�Fix S� � fg 2 ~EG�Fix S�: �dg�0;0 � Lg: �3:1:6�

In fact, our intention is to classify such germs, and this is what motivates
condition (iv) of De®nition 3.2. If we also use the notation K for the group of
contact equivalences �S; F; L� satisfying (i), (ii), (iii), then it is straightforward to

show that KL is a subgroup of K. Moreover, the orbits of any g 2 ~E
L

G�Fix S�
under KL and K satisfy

KL ´ g �K ´ g Ç ~E
L

G�Fix S�: �3:1:7�
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We ®nish this subsection with an example of an L-contact equivalence relation
when the linearization L is nilpotent. This equivalence relation is considered in § 4.4.

Example 3.4. Let G � O�2�, the orthogonal group in two dimensions, and

consider its action on C2 generated by v ´ �z1; z2� � �ev iz1; e v iz2�, for v 2 S1 , and
k ´ �z1; z2� � �z1; z2�. Here v is rotation by angle v and k is the `¯ip', a re¯ection
(see [13, § XXa]). Take S � Z2, the subgroup generated by k. Then Fix Z2 � R2.

As we see in § 4.4.1, a general element in ~EO�2��Fix Z2� is of the form

g�x; y; l� � �a�u; v; l�x� b�u; v; l�y; c�u; v; l�y� d�u; v; l�x�; �3:1:8�
where u � x2 and v � y2. We refer to (4.4.6) for generators of E

$
O�2��Fix Z2�. We

want to classify bifurcation problems g such that �dg�0;0 is given by

L � 0 1

0 0

� �
:

A germ h is L-contact equivalent to g if and only if

h�x; y; l� � S�x; y; l�g�F�x; y; l�; L�l��;
where S 2 E

$
O�2��Fix Z2�, F 2 ~EO�2��Fix Z2� and L 2 El satisfy

S�0; 0; 0� � a0 b0

0 d0

� �
; a0 d0 > 0; �3:1:9�

�dF�0;0;0 �
A0 B0

0 C0

� �
; A0 C0 > 0; �3:1:10�

L�0� � 0; L0�0� > 0; �3:1:11�
and a0 C0 � 1: �3:1:12�
The entries that vanish in the matrices (3.1.9) and (3.1.10) and the condition
(3.1.12) are consequences of the condition (iv) in De®nition 3.2. In § 4.4 we
classify germs (3.1.8) under the equivalence relation de®ned above as an example
of the classi®cation of a singularity with non-trivial linearization.

3.2. Tangent spaces and unfoldings

Here we give some de®nitions that will be used in the next subsections. We
also present Lemma 3.11, a result that follows from Damon's determinacy
theorem [6]. This lemma implies that a ®nite codimension bifurcation problem is
equivalent to its Taylor polynomial of order k for some k.

For a 2 R k , for some k, let us denote by Ea
G �Fix S� the ring of k-parameter

families of germs in EG�Fix S�, and by ~E
a

G �Fix S� the Ea
G �Fix S�-module of k-

parameter families of germs in ~EG�Fix S�. Consider also analogous de®nitions for

the module E
$

a
G�Fix S� and the ring Ea

l of k-parameter families of germs in

E
$

G�Fix S� and El respectively.

De®nition 3.5. For a 2 R k , for some k, a k-parameter unfolding of a germ

g 2 ~EG�Fix S� is a germ G 2 ~Ea
G�Fix S� such that G�x; l; 0� � g�x; l�.
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De®nition 3.6. For a 2 R k and b 2 R l, if H 2 ~Eb
G�Fix S� is an l-parameter

unfolding of g and G 2 ~Ea
G �Fix S� is a k-parameter unfolding of g, we say that

H�x; l; b� factors through G�x; l; a� if

H�x; l; b� � S�x; l; b�G�F�x; l; b�; L�l; b�; A�b�� �3:2:1�
where

S 2 E
$b

G�Fix S�; S�x; l; 0� � I;

F 2 ~Eb
G�Fix S�; F�x; l; 0� � x;

L�l; 0� � l;

A�0� � 0:

�3:2:2�

De®nition 3.7. An unfolding G of g is versal if every unfolding H of g
factors through G. It is universal if the number of parameters is minimal. This
number is called the codimension cod g of g.

For a 2 R k , let Ea;a denote the ring of germs at the origin A: �R k; 0� ! R k.
We now de®ne the group Ku

L �k� of equivalences for k-parameter unfoldings. This
is an extension of the group KL in the following way:

Ku
L �k� � f�S; F; L; A� 2 E

$a
G �Fix S� ´ ~Ea

G �Fix S� ´ Ea
l ´ Ea;a:

�S� ? ; ? ; 0�; F� ? ; ? ; 0�; L� ? ; 0�� 2KL, and

A is a germ of diffeomorphism such that A�0� � 0g:
The tangent space to KL at the identity

1 � �S�x; l� � I; F�x; l� � x; L�l� � l� �3:2:3�
is de®ned by

T�KL� �
�

d

dt
dt

����
t�0

: dt 2KL; d0 � 1

�
:

A straightforward calculation yields

T�KL� � f�S; F; L� 2 E
$

G�Fix S� ´ ~EG�Fix S� ´ El:

F�0; 0� � 0; L�0� � 0; S�0; 0�L� L�dF�0;0 � 0g: �3:2:4�
We now de®ne the extended tangent space T�KL� of KL. A general element in

T�KL� is de®ned by

d

dt
«t

����
t�0

;

where «t 2Ku
L �1� is a one-parameter unfolding of the identity, so

T�KL� � f�S; F; L�: S 2 E
$

G�Fix S�; F 2 ~EG�Fix S�; L 2 Elg: �3:2:5�
We now turn to the de®nitions of tangent spaces of a germ. As for the

expression (3.2.4) of T�KL�, we shall see that the de®nitions of the tangent
space T�g� and the restricted tangent space RT�g� of a germ g are derived from
L-contact equivalence, so in cases where �dg�0;0 � L 6� 0, the algebraic expressions of
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T�g� and RT�g� depend on L. On the other hand, whatever the linearization, we want
to de®ne the extended tangent space T�g� in a natural way so that we can ®nd a

universal unfolding of g by computing a complement to T�g� in ~EG�Fix S�. Then

cod g coincides with the codimension of T�g� in ~EG�Fix S�.
De®ne the tangent space of a germ g 2 ~EG�Fix S� to be

T�g� �
�

d

dt
�dt ´ g�

����
t�0

: dt 2KL; d0 � 1

�
:

Hence,

T�g� � fSg� �dg�F: S 2 E
$

G�Fix S�; F 2 ~EG�Fix S�; F�0; 0� � 0;

S�0; 0�L� L�dF�0;0 � 0g �Ml gl: �3:2:6�
Let p 2 ~EG�Fix S� and consider the one-parameter unfolding g� tp of g.

Suppose that G�x; l; a� is a versal unfolding of g. Then g� tp factors through G,
that is,

g� tp � S�x; l; t�G�F�x; l; t�; L�l; t�; A�t�� �3:2:7�
with S, F, L and A as in (3.2.2). Differentiate (3.2.7) with respect to t and
set t � 0:

p�x; l� � � ÇS�x; l; 0�g�x; l� � �dg�x;l ÇF�x; l; 0� � gl�x; l� ÇL�l; 0��

�
Xk

j�1

Ga j
�x; l; 0� ÇAj�0�:

Now de®ne the extended tangent space T�g� of g to be

T�g� � fSg� �dg�F: S 2 E
$

G�Fix S�; F 2 ~EG�Fix S�g � El ´ gl: �3:2:8�
Then

p�x; l� 2 T�g� � RfGa 1
�x; l; 0�; . . . ;Ga k

�x; l; 0�g:
Therefore

~EG�Fix S� � T�g� � RfGa 1
�x; l; 0�; . . . ;Ga k

�x; l; 0�g: �3:2:9�
Following the usual singularity-theoretic approach to imperfect bifurcations, we

de®ne the restricted tangent space RT�g� of g 2 ~EG�Fix S� to be the set of
perturbations p 2 ~EG�Fix S� such that g� tp is L-strongly equivalent to g for all
small t. That is,

g�x; l� � t p�x; l� � S�x; l; t�g�F�x; l; t�; l�; �3:2:10�
where �S� ? ; ? ; t �; F� ? ; ? ; t�; l� 2KL, S�x; l; 0� � I and F�x; l; 0� � x.
Differentiating (3.2.10) with respect to t at t � 0, we get

p�x; l� � ÇS�x; l; 0�g�x; l� � �dg�x;l ÇF�x; l; 0�: �3:2:11�
It is easy to see that since S belongs to E

$
G�Fix S�, then so does ÇS� ? ; ? ; 0�. Also,

since F belongs to ~EG�Fix S�, then so does ÇF� ? ; ? ; 0�. Differentiating both sides
of the equality S�0; 0; t �L�dF�0;0; t � L with respect to t at t � 0 leads to

ÇS�0; 0; 0�L� L�d ÇF�0;0;0 � 0: �3:2:12�
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By abuse of notation, we rename ÇS�x; l; 0� by S�x; l� and ÇF�x; l; 0� by F�x; l� in
(3.2.11), and de®ne the restricted tangent space of g to be

RT�g� � fSg� �dg�F: S 2 E
$

G�Fix S�; F 2 ~EG�Fix S�; S�0; 0�L� L�dF�0;0 � 0g:
�3:2:13�

Let

T1�g� � fSg� �dg�F: S 2 E
$

G�Fix S�; F 2 ~EG�Fix S�g;
M
$ � fS 2 E

$
G�Fix S�: S�0; 0� � 0g; �3:2:14�

~M2 � fF 2 ~EG�Fix S�: F�0; 0� � �dF�0;0 � 0g:
Then M

$
g� �dg� ~M2 Í RT�g�. Since

T1�g�
RT�g� Í

T1�g�
M
$

g� �dg� ~M2
and dim

T1�g�
M
$

g� �dg� ~M2
< 1;

it follows that

T�g� � RT�g� � El ´ gl �W �3:2:15�
with W a ®nite-dimensional vector space in ~EG�Fix S�.

Lemma 3.8. Let g 2 ~EG�Fix S�. Then RT�g� has ®nite codimension in
~EG�Fix S� if and only if T�g� has ®nite codimension.

Proof. With T1�g� as in (3.2.14), equation (3.2.15) implies that

T1�g� � RT�g� �W: �3:2:16�
By Proposition XV.2.3 of [13], cod T1�g� < 1 if and only if cod T�g� < 1. Since
dimW < 1, it also follows that

cod RT�g� < 1 () cod T�g� < 1:

Corollary 3.9. Let g 2 ~EG�Fix S�. Then T�g� has ®nite codimension in
~EG�Fix S� if and only if T�g� has ®nite codimension.

Proof. This follows directly from the inclusions RT�g� Í T�g� Í T�g� and
Lemma 3.8.

Remark 3.10. The notion of geometric subgroup introduced by Damon [6] to
formulate a general context for singularity theory requires four properties:
naturality, tangent space structure, exponential map and ®ltration condition. He
proves results on versality and ®nite determinacy for a large class of equivalence
relations on map germs that satisfy these properties. It is easy to see that KL is a
geometric subgroup: in fact the proof is a simple consequence of the
corresponding result for the standard equivariant theory, which is well known.
For clarity we present here one part of that proof, relating to the only condition of
the four above whose proof involves the linearization L. This part of the argument
addresses the tangent space structure, and it requires the following result: for any
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f 2 EG�Fix S� such that f �0; 0� � 0, any Q 2Ml and any �S; F; L� 2 T�KL�, we
must have � f S; f F; QL� 2T�KL�:
In fact, since Q�0� � 0 then �Q ´ L��0� � Q�0�L�0� � 0. Also, since Fix G � f0g,
then F�0; 0� � 0. Therefore, f �0; 0�S�0; 0�L� L�d� f F��0;0 � 0.

We ®nish this subsection with a lemma that follows from Damon's determinacy

theorem [6, Theorem 10.2]. We denote by ~M k the submodule of ~EG�Fix S� of all
mappings whose derivatives of order less than k vanish at the origin.

Lemma 3.11. If g is a ®nite-codimension bifurcation problem then g is ®nitely

determined. That is, there exists k > 0 such that if p 2 ~Mk then g� p ,KL
g.

Proof. This follows immediately from Theorem 10.2 of [6] and from
Corollary 3.9.

3.3. The recognition problem and higher-order terms

In order to solve the recognition problem for a bifurcation problem in ~EG�Fix S�
under the group of equivalences KL de®ned in (3.1.5), we require necessary and
suf®cient conditions for a germ to be L-contact equivalent to a given normal form.
Here we use techniques developed by Bruce et al. [4] and Gaffney [10] to get
information about orbits of group actions by studying tangent spaces to those
orbits. We assume throughout that these tangent spaces are of ®nite codimension
in ~EG�Fix S�, so we deal with ®nite-codimension bifurcation problems. As
mentioned in the previous section, Lemma 3.11 implies that a ®nite-codimension
bifurcation problem is equivalent to its Taylor polynomial of order k for some k.
The recognition problem therefore reduces to the explicit characterisation of
germs in a given orbit in terms of their derivatives at the origin. In consequence,
it is useful to estimate higher-order terms, which are those terms that can be
removed from the power series of a germ without changing its orbit. This
technique provides an algebraic way to recognise those higher-order terms.

We implement the technique by way of the following subgroup of KL:

U � f�S; F; L� 2KL: S�0; 0� � �dF�0;0 � I; L0�0� � 1g:
Here I represents the m ´ m identity matrix. Since we assume that bifurcation
problems are of ®nite codimension, Lemma 3.11 implies that they are ®nitely
determined. Therefore, U can be considered as an algebraic group acting algebraically
[20, p. 112]. Moreover, U is a unipotent group. We use these properties to state
Lemma 3.13 below.

For a given f 2 ~EG�Fix S�, de®ne the tangent space to the orbit U ´ f at the
identity 1 (see (3.2.3)) to be the set of elements

d

dt
�dt ´ f �

����
t�0

; dt 2U; d0 � 1:

This set is denoted by T� f ; U� and is the unipotent tangent space of f. A
straightforward calculation yields

T� f ; U� � fSf � �df �F: S 2 E
$

G�Fix S�; F 2 ~EG�Fix S�;
S�0; 0� � �dF�0;0 � 0g �M2

l ´ fl: �3:3:1�
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The restricted unipotent tangent space of f is

RT� f ; U� � fSf � �df �F: S 2 E
$

G�Fix S�; F 2 ~EG�Fix S�;
S�0; 0� � �dF�0;0 � 0g: �3:3:2�

We also consider the following sets:

H� f ; KL� � f p 2 ~EG�Fix S�: f � p ,KL
fg;

H� f ; U� � f p 2 ~EG�Fix S�: f � p ,U fg:
We solve the recognition problem for f if we describe H� f ; KL�, since

h 2KL ´ f () hÿ f 2H� f ; KL�:
Our main objective is to describe the set of higher-order terms, which turns out to

be a submodule of ~EG�Fix S� contained in H� f ; KL� and invariant under the
action of KL. We start with a de®nition.

De®nition 3.12. A subspace of ~EG�Fix S� is KL-intrinsic (or U-intrinsic) if
it is invariant under the action of KL (or U). If a subset S in ~EG�Fix S� contains a
unique maximal KL-intrinsic (or U-intrinsic) subspace then this subspace is
called the KL-intrinsic part (or the U-intrinsic part) of S and is denoted ItrKL

S
(or ItrUS�.

As pointed out by Melbourne [19] a U-intrinsic subspace is automatically a
submodule, and the same argument shows that this also holds for a KL-intrinsic
subspace. Melbourne also proves that if f has ®nite codimension then

ItrUH� f ; U� � f p: g� p ,U f ; "g ,U fg:
The following lemma is a result from algebraic geometry. From Lemma 3.11

we can work modulo ~M k and so regard the unipotent group U as an algebraic
group acting algebraically [19]. Hence, we can restate Corollary 3.5 of [4] as in
[19, Corollary 3.6b].

Lemma 3.13. Suppose f 2 ~EG�Fix S� of ®nite codimension and S Í ~EG�Fix S�
a U-intrinsic submodule. Then S Ì H� f ; U� if and only if S Ì T� f ; U�.

An immediate consequence is the following.

Lemma 3.14. If f has ®nite codimension then

ItrUH� f ; U� � ItrUT� f ; U�:
De®nition 3.15. Let f 2 ~EG�Fix S�. De®ne the set of higher-order terms with

respect to f to be the subset of ~EG�Fix S� given by

P� f � � f p 2 ~EG�Fix S�: g 6 p ,KL
f ; "g ,KL

fg:
Remark 3.16. It is obvious that P� f � Í H� f ; KL�. Moreover, P� f � is a KL-

intrinsic submodule of ~EG�Fix S�, the proof being the same as that of Proposition
XIV.7.5 of [13].
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Proposition 3.17. P� f � � ItrKL
H� f ; KL�.

Proof. From the remark above, it remains to prove that P� f � is unique
maximal, but this follows easily using the de®nition of a KL-intrinsic subspace.

Next we list the inclusions between these submodules:

ItrKL
T� f ; U� Í ItrUT� f ; U� � ItrUH� f ; U� Í H� f ; KL�:

The ®rst inclusion follows because ItrKL
T� f ; U� is U-intrinsic (since U Í KL).

The equality comes from Lemma 3.14. The ®nal inclusion is obvious. Proposition

3.17 now implies that

ItrKL
T� f ; U� Í P� f �: �3:3:3�

This inclusion is used systematically when ®nding higher-order terms for a normal
form f .

3.4. Preparation theorem for ®xed-point subspaces

Let G be a compact Lie group acting linearly on the ®nite-dimensional spaces V and
W and let S be a subgroup of G. Omit the subscript G in the rings to simplify notation.
That is, E�FixV S� and E�FixW S� now denote the rings of germs of functions de®ned
on FixV S ´ R and FixW S ´ R that are extendible to G-invariant germs de®ned on
V ´ R and W ´ R respectively. Let J: �FixV S ´ R; 0� ! �FixW S ´ R; 0� be a germ
extendible to a G-equivariant germ eJ: �V ´ R; 0� ! �W ´ R; 0�.

Suppose that N is an E�FixV S�-module. By using the pullback J�: E�FixW S� !
E�FixV S� we can view N as an E�FixW S�-module by de®ning, for any
f 2 E�FixW S� and n 2 N,

f ´ n :� J�� f � ´ n:

This is a module action since J� is a ring homomorphism. Let Mw denote the maximal
ideal in E�FixW S�, comprising all germs that vanish at the origin. If N is ®nitely
generated as an E�FixV S�-module, then the following theorem gives a necessary and
suf®cient condition for N to be ®nitely generated as an E�FixW S�-module.

Theorem 3.18 (Preparation Theorem for Fixed-Point Subspaces). Let N be a
®nitely generated E�FixV S�-module. Then, via J�, N is a ®nitely generated
E�FixW S�-module if and only if

dim�N =Mw N � < 1: �3:4:1�
Proof. This follows directly along the same lines as Theorem XV.8.1 of

[13], using extensively the G-equivariant extension property of germs de®ned on
®xed-point subspaces.

Corollary 3.19. Let N be a ®nitely generated E�FixV S�-module. Then, via
J�; n1; . . . ; nt generate N as an E�FixW S�-module if and only if

N �Mw N � Rfn1; . . . ; ntg: �3:4:2�

Proof. This is a direct consequence of Theorem 3.18 and Nakayama's Lemma.
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We can now state the main result that we need in the next subsection. Let us
denote by Ed the ring of germs at the origin of functions f : R s ! R in d-
coordinates and by Md its maximal ideal of germs that vanish at the origin.
Recall that, for d 2 R s , for some s, E d

G�Fix S� denotes the ring of s-parameter
families of germs in EG�Fix S�.

Lemma 3.20. For d 2 R s, for some s, let N be a ®nitely generated module
over Ed

G�Fix S�. Then the following are equivalent:

(i) N � Edfn1; . . . ; ntg,
(ii) N �Md N � Rfn1; . . . ; ntg.
Proof. De®ne J: �Fix S ´ R ´ R s; 0� ! �R s; 0� by J�x; l; d� � d. The group G

acts trivially on R s, so J can be seen as a G-equivariant mapping restricted to
FixV ´R´R s S (which equals FixV S ´ R ´ R s). By Corollary 3.19,

N � Edfn1; . . . ; ntg
if and only if

N �Md N � Rfn1; . . . ; ntg:

3.5. The unfolding theorem in the hidden symmetry context

In the context of perturbed bifurcation problems with the symmetry of a
compact Lie group G, a major result is the G-Equivariant Universal Unfolding
Theorem [13, Theorem XV.2.1]. This theorem gives a way to ®nd an algebraic
expression for a universal unfolding of a bifurcation problem. We now prove the
analogous result for bifurcation problems with hidden symmetries. Moreover,
some restrictions on the linearization are allowed: we can deal with types of
bifurcations more general than those possessing an identically zero linearization at
the origin. We apply this result in § 4.4. The proof of the unfolding theorem for
®xed-point subspaces follows the same steps as the proof of the equivariant
version. We shall present the complete proof, since it requires some additional
facts such as uniqueness of solutions of ordinary differential equations, rather than
just the existence of equivariant extensions.

Theorem 3.21 (Unfolding Theorem for Fixed-Point Subspaces). Let

g 2 ~EG�Fix S� and let G 2 ~Ea
G �Fix S� be a k-parameter unfolding of g. Then G is

versal if and only if

~EG�Fix S� � T�g� � RfGa 1
�x; l; 0�; . . . ;Ga k

�x; l; 0�g: �3:5:1�

Remark 3.22. In the discussion on the de®nition of T�g� given in § 3.2, we
have proved that (3.5.1) is a necessary condition for G to be versal (see (3.2.9)).
To prove this is also a suf®cient condition, we need some de®nitions and results
which we present below.

De®nition 3.23. By analogy with the de®nition of T1�g� for a germ

g 2 ~EG�Fix S� (see (3.2.14)), we de®ne the following submodule of ~E d
G�Fix S� for

an s-parameter unfolding K of g:

Tu
1 �K � � fSK � �dK �X: S 2 E

$d
G�Fix S�; X 2 ~Ed

G�Fix S�g:

212 mõÂriam manoel and ian stewart



We also de®ne the extended tangent space

Tu�K � � Tu
1 �K � � El ; d ´ Kl:

Proposition 3.24. Let g 2 ~EG�Fix S� be a ®nite-codimension germ and let

K 2 ~Ed
G�Fix S� be an s-parameter unfolding of g, where d � �d1; . . . ; ds�. Let

q1; . . . ; qr 2 ~Ed
G�Fix S�. Then the following are equivalent:

(i) ~EG�Fix S� � T�g� � Rfq1�x; l; 0�; . . . ; qr�x; l; 0�g,
(ii) ~E d

G�Fix S� � Tu�K � � Edfq1�x; l; d�; . . . ; qr�x; l; d�g.

Proof. This result refers only to extended tangent spaces in ~EG�Fix S� and in
~E d
G�Fix S� whose de®nitions coincide with the classical de®nitions given for

equivariant germs de®ned on the whole space V . Therefore, its proof is similar to the
proof of Corollary XV.7.2 of [13]. In our case, the result corresponding to Lemma
XV.7.1 of [13], used in the proof of Corollary XV.7.2 [13], is Lemma 3.20.

De®nition 3.25. Germs G and H as in De®nition 3.6 are u-isomorphic
(isomorphic as unfoldings) if A in (3.2.1) is a diffeomorphism germ.

De®nition 3.26. Consider G a k-parameter unfolding of g and let
A: �R l; 0� ! �R k; 0�. De®ne the pullback unfolding A�G 2 ~Eb

G�Fix S� to be

A�G: �Fix S ´ R ´ R l; 0� ! Fix S;

�x; l; b� 7! A�G�x; l; b� � G�x; l; A�b��:
It is obvious that A�G is also an unfolding of g, but A�G has l unfolding

parameters rather than the k that G has.
Now we start the proof that (3.5.1) is a suf®cient condition for G to be versal.

Let H�x; l; b� be an l-parameter unfolding of g. We must show that H factors
through G. Consider the following unfolding of g:

K�x; l; a; b� � G�x; l; a� � H�x; l; b� ÿ g�x; l�:
Then H factors through K in a trivial way. We claim that there exists a
submersion A: �R k ´ R l; 0� ! �R k; 0� such that K is u-isomorphic to A�G. Before
proving this claim, we check that this establishes the theorem:

K�x; l; a; b� � S�x; l; a; b�G�X�x; l; a; b�; L�l; a; b�; A ± f�a; b��;
with f: �R k� l; 0� ! �R k� l; 0� a germ of diffeomorphism. So

H�x; l; b� � S�x; l; 0; b�G�X�x; l; 0; b�; L�l; 0; b�; A ± f�0; b��:
Therefore, H factors through G. So now it remains to prove that the submersion A
exists, which we do by induction on l.

For l � 0 the claim is obviously true: just let A be the identity. Assume the
claim is true for lÿ 1, with R lÿ1 embedded in R l by �b1; . . . ; blÿ1� 7!
�b1; . . . ; blÿ1; 0�. If we de®ne F�x; l; a; b1; . . . ; blÿ1� � K�x; l; a; b1; . . . ; blÿ1; 0�
then, by induction, there exists a submersion B: �R k ´ R lÿ1; 0� ! �R k; 0� such
that B�G is u-isomorphic to F. It therefore suf®ces to ®nd a submersion
C: �R k ´ R l; 0� ! �R k ´ R lÿ1; 0� such that C �F is u-isomorphic to K. For then
we may set A � B ± f1 ± C ± f2, where f1: �R k ´ R lÿ1; 0� ! �R k ´ R lÿ1; 0� is
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the diffeomorphism from the u-isomorphism between B�G and F, and
f2: �R k ´ R l; 0� ! �R k ´ R l; 0� is the diffeomorphism from the u-isomorphism
between C �F and K.

To ease notation, set d � �d1; . . . ; dk� l�, with d1 � a1; . . . ; dk � ak, dk�1 � b1;
. . . ; dk� l � bl. From (3.5.1) we have

~EG�Fix S� � T�g� � RfKd1
; . . . ;Kdk

gd�0:

By Proposition 3.24,

~E d
G�Fix S� � Tu�K � � EdfKa1

; . . . ;Kak
g:

Set s � k � l. Since Tu�K � � fSK � �dK �Xg � El ; d ´ Kl and ÿKds
� ÿKbl

2
~E d
G�Fix S�, we have

ÿKds
� SK � �dK �X � L�l; d�Kl �

Xsÿ1

i�1

yi�d�Kdi
;

where yi�d� � 0 if i > k. We can write

�dK �X �
Xm

j�1

Xj

¶K

¶xj

;

where by ¶K =¶xj we mean the vector �¶K1 =¶xj; . . . ; ¶Km =¶xj�t . So we are left with

ÿKds
� SK �

Xm

j�1

Xj

¶K

¶xj

� L�l; d�Kl �
Xsÿ1

i�1

yi�d�Kdi
: �3:5:2�

Consider the system of ordinary differential equations

dds

dt
� 1;

dx

dt
� X�x; l; d�;

dl

dt
� L�l; d�;

ddi

dt
� yi�d�; for i � 1; . . . ; sÿ 1;

�3:5:3�

and suppose that �ds�t �; x�t�; l�t�; di�t�� is a solution of this system. Then (3.5.2)
can be written as

d

dt
K�x�t�; l�t �; d�t�� � ÿS�x�t �; l�t�; d�t��K�x�t�; l�t�; d�t ��: �3:5:4�

At t � 0, take the initial conditions to be ds � 0, x � x0, l � l0, di � di ;0 for
i � 1; . . . ; sÿ 1. Since dds =dt � 1, the solution curve P�t � of (3.5.3) at
P�0� � �0; x0; l0; d1;0; . . . ; dmÿ1;0� is transverse to the hyperplane fds � 0g.
De®ne the map

J: �Fix S ´ R ´ R s; 0� ! Fix S ´ R ´ R sÿ1

by projecting �x; l; d� along the integral curves until ds � 0. Then J is smooth
(see [1]) and J jds�0 is the identity. We can write J as

J�x; l; d� � �r�x; l; d�; L�l; d�; C�d��; �3:5:5�
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with r�x; l; d�jds�0 � x and L�l; d�jds�0 � l. The Jacobian �DJ�0 has the form

x l d1 . . . ds

�DJ�0 �

x

l

d1

..

.

dsÿ1

�dr�0 � �
0 �dlL�0 �

0 0 �ddC �0

0BBBBBB@

1CCCCCCA� �Im� sj���m� s�´ �m�1� s�

and therefore J is a submersion. Also

(i) rank�ddC �0 � sÿ 1, so C is a submersion,

(ii) �dl L�0 is non-singular, so L� ? ; d� is a diffeomorphism for each d,

(iii) �dr�0 is non-singular, so r� ? ; l; d� is a diffeomorphism for each �l; d�.
We now show that r: �Fix S ´ R ´ R s; 0� ! Fix S is extendible to a G-

equivariant germ. To do so, extend the domain of the system (3.5.3) to
V ´ R ´ R s. Then, the second equation becomes

dex
dt
� eX�ex; l; d�; �3:5:6�

where eX is the G-equivariant extension of X. For the extended domain we can
de®ne a germ w: �V ´ R ´ R s; 0� ! V ´ R ´ R sÿ1 for the new system in the same
way as J is de®ned for the system (3.5.3), getting

w�ex; l; d� � �R�ex; l; d�; L�l; d�; C�d��: �3:5:7�
As for r, we have R�ex; l; d�jds�0 � ex. We also have

d

dt
R�gex; l; d� � eX�R�gex; l; d�; l; d�;

d

dt
gR�ex; l; d� � g

d

dt
R�ex; l; d� � geX�R�ex; l; d�; l; d�

� eX�gR�ex; l; d�; l; d�;
gR�ex; l; d�jt�0 � gex � R�gex; l; d�jt�0:

By the uniqueness of solutions of ordinary differential equations, R�gex; l; d� �
gR�ex; l; d�, for all g 2 G. Since

d

dt
R�ex; l; d� � eX�R�ex; l; d��;

we have
d

dt
R jFix S ´R´R s�x; l; d� � eX�R jFix S ´R ´R s�x; l; d�; l; d�

� X�R jFix S ´R ´R s�x; l; d�; l; d�:
Also, for all x 2 Fix S, R�x; l; d�j t�0 � x � r�x; l; d�jt�0. Therefore, again by
uniqueness of solutions to ordinary differential equations, r � R jFix S ´R ´R s .

Given a point P � �x; l; d� 2 Fix S ´ R ´ R s, select the integral curve
�x�t�; l�t�; d�t�� of (3.5.3) passing through P. Now consider the non-autonomous
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ordinary differential equation

dy

dt
� ÿS�x�t�; l�t �; d�t�� ´ y; �3:5:8�

with y 2 Fix S and S from (3.5.4). Note that (3.5.8) depends only on
�x�0�; l�0�; d�0�� and the initial condition y�0� � y0, since �x�t �; l�t�; d�t �� is
obtained by integrating (3.5.3). Therefore, the solution of (3.5.8) is of the form

y�t � � Y�y0; t; x�0�; l�0�; d�0�� � Y�y0; t; J�x; l; d�; 0�:
For each ®xed t, and for �x�0�; l�0�; d�0�� near zero, the map y0 7! y�t� is a local
diffeomorphism [3, Chapter 2, Corollary 9].

Now (3.5.4) says that K�x�t �; l�t�; d�t �� satis®es (3.5.8). So

K�x�t �; l�t�; d�t�� � Y�K�x�0�; l�0�; d�0��; t; x�0�; l�0�; d�0��: �3:5:9�
Therefore

K�x; l; d� � Ex ;l ; d�K�r�x; l; d�; L�l; d�; C�d�; 0�� �3:5:10�
where

Ex ;l ; d�y� � Y�y; ds; r�x; l; d�; L�l; d�; C�d�; 0�
is a family of diffeomorphisms on Fix S. From (3.5.10) we have

K�x; l; d� � Ex ;l ;d�F�r�x; l; d�; L�l; d�; C�d��
� Ex ;l ;d�C �F�r�x; l; d�; L�l; d�; d��:

Finally, we prove that there exists an invertible T 2 E
$ d

G�Fix S� such that

Ex ;l ;d�C �F�r�x; l; d�; L�l; d�; d�� � T�x; l; d� ´ C �F�r�x; l; d�; L�l; d�; d�:
To do so, we extend the ordinary differential equation (3.5.8) in two ways:

�a� dey
dt
� ÿeS�ex�t�; l�t�; d�t�� ´ ey;

�b� dey
dt
� ÿeS�x�t�; l�t�; d�t�� ´ ey; �3:5:11�

where ey jFix S � y, ex jFix S � x and eS is an extension of S to V ´ R ´ R s. So in the same
way as we have Ex ;l ; d for (3.5.8), we also have the corresponding diffeomorphisms

�a� E 1
Äx ;l ;d�ey� � eY 1�ey; ds; w�ex; l; d�; 0�;

�b� E 2
x ;l ; d�ey� � eY 2�ey; ds; J�x; l; d�; 0�;

�3:5:12�

for (3.5.11)(a) and (3.5.11)(b) respectively. Since

E 1
x ;l ; d�ey� � eY 1�ey; ds; w�x; l; d�; 0� � eY 2�ey; dm; J�x; l; d�; 0�

� E 2
x ;l ; d�ey�;

we get

K�x; l; d� � Ex ;l ;d�K�J�x; l; d�; 0�� � E 2
x ;l ; d�K�J�x; l; d�; 0��

� E 1
x ;l ; d�K�J�x; l; d�; 0��; �3:5:13�
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where the second equality follows from uniqueness of solutions of (3.5.11)(b) for
a given initial condition.

Next we verify two properties (P1) and (P2) of E 1, as follows.

(P1) E 1
g Äx ;l ;d�gey � � gE 1

Äx ;l ; d�ey �. In fact, for the integral curve ey�t� �eY 1�ey; t; ex�0�; l�0�; d�0��, consider the curve de®ned by

g ´ ey�t � � g ´ eY 1�ey; t; ex�0�; l�0�; d�0��:
Now

dgey
dt
� g

dey
dt
� g�ÿeS�ex�t �; l�t�; d�t���ey � ÿeS�gex�t �; l�t�; d�t��gey

and

�gey ��0� � gey0:

Therefore, g ´ eY 1�ey0; ds; ex�0�; l�0�; d�0�� � eY 1�gey0; ds; gex�0�; l�0�; d�0��. That is,

E 1
gÄx ;l ; d�gey� � gE 1

Äx ;l ; d�ey�:
(P2) E 1

Äx ;l ; d�0� � 0. In fact,

E 1
Äx ;l ;d�0� � eY�0; ds; ex�0�; l�0�; d�0�� � eY�0; t � 0; ex�0�; l�0�; d�0�� � 0:

This completes the veri®cation of (P1) and (P2).

Since the diffeomorphism E 1 satis®es (P1) and (P2), Proposition 3.1 implies
that there exists a matrix germ eT satisfyingeT�gex; l; d�g � geT�ex; l; d�
with eT�0; 0; 0� invertible, such that

E 1
x ;l ; d�K�J�x; l; d�; 0�� � eT�x; l; d� ´ K�J�x; l; d�; 0�:

Finally, de®ne

T � eT jFix S ´R´R s

to get T 2 E
$d

G�Fix S�, where T�0; 0; 0� is invertible and (3.5.13) becomes

K�x; l; d� � T�x; l; d� ´ C �F�r�x; l; d�; L�l; d�; d�:
Therefore, K is u-isomorphic to C �F as required.

4. Steady states of partial differential equations on generalized rectangles:
singularity theory

We now apply the theory developed so far to a particular class of singularities
with hidden symmetries, those arising by Liapunov±Schmidt reduction in
connections with the steady state bifurcation of certain partial differential
equations de®ned on generalized (that is, multidimensional) rectangles.

Consider the partial differential equation

ut � F�u; l� � 0: �4:0:1�
Here u is de®ned on an N-dimensional rectangle R � �0; pL1� ´ . . . ´
�0; pLN � Ì RN with the Lj all distinct, and F is an elliptic operator equivariant
under the group O�2�N generated by coordinate re¯ections and translations
modulo a periodic lattice, that is, modulo 2pLj along the direction xj for
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1 < j < N. Let l be a distinguished parameter such that F�0; l� � 0. Assume
(4.0.1) holds under Neumann boundary conditions

¶
¶xj

u�x� � 0 for xj � 0; pLj with 1 < j < N: �4:0:2�

To simplify the notation in (4.0.2) we omit the variable t from u, since we are
interested in steady-state solutions.

Remark 4.1. As discussed in § 1, steady-state bifurcations of (4.0.1) can be
projected into ker�dF �0;0. It is well known [13] that the presence of symmetries
of a compact Lie group G forces 0-eigenvalues of high multiplicity, so we may
expect to ®nd bifurcation problems where ker�dF �0;0 has dimension greater than
1. When the entire ker�dF �0;0 is G-irreducible, that is, the only G-invariant
subspaces of ker�dF �0;0 are the trivial subspaces, then we have a single-mode
bifurcation problem. When ker�dF �0;0 decomposes as a direct sum of two G-
irreducible subspaces V1 � V2, we have a two-mode interaction.

Gomes and Stewart [14] applied the technique of domain extension developed
by Field et al. [8] to prove that a two-mode interaction for (4.0.1) satisfying
Neumann boundary conditions corresponds to a bifurcation problem de®ned on

C2 N

whose symmetry group is O�2�N , on the restricted domain given by the

subspace Fix ZN
2 . Their method is to decompose C2 N

as C2 N ÿ 1

´ C2 N ÿ 1

and de®ne
an irreducible action of O�2�N on each component as follows. Denote the ®rst

component by Vk � C2 N ÿ 1

and the second component by V,, � C2 N ÿ 1

. De®ne
mode vectors k � �k1; . . . ; kN� and ,, � �,1; . . . ; ,N� with kj and ,j non-zero and
positive, for j � 1; . . . ;N . Then:

(i) for v � �v1; . . . ; vN� 2 TN the action on each direction zj, for 1 < j < 2N , is
de®ned by

v ´ zj � ei «j ´ vzj; �4:0:3�
where the «j are all the elements of the form �a1 =L1; 6a2 =L2; . . . ;6aN =LN�,
with aj � kj for the ®rst 2Nÿ1 directions and aj � ,j for the remainder;

(ii) ZN
2 acts on each component C2 N ÿ 1

by

�a� the flip �z1; z2; . . . ; z2 N ÿ 1� 7! �z2 N ÿ 1 ; . . . ; z2; z1�;
�b� all the other N ÿ 1 generators act by permutation.

�4:0:4�

The entries in the mode vectors depend on the original problem (4.0.1), but a
simple calculation using (4.0.3) implies, as Armbruster and Dangelmayr [2]
concluded for N � 1, that we may factor out the kernel of the action to assume
that kj and ,j are coprime for j � 1; . . . ;N .

4.1. The equations

Clearly Fix ZN
2 is the subspace of C2 N

isomorphic to R2 comprising all elements

� x; . . . ; x|���{z���}
2Nÿ1

; y; . . . ; y|���{z���}
2Nÿ1

�:

In [14] Gomes and Stewart state that generators of EO�2�2 have to be computed
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algorithmically, since no simple general formula covers all cases. They also
explain that following the same method for EO�2�N leads to a very complicated
problem. So they present a different approach to give a minimal set of generators
for EO�2�N �Fix ZN

2 � by direct computation on Fix ZN
2 , instead of ®nding generators

for EO�2�N and then restricting those to Fix ZN
2 . The result is the following.

Theorem 4.2. Let the group O�2�N act on Vk � V,, as in (4.0.3) and (4.0.4).
Then the O�2�N-invariants restricted to Fix ZN

2 are generated as follows.

Case 1. If all kj have the same parity and all ,j have the same parity (not

necessarily the same as the kj), then the generators are u � x2, v � y2 and
w � xnym, where m � maxj kj and n � maxj ,j.

Case 2. Otherwise, the generators are u � x2 and v � y2.

Proof. See [14, Theorem 6].

Gomes and Stewart also prove [14, Theorem 5] that the equivariants restricted
to Fix ZN

2 are generated over EO�2�N �Fix ZN
2 � as follows.

For Case 1, the generators are

g1 �

x
..
.

x

0
..
.

0

0BBBBBBB@

1CCCCCCCA; g2 �

0
..
.

0

y

..

.

y

0BBBBBBBB@

1CCCCCCCCA
; g3 �

xnÿ1ym

..

.

xnÿ1ym

0
..
.

0

0BBBBBBBB@

1CCCCCCCCA
; g4 �

0
..
.

0

xnymÿ1

..

.

xnymÿ1

0BBBBBBBB@

1CCCCCCCCA
; �4:1:1�

where m � maxj kj and n � maxj ,j.
For Case 2, the generators are g1 and g2 of (4.1.1).

In Case 1, any g 2 ~EO�2�N �Fix ZN
2 � is of the form

g�x; . . . ; x; y; . . . ; y; l� �

a�u; v; l�x� b�u; v; l�xnÿ1ym

..

.

a�u; v; l�x� b�u; v; l�xnÿ1ym

c�u; v; l�y� d�u; v; l�xnymÿ1

..

.

c�u; v; l�y� d�u; v; l�xnymÿ1

0BBBBBBBB@

1CCCCCCCCA
; �4:1:2�

where u � x2 and v � y2. Here the invariant w � xnym is not required to write
(4.1.2). For Case 2, we have (4.1.2) taking b� d � 0. Then, we can consider
~EO�2�N �Fix ZN

2 � as a module over the ring generated by u, v and l, and omit w in

the ®rst case. So for both cases we may consider EO�2�N �Fix ZN
2 � to be generated

by u, v and l .
The bifurcation equations are then

a�u; v; l�x� b�u; v; l�xnÿ1ym � 0;

c�u; v; l�y� d�u; v; l�xnymÿ1 � 0;

(
�4:1:3�
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for the ®rst case, and

a�u; v; l�x � 0;

c�u; v; l�y � 0;

(
�4:1:4�

for the second case.
The system (4.1.4) does not occur when N � 1. It represents the zero set of a

one-parameter germ on R2 equivariant under the standard action of the group
Z2 � Z2. Golubitsky and Schaeffer [12] give the normal form for the least
degenerate bifurcation (with topological codimension 1, namely Z2 � Z2-
codimension 3 and modality 2). In [17] Manoel presents a classi®cation of such
bifurcations up to topological codimension 2, namely Z2 � Z2-codimension 3 and
modality 1. The system (4.1.3) includes the same equations as for N � 1, but it is
not immediately evident that the same singularity-theoretic equivalence relation is
appropriate when N > 1. When N � 1, Armbruster and Dangelmayr [2] classi®ed
such problems up to topological codimension 2, assuming m and n to be coprime.
However, when N > 1, the numbers m and n can no longer be assumed coprime.
For example, for N � 4 the modes could be k � �2; 6; 4; 2� and ,, � �3; 1; 9; 1�, in
which case m � 6 and n � 9 with common factor 3. In § 4.3 we pursue the
implications of this possibility by considering the case m � n � 3.

In § 4.4 we study the zeros of (4.1.3) when m � n � 1. We shall see that for
this particular case the linearization of (4.1.3) is generically non-zero and
nilpotent, so we can classify this problem using the singularity-theoretic frame-
work of § 3, designed to permit a non-trivial linearization.

4.2. Reduction to a smaller domain

We now investigate how the singularity theory for higher-dimensional problems
(4.0.1), (4.0.2) reduces to an associated problem on a 1-dimensional domain. We
assume without loss of generality that 1 < m < n. We carry out the ideas for
Case 1 of Theorem 4.2; the analogous result for Case 2 follows immediately by
setting b� d � 0 in (4.1.2). We start by computing a set of generators for

E
$

O�2�N �Fix ZN
2 �.

4.2.1. Generators of E
$

O�2�N �Fix ZN
2 �

As mentioned in § 4.1, computing generators for ~EO�2�N �Fix ZN
2 � by ®rst

computing generators for ~EO�2�N and then restricting those to Fix ZN
2 leads to

very complicated calculations. The same kind of problem occurs for the module

E
$

O�2�N �Fix ZN
2 �, and there we use a generating set for the invariants restricted to

Fix ZN
2 to compute a set of generators for E

$
O�2�N �Fix ZN

2 �. Gomes and Stewart

[14] use a simple calculation to establish the well-known fact that equivariants of
torus actions can easily be derived from invariants. The essential point is that
torus actions diagonalize over C, so invariants are generated by monomials. We
show that a similar approach leads, equally simply, to generators for the
equivariant matrix germs. Explicitly, we have the following result, analogous to
Theorem 4 of [14].

Theorem 4.3. Consider the action of TN on CN given by (4.0.3). With

coordinates �z1; z1; . . . ; z2 N ÿ 1 ; z2 N ÿ 1 ; . . . ; z2 N ; z2 N � on CN, the module E
$

T N is
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generated over the ring of one-parameter C-valued invariants by matrices
M � �Mi j�1 < i; j < 2 N � 1 with monomial entries Mi j satisfying the following conditions.

(A) Any generator M � �Mi j�1 < i ; j < 2 N � 1 for E
$

T N has two non-zero monomial
entries, namely

Mpq and Mp�1;qÿ1 � Mp q; for p odd, q even;

Mpq and Mp�1;q�1 � Mp q; for p odd, q odd:
�4:2:1�

(B) The conditions on the indices are:

i � j �) Mi i 2 ET N ;

i 6� j �) Mi j �

zi�1

2

zj�1

2

� �ÿ1

�I a
m I b

n � for i odd, j odd;

zi�1

2

zj

2

� �ÿ1

�I a
m I b

n � for i odd, j even;

zi

2

zj�1

2

� �ÿ1�I a
m I b

n � for i even, j odd;

zi

2

zj

2

� �ÿ1

�I a
m I b

n � for i even, j even:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Here Im and In are any two generators of ET N such that

a � 1; b � 0 if mi nj divides Im;

a � 2; b � 0 if mi nj divides I 2
m ,

a � 1; b � 1 if mi divides Im and nj divides In;

with mi nj given by

mi nj �

zi�1

2

zj�1

2

� �
for i odd, j odd;

zi�1

2

zj

2

� �
for i odd, j even;

zi

2

zj�1

2

� �
for i even, j odd,

zi

2

zj

2

� �
for i even, j even:

8>>>>>>>>>>><>>>>>>>>>>>:
Proof. The equalities (4.2.1) follow from the choice of coordinate system. All

other conditions on the indices follow by direct computation. As an illustration
we compute some of the Mi j when N � 2. We omit the parameter l to simplify
the notation.

Any v � �v1; v2� 2 T2 acts diagonally on C4 by (see (4.0.3))

v ´ �z1; z2; z3; z4� � �v ´ z1; v ´ z2; v ´ z3; v ´ z4�

�
�

exp

��
k1

L1

v1 �
k2

L2

v2

�
i

�
z1; exp

��
k1

L1

v1 ÿ
k2

L2

v2

�
i

�
z2;

exp

��
l1

L1

v1 �
l2

L2

v2

�
i

�
z3; exp

��
l1

L1

v1 ÿ
l2

L2

v2

�
i

�
z4

�
:
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Consider z 2 C4 in coordinates z � �z1; z1; z2; z2; z3; z3; z4; z4�. A simple
calculation implies that a general C-valued monomial

z
g 1

1 z
d 1

1 z
g 2

2 z
d 2

2 z
g 3

3 z
d 3

3 z
g 4

4 z
d 4

4

is T2-invariant if and only if

k1��g1 ÿ d1� � �g2 ÿ d2�� � l1��g3 ÿ d3� � �g4 ÿ d4�� � 0;

k2��g1 ÿ d1� ÿ �g2 ÿ d2�� � l2��g3 ÿ d3� ÿ �g4 ÿ d4�� � 0:
�4:2:2�

Recall that M 2 E
$

T 2 if and only if M�vz�vw � vM�z�w for all z; w 2 C4 and all
v 2 T2. We now perform explicit computations of two typical cases, M11 and M14.

Consider the entry M11 and assume it is non-zero. If we write

M11 � z
a 1

1 z
b 1

1 z
a 2

2 z
b 2

2 z
a 3

3 z
b 3

3 z
a 4

4 z
b 4

4

then M 2 E
$

T 2 if and only if M11�vz�vw1 � vM11�z�w1; that is, if and only if

k1��a1 ÿ b1� � �a2 ÿ b2�� � l1��a3 ÿ b3� � �a4 ÿ b4�� � 0;

k2��a1 ÿ b1� ÿ �a2 ÿ b2�� � l2��a3 ÿ b3� ÿ �a4 ÿ b4�� � 0:

Comparing these equalities with (4.2.2) we ®nd that M11 is T2-invariant and
(4.2.1) implies that M22 � M11.

Suppose that the entry M14 is non-zero. Writing

M14 � z
a 1

1 z
b 1

1 z
a 2

2 z
b 2

2 z
a 3

3 z
b 3

3 z
a 4

4 z
b 4

4 ;

we have M 2 E
$

T 2 if and only if M14�vz�vw2 � vM14�z�w2, that is, if and only if

k1��a1 ÿ b1� � �a2 ÿ b2�� � l1��a3 ÿ b3� � �a4 ÿ b4�� ÿ 2k1 � 0;

k2��a1 ÿ b1� ÿ �a2 ÿ b2�� � l2��a3 ÿ b3� ÿ �a4 ÿ b4�� � 0:

These conditions imply that z1 z2 M14 is an invariant. From (4.2.1), we have
M23 � M14.

By such calculations, we conclude that the following elements generate all the
T2-invariant matrices:

M11; z1 z1M12; z1 z2 M13; z1 z2 M14;

z1 z3 M15; z1 z3 M16; z1 z4 M17; z1 z4 M18;

z2 z1 M31; z2 z1 M32; M33; z2 z2 M34;

z2 z3 M35; z2 z3 M36; z2 z4 M37; z2 z4 M38;

z3 z1 M51; z3 z1 M52; z3 z2 M53; z3 z2 M54;

M55; z3 z3 M56; z3 z4 M57; z3 z4 M58;

z4 z1 M71; z4 z1 M72; z4 z2 M73; z4 z2 M74;

z4 z3 M75; z4 z3 M76; M77; z4 z4 M78:

The other 32 remaining Mi j are derived from (4.2.1). By inspection on all these
elements we get the stated conditions on the indices.
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Theorem 4.4. The module E
$

O�2�N �Fix ZN
2 � is generated over EO�2�N �Fix ZN

2 � by

f1; xnÿ2ymg I 0

0 0

� �
; fxy; xnÿ1ymÿ1g 0 0

I 0

� �
;

fxy; xnÿ1; ymÿ1g 0 I

0 0

� �
; f1; xnymÿ2g 0 0

0 I

� �
;

where I represents the 2Nÿ1 ´ 2Nÿ1 identity matrix.
If 1 � m < n then all the generators are the same except the last, which becomes

xny
0 0

0 I

� �
:

Finally, if m � n � 1 then the generators are

f1; xyg ´

�
I 0

0 0

� �
;

0 I

0 0

� �
;

0 0

I 0

� �
;

0 0

0 I

� ��
: �4:2:3�

Proof. This is a consequence of Theorems 4.2 and 4.3, as can be seen by observing
that we can rewrite any non-diagonal matrix-germ generator de®ned on Fix ZN

2 as a

diagonal matrix. Also, we do not need to symmetrize generators of E
$

T N over the ¯ips

(4.0.4) of ZN
2 to get E

$
O�2�N �Fix ZN

2 �, since ZN
2 acts trivially on Fix ZN

2 .

4.2.2. Singularity theory

Let g 2 ~EO�2�N �Fix ZN
2 �, so that

g�x; . . . ; x; y; . . . ; y; l� �

a�u; v; l�x� b�u; v; l�xnÿ1ym

..

.

a�u; v; l�x� b�u; v; l�xnÿ1ym

c�u; v; l�y� d�u; v; l�xnymÿ1

..

.

c�u; v; l�y� d�u; v; l�xnymÿ1

0BBBBBBBB@

1CCCCCCCCA
where u � x2, v � y2.

The extended tangent space of g is given by (see (3.2.8))

T�g� � EO�2�N �Fix ZN
2 �hSj g; 1 < j < 8; �dg�gi; 1 < i < 4i � El gl:

The Sj are the generators of E
$

O�2�N �Fix ZN
2 � given by Theorem 4.4, and the gi are

given by (4.1.1).
Here �dg� is the 2N ´ 2N matrix

�dg� �
¶p

¶x
U

¶p

¶y
U

¶q

¶x
U

¶q

¶y
U

0BBB@
1CCCA;

where U denotes the 2Nÿ1 ´ 2Nÿ1 matrix with all entries equal to 1,

p � ax� bxnÿ1ym, and q � cy� dxnymÿ1.
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Consider the isomorphism

J:R2 ! Fix ZN
2 ;

�x; y� 7! �x; . . . ; x; y; . . . ; y�;
�4:2:4�

and associate to g the corresponding term in ~EO�2��Fix Z2� given by

h�x; y; l� � a�u; v; l�x� b�u; v; l�xnÿ1ym

c�u; v; l�y� d�u; v; l�xn ymÿ1

 !
:

That is, h � �Jÿ1; Il� ± g ± �J; Il�. Hence ~EO�2�N �Fix ZN
2 � and ~EO�2��Fix Z2� are

isomorphic spaces. By the same argument, the extended tangent spaces of g and h
are also isomorphic. Consequently, the codimension of a germ in `pre-normal
form' (by which we mean the germ on R2 de®ned by the two distinct entries in
(4.1.2)) is independent of N.

The generators of E
$

O�2��Fix Z2� found by Armbruster and Dangelmayr [2] are
obtained by taking I1 ´ 1 � 1 2 R in the matrix germs that appear in Theorem 4.4,

so E
$

O�2�N �Fix ZN
2 � is isomorphic to E

$
O�2��Fix Z2�.

Finally, consider an equivalence relation on E
$

O�2�N �Fix ZN
2 � as in De®nition 3.2.

A change of coordinates W on Fix ZN
2 ´ R can be taken as

W � �J; Il� ± F ± �Jÿ1; Il�;
where F is a coordinate change on Fix Z2 ´ R. Therefore, applying singularity

theory to bifurcation problems de®ned on ~EO�2�N �Fix ZN
2 � reduces to the standard

analysis of the 1-dimensional problem in ~EO�2��Fix Z2� associated to it via the
isomorphism (4.2.4).

4.2.3. Alternative way to compute equivariant matrix germs
Next we give a result on matrix germs in the equivariant context, which is

useful for computing E
$

G, namely Proposition 4.5 below. We give an example to
show how this result can be applied. The results we present here were motivated
by initial attempts to obtain a corresponding result in the hidden symmetry

context, particularly when trying to compute generators for E
$

O�2�N �Fix ZN
2 �.

The classi®cation of one-parameter G-equivariant germs de®ned on a vector
space V , with G a compact Lie group, involves matrix germs in the module

E
$

G � fS: �V ´ R; 0� ! Hom�V ; V �: S�x; l� � gÿ1S�gx; l�g; "g 2 G; "x 2 V g:
If x 2 V then for h 2 ~EG we compute S�x; l�h�F�x; l�; L�l��, where F is a

diffeomorphism germ in ~EG and L is a diffeomorphism germ in El. Hence, we
are interested in the product

S�x; l�g�x; l�;
for g�x; l� � h�F�x; l�; L�l�� 2 ~EG . It turns out that it is sometimes easier to
compute generators for matrix germs in the larger module

RG � fR: �V ´ R; 0� ! Hom�V ; V �: Rg 2 ~EG; "g 2 ~EGg �4:2:5�
as Example 4.7 below illustrates. In fact, the use of such matrix germs leads to
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the usual equivalence relation using E
$

G. To see why, introduce the space

TG � fT: �V ´ R; 0� ! Hom�V ; V �: T�x; l�g�x; l� � 0; "g 2 ~EG; "x 2 V g:
�4:2:6�

We then have the following.

Proposition 4.5. Let G be a compact Lie group acting linearly on V, and let
RG denote the module over EG de®ned by (4.2.5). Then RG can be decomposed as

RG � E
$

G �TG : �4:2:7�

Proof. To simplify the notation, omit l.

It is easy to check that E
$

G and TG are subsets of RG.
Given R 2RG and x 2 V we use the normalized Haar integral to de®ne the

averaging operator bR�x� � Z
G

gÿ1R�gx�g dg:

It is straightforward to show that R 7! bR is a projection onto E
$

G. Hence

RG � E
$

G � ker�R 7! bR�: �4:2:8�
Finally, elements in the kernel de®ne matrix germs which annihilate equivariant

vector ®elds. In fact, let K 2 ker�R 7! bR�, that is, bK � 0. For any g 2 ~EG,Z
G

gÿ1gK�x�g�x� dg �
Z

G
gÿ1K�gx�gg�x� dg �

�Z
G

gÿ1K�gx�g dg

�
g�x� � 0;

and since
R

G dg � 1,

K�x�g�x� � 0:

Hence, K 2TG. Therefore, ker�R 7! bR� Í TG .

Remark 4.6. If fg1; . . . ; gsg is a set of generators of ~EG, then for all R 2RG,

Rgi �
Xs

j�1

fi j gj; for all i � 1; . . . ; s; with fi j 2 EG: �4:2:9�

By Proposition 4.5, we can decompose R � SR � TR, where SR 2 E
$

G and TR 2TG. So

Rgi � SR gi � TR gi � SR gi; for all i � 1; . . . ; s:

Therefore, for all x 2 V ,

R�x�gi�x� � SR�x�gi�x�TR�x�gi�x� � SR�x�gi�x�;
since TR�x�gi�x� � 0, by (4.2.6). In other words, germs that are equivalent using

matrices in RG are actually equivalent using matrices in E
$

G. The converse is also

true, since E
$

G Í RG. Hence, the set of generators of RG satisfying (4.2.9) that are

in the module E
$

G are all the elements in E
$

G needed to compute normal forms in

the classi®cation problem. Note, however, that we are not claiming that RG � E
$

G.
This would be the case if

R�x�gi�y� � SR�x�gi�y�; for all x; y 2 V ;

but this does not follow from (4.2.7).
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Example 4.7. Consider the standard action of O�2� on C given by

v ´ z � ei vz for 0 < v < 2p and k ´ z � z:

By [13] there is one equivariant generator g1�z; l� � z and one invariant generator
u � zz. With coordinates �z; z� on C, any R 2RO�2� can be expressed as

R�z; l�w � a�z; l�w� b�z; l�w �4:2:10�
where

a�z; l� �
X
i > 0

ai z
i �
X
j > 1

bj z
j; b�z; l� �

X
k > 0

gk z k �
X
, > 1

d, z ,

with ai; bj; gk; d, 2 EO�2�. From (4.2.9) we have R�z; l�z � f11�u; l�z, where

f11 2 EO�2�, that is, R�z; l�z � A0 z� A1uz� A2 u2z� . . . where Aj 2 R for all j.
Uniqueness of Taylor expansion implies that

R�z; l�z � �a0 � g2 u�z:
Write (4.2.10) with these coef®cients:

w 7! a0w� g2 z2 w:

It is now straightforward that w 7! w and w 7! z2 w are both in E
$

O�2�. Therefore,

these are the generators of E
$

O�2� that appear in the classi®cation of O�2�-
equivariant bifurcation problems. Notice that w 7! uwÿ z2 w 2 E

$
O�2� Ç TO�2�, so

this example shows that (4.2.7) may not be a direct sum.

4.3. Two-mode interactions when m � n � 3

As mentioned earlier, the bifurcation analysis of (4.1.3) can be found in [2] for
the cases when m and n are coprime. However, m and n can no longer be
assumed coprime when N > 1. In particular, the case m � n � 3 requires further
analysis, since the geometry of the associated bifurcation diagrams has interesting
features. We consider this case here, studying the least degenerate bifurcation
behaviour of zeros of (4.1.3). As proved in § 4.2, up to isomorphism the
singularity theory that we are considering applied to bifurcation problems on N-
dimensional domains does not depend on N, so we can use the singularity theory
of § 3 and restrict the analysis for N � 1. We therefore consider a germ

g 2 ~EO�2��Fix Z2� which has the form

g�x; y; l� � �a�u; v; l�x� b�u; v; l�x2 y3; c�u; v; l�y� d�u; v; l�x3y2� �4:3:1�
with u � x2, v � y2. Simplify notation by writing g � �a; b; c; d �. In contrast to
the bifurcation analysis, the condition gcd�m; n� 6� 1 does not affect the singularity
theory, so the least degenerate normal form and its unfolding can be obtained
from [2]. For completeness we derive it here, together with its unfolding. All
computations were performed with a Maple program.

Assume that g in (4.3.1) satis®es the following non-degeneracy conditions at
�x; y; l� � �0; 0; 0�:

au 6� 0; al 6� 0; cv 6� 0; cl 6� 0; d 6� 0;

au cv ÿ cv au 6� 0; au cl ÿ al cu 6� 0; av cl ÿ al cv 6� 0:

The inequalities above imply that the submodule S � �M2; M; M2; M � is
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contained in the unipotent tangent space T�g; U�. It is easy to check that S is
intrinsic, so in fact S Í ItrT�g; U�. Therefore all germs in S are higher-order
terms for g (see (3.3.3)).

By performing changes of coordinates modulo S we ®nd the normal form

h�u; v; l� � ��«1 u� r1 v� «2 l�x� m1 x2 y3; �k1 u� «3 v� «4 l�y� «5 x3 y2�
where

«1 �
au

jau j
; «2 �

al

jal j
; «3 �

cv

jcv j
; «4 �

cl

jcl j
; «5 �

d

jd j
and r1, k1 and m1 are the modal parameters

r1 �
jcljav

jalj jcv j
; k1 �

jaljcu

jau j jclj
; m1 �

jauj jclj2b

jcv j jd j jal j2
:

The extended tangent space T�h� is generated modulo S by

�«1u� r1v� «2 l; m1; 0; 0�; �0; 0; k1u� «3 v� «4 l; «5�;
�3«1u� r1v� «2 l; 2m1; 2k1u; 3«5�; �2r1v; 3m1; k1u� 3«3 v� «4 l; 2«5�;

�«2; 0; «4; 0�; �«2 l; 0; «4 l; 0�:
If we write these elements as linear combinations of �1; 0; 0; 0�, �u; 0; 0; 0�,
�v; 0; 0; 0�, �l; 0; 0; 0�, �0; 1; 0; 0�, �0; 0; 1; 0�, �0; 0; u; 0�, �0; 0; v; 0�, �0; 0; l; 0�,
�0; 0; 0; 1�, we ®nd a 6 ´ 10 matrix with rank 6. Adding the rows �1; 0; 0; 0�,
�v; 0; 0; 0�, �0; 1; 0; 0�, �0; 0; u; 0�, we ®nd a 10 ´ 10 invertible matrix. Hence these
four germs form a basis for the complement to T�h� in ~EO�2��Fix Z2�. Thus the
codimension of h is 4 and its unfolding is

H � ��«1u� rv� «2 l� a�x� mx2 y3; �ku� «3 v� «4 l�y� «5 x3 y2�
where r , r1, k , k1, m , m1, a , 0.

We now present the bifurcation analysis of zeros of the unfolding H. The
solution branches for

�«1u� rv� «2 l� a�x� mx2 y3 � 0;

�ku� «3 v� «4 l�y� «5 x3y2 � 0

(
�4:3:2�

are

Sx:
y � 0;

«1 x2 � «2 l� a � 0;

�
Sy:

x � 0;

«3 y2 � «4 l � 0;

�
which we call pure-mode branches, and

Sm:
«1 x2 � ry2 � «2 l� mxy3 � a � 0;

kx2 � «3 y2 � «4 l� «5 x3 y � 0;

(
which we call a mixed-mode branch.

We now analyse the nature of secondary bifurcations for (4.3.2), that is, points
different from the origin where the mixed-mode branch intersects a pure-mode
branch. To do so, recall that a solution branch is transcritical at l � l0 if it
can be locally parametrized by l � l�t �, for t near zero, with l0 � l�0� and
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l0�0� 6� 0. The branch is subcritical if tl0�t � < 0 for all non-zero t near 0, and
supercritical if tl0�t� > 0 for all non-zero t near 0.

Choose «1 � «3 � «5 � 1, «2 � «4 � ÿ1, k < 1, r > 1, a < 0 so that both
Sx Ç Sm and Sy Ç Sm are non-empty and given by

Sx Ç Sm �
��

x1 � 6

�����������ÿa

1ÿ k

r
; y1 � 0; l1 �

ÿka

1ÿ k

��
; �4:3:3�

Sy Ç Sm �
��

x2 � 0; y2 � 6

�����������
a

1ÿ r

r
; l2 �

a

1ÿ r

��
: �4:3:4�

Project the zeros of (4.3.2) onto the x; y-plane (by eliminating l from the
equations) to get

F�x; y� � �1ÿ k�x2 � �rÿ 1�y2 � mxy3 ÿ x3y� a � 0:

Considering l in a neighbourhood of l1 (see (4.3.3)), we have
Fy�x1; y1� � ÿx3

1 6� 0. Hence l can be locally parametrized by x, and

dl

dx
�x1� � 2x1k 6� 0: �4:3:5�

Repeat for l in a neighbourhood of l2 (see (4.3.4)), Fx�x2; y2� � my3
2 6� 0. Then

we see that l can be locally parametrized by y, and

dl

dy
�y2� � 2y2 6� 0: �4:3:6�

Now (4.3.5) and (4.3.6) imply that Sm is transcritical at all points of secondary
bifurcation. This is the fact that we want to emphasize: as pointed out by Armbruster
and Dangelmayr [2], when gcd�m; n� � 1, not all secondary bifurcations are
transcritical, and Sm-branches always develop subcritical or supercritical bifurca-
tions. Now, points where Sm is subcritical or supercritical are of pitchfork type for
(4.3.2), as are all secondary bifurcations for Z2 � Z2-symmetric problems. Since
(4.3.1) represents a Z2 � Z2-symmetric problem for b� d � 0, we can say that
the ®fth-order terms in (4.3.2) break all the Z2 � Z2-symmetry, since they are the
terms in the equations that make Sm transcritical at secondary bifurcations.

4.4. Germs with a non-trivial linearization

We now illustrate the singularity-theoretic techniques developed in this paper by
considering the above types of mode interaction when the linearization is non-trivial.

We start by analysing the possible O�2�N-equivariant vector ®elds that may
appear for different values of the mode vectors k and ,,,,,,,. The action of O�2�N on

C2 N ÿ 1

de®ned in (4.0.16) and (4.0.17) is absolutely irreducible, that is, the only
2Nÿ1 ´ 2Nÿ1 matrices commuting with this action are multiples of the identity.
Absolute irreducibility implies irreducibility, but the converse is false; see [13].
Let A be a matrix of order 2Nÿ1 commuting with O�2�N . The «j in (4.0.16)
satisfy «i 6� «j if i 6� j, since the aj are all non-zero. Therefore, A is of the form

A �

A1
0

A2

. .
.

0
A2 N ÿ 2

0BBBBB@

1CCCCCA �4:4:1�
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where the Aj are 2 ´ 2 matrices. Commutativity of A with ZN
2 implies that all

Aj are multiples of the identity, and equal. Therefore the action of O�2�N on C2 N ÿ 1

is
in fact absolutely irreducible.

For the two-mode interaction problem eg: �C2 N

´ R; 0� ! C2 N

, with eg an
O�2�N-equivariant germ, let M be its linearization at the origin, that is,
�deg�0;0 � M. Then M is of order 2N and commutes with O�2�N . If kj 6� ,j for
some j, then the actions of v on each direction are all different, and are like 2N

distinct plane rotations. So M is given by two distinct copies A1 and A2 of the
form (4.4.1). Now M commutes with ZN

2 , so A1 and A2 are both multiples of the
identity. Therefore,

M � c1I 0

0 c2 I

� �
for some c1; c2 2 R. But M has only zero eigenvalues, so M � 0.

On the other hand, if kj � ,j�� 1� for all j � 1; . . . ;N, then M decomposes into
four copies of the form (4.4.1), and commutativity with ZN

2 implies that M has
the form

M � c1I c2 I

c3 I c4 I

� �
for some c1; . . . ; c4 2 R. The zero-eigenvalue condition implies that M is
generically non-zero and nilpotent, with Jordan canonical form

0 I

0 0

� �
: �4:4:2�

In the next subsection we apply the results of § 3 to study the bifurcation of zeros
of germs eg with linearization (4.4.2) when restricted to the subspace Fix ZN

2 . As
proved in § 4.2, we can study this case by assuming N � 1.

4.4.1. Singularity theory
We now concentrate on the case N � 1 to study the particular case m � n � 1.

The problem is to study the zeros of one-parameter bifurcation problems (4.1.2)
given by

g�x; y; l� � �ax� by; cy� dx� �4:4:3�
where a, b, c and d are germs of functions of u � x2, v � y2 and l. The module
of germs of the form (4.4.3) is ~EO�2��Fix Z2�, with generators

e1 �
x

0

� �
; e2 �

y

0

� �
; e3 �

0

y

� �
; e4 �

0

x

� �
: �4:4:4�

We are interested in the bifurcation analysis of zeros of (4.4.3) when �dg�0;0 is
equal to

L � 0 1

0 0

� �
: �4:4:5�

Remark 4.8. From the usual point of view of steady-state bifurcation, since
(4.4.5) is non-zero, we could perform a Liapunov±Schmidt reduction onto ker L
and describe such bifurcations using a single variable. This already suggests a
simple analysis concerning bifurcation of steady states; for example, secondary
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bifurcations are not to be expected, as we verify in § 4.4.2. However, for
theoretical purposes we choose this example to demonstrate a singularity-theoretic
framework to study a 2-dimensional problem with a non-trivial linearization.

We now formulate L-contact equivalence in ~EO�2��Fix Z2�. Expression (4.2.3)

gives generators for E
$

O�2��Fix Z2�:

T1 �
�

1 0

0 0

�
; T2 �

�
0 0

0 1

�
; T3 �

�
0 xy

0 0

�
; T4 �

�
0 0

xy 0

�
;

T5 �
�

xy 0

0 0

�
; T6 �

�
0 1

0 0

�
; T7 �

�
0 0

1 0

�
; T8 �

�
0 0

0 xy

�
:

�4:4:6�

As in Example 3.4, h is L-contact equivalent to g if there exist a matrix-

valued germ S 2 E
$

O�2��Fix Z2�, a germ F 2 ~EO�2��Fix Z2� and L 2 El satisfying
(3.1.9)±(3.1.12) such that

h�x; y; l� � S�x; y; l�g�F�x; y; l�; L�l��:
The group KL of L-contact equivalences is

KL � f�S; F; L� 2 E
$

O�2��Fix Z2� ´ ~EO�2��Fix Z2� ´ El:

S; F; L satisfy (3.1.9)ÿ�3:1:12�g:
By (3.2.13) the restricted tangent space of g is

RT�g� �
�

Sg� �dg�F: S 2 E
$

O�2��Fix Z2�; F 2 ~EO�2��Fix Z2�;

S�0� �
�a b

0 d

�
; �dF�0 �

�A0 B0

0 C0

�
; a� C0 � 0

�
:

�4:4:7�
We now give generators for RT�g� and for T�g�. From (4.4.7), RT�g� is the

module over EO�2��Fix Z2� generated by Ti g, i � 1; . . . ; 8, i 6� 1; 7, MT1g, MT7g,
�dg�ei, i � 1; 2, M�dg�ej, j � 3; 4, and T1gÿ �dg�e3, with ei given by (4.4.4) and
Tj given by (4.4.6). Now we denote g�x; y; l� � �ax� by; cy� dx� by �a; b; c; d �
to list the generators of RT�g�:

M�a; b; 0; 0�; �0; 0; c; d �; �cv; du; 0; 0�; �0; 0; au; bv�;
�bv; au; 0; 0�; �d; c; 0; 0�; M�0; 0; b; a�; �0; 0; du; cv�;

�a� 2au u; 2bu u; 2cu u; d � 2du u�; M�2av v; b� 2bv v; c� 2cv v; 2dv v�;
�2bu v; a� 2au u; d � 2du u; 2cu v�; M�b� 2bv v; 2av u; 2dv u; c� 2cv v�;

�2av vÿ a; 2bv v; c� 2cv v; 2dv v�:

�4:4:8�

Expressions (3.2.8) and (4.4.8) imply that

T�g� � RT�g� � El gl

� Rf�a; b; 0; 0�; �0; 0; b; a�; �b� 2bv v; 2av u; 2dv u; c� 2cv v�g: �4:4:9�
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4.4.2. Normal forms
The results of the previous subsection lead to normal forms for bifurcation

problems g 2 ~EO�2��Fix Z2� with nilpotent linearization (4.4.5). As we see below,
the normal forms as well as their unfoldings can all be expressed in the form

h�x; y; l� � �y; f �u; 0; l�x�:
So tr�dh� � 0 on solutions, and the eigenvalues y are the solutions of
y2 � det�dh� � 0. Therefore, eigenvalues always occur in pairs 6m, and there are
values of l for which they are either real with opposite sign or purely imaginary.
If the trivial solution is unstable for l < 0, then at a bifurcation point a change in
the eigenvalues is generically as in Figure 1. In this case, solutions bifurcating
supercritically are unstable, and those bifurcating subcritically have a pair of
purely imaginary eigenvalues (non-hyperbolic equilibria). Notice that this situation
is preserved under equivalence.

In the next proposition we present the generic normal form, two normal forms
of codimension 1 and another more degenerate normal form with codimension 3
and modality 1.

Proposition 4.9. Let g�x; y; l� � � p�u; v; l� x� q�u; v; l� y, r�u; v; l� y�
s�u; v; l� x� be a bifurcation problem in ~EO�2��Fix Z2� where �dg�0;0 is the
nilpotent linearization

L � 0 1

0 0

� �
:

If g satis®es the recognition conditions in Table 1 for the normal form nj for some
j � 1; . . . ; 4, then g is equivalent to nj.

Proof. The computations for each case are extensive and similar, so we
describe them in detail for n4 only, which involves the most extensive
computations. The procedure basically consists of three steps. First ®nd (some
of) the higher-order terms. Then perform coordinate changes to remove further
terms of high order and to normalise others. At this stage we seek a simple
expression as normal form. Finally, compute the codimension and unfold this
normal form. All the computations described below were performed using Maple.

Step 1. Write down a set of generators for the restricted tangent space RT�n4�:
RT�n4� � h�0; u; 0; 0�; �0; v; 0; 0�; �0; l; 0; 0�; �0; 0; 0; «1u2 ÿ «2l

2 � mul�; �0; 0; 0; v�;
�v; 0; 0; 0�; �«1u2 ÿ «2l2 � mul; 0; 0; 0�; �0; 0; u; 0�; �0; 0; v; 0�; �0; 0; l; 0�;
�0; 0; 0; 5«1u2 ÿ «2 l2 � 3ul�; �u; 0; 0; 0�; �l; 0; 0; 0�i:
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Figure 1. Generic change in the eigenvalues for the trivial solution when l crosses zero.



Next prove that

S � �M2 � hvi; M; M2 � hvi; M3 � hvi� Í RT�n4; U�
by verifying that S Í RT�n4; U� modulo MS and then using Nakayama's
Lemma. This inclusion is checked with a Maple program that computes
determinants of all maximum-order minors of a non-square matrix. Maple is also
used to prove that S is intrinsic. Hence, S Í P�n4�.

Step 2. Change coordinates modulo S. The simpli®ed expression, obtained by
Maple, is given by n4 in Table 1.

Step 3. Find cod n4. Generators of T�n4� modulo S are

�0; 1; 0; 0�; �u; 0; 0; 0�; �v; 0; 0; 0�; �l; 0; 0; 0�; �0; 0; 0; v�;

�0; 0; u; 0�; �0; 0; v; 0�; �0; 0; l; 0�; �0; 0; 0; «1u2 ÿ «2 l2 � mul�;

�0; 0; 0; 5«1u2 ÿ «2 l2 � mul�; �0; 0; 0; 2«2 l� mu�; �0; 0; 1; 0�; �1; 0; 0; 0�:
It is easy to see that �0; 0; 0; 1�, �0; 0; 0; u � and �0; 0; 0; ul� span the complement
to T�n4� in ~EO�2��Fix Z2�. Therefore cod n4 � 3 and the topological codimension
is 2.

We end this subsection with bifurcation diagrams for the three least degenerate
bifurcations. As usual, we plot l in the horizontal direction. Each diagram
consists of a trivial solution branch �x � 0; y � 0; l� and another non-trivial
solution branch f �u; 0; l� � 0. As in Remark 4.8, this is what we would have
expected if we had performed a Liapunov±Schmidt reduction onto the kernel. We
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Table 1. Normal forms in ~EO�2��Fix Z2� and their classi®cation. All derivatives
are calculated at the origin, and «1; «2 � 61 with signs given by the

corresponding derivatives.

Normal forms

n1 � �y; �«1uÿ «2 l�x�
n2 � �y; �«1uÿ «2 l2�x�
n3 � �y; �«1u 2 ÿ «2 l�x�
n4 � �y; �«1u 2 ÿ «2 l2 � mul�x�

Data
Normal Unfolding
form Recognition «1 «2 terms

n1 su; sl 6� 0 su ÿsl

n2 sl � 0; su 6� 0 su ÿsll � 2pl rl �0; x�
sll ÿ 2pl rl 6� 0

n3 su � 0; sl 6� 0 su u ÿ 2pu ru ÿsl �0; ux�
suu ÿ 2pu ru 6� 0

n4 su � sl � 0
r1 � sul ÿ 2� pl ru ÿ pu r l� 6� 0 �0; x�
r2 � sll ÿ 2pl rl 6� 0 r3 r2 �0; ux�
r3 � suu ÿ 2pu ru 6� 0 �0; ulx�
r2

1 ÿ 4r2 r3 6� 0
m � r1 =2�r2 r3�1 = 2 (modal)



choose «1 � «2 � 1 to draw the pictures. In Figure 2(a), we ®nd the diagram for
n1, with a change in the eigenvalues as in Figure 1. Figure 2(b) depicts the
diagram for the unfolding of n2 given by

�y; �uÿ l2 � a�x�;
when a > 0. The diagrams for a < 0 are obtained from those where a > 0 by
changing «1 ! ÿ«1 and «2 ! ÿ«2. Figure 2(c) represents the diagram for the
unfolding of n3 given by

�y; �u2 ÿ l� au�x�;
when a < 0. It is easy to see that when a > 0 the picture for the unfolding of n3

is similar to diagram (a), but now with a quartic non-trivial solution branch.
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