The Library
Nonlinear dynamics of sand banks and sand waves
Tools
Komarova, Natalia L. and Newell, Alan C., 1941. (2000) Nonlinear dynamics of sand banks and sand waves. Journal of Fluid Mechanics, Vol.41 . pp. 285321. ISSN 00221120

PDF
WRAP_Komarova_nonlinear_dynamics.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (1964Kb) 
Official URL: http://dx.doi.org/10.1017/S0022112000008855
Abstract
Sand banks and sand waves are two types of sand structures that are commonly observed on an offshore sea bed. We describe the formation of these features using the equations of the fluid motion coupled with the mass conservation law for the sediment transport. The bottom features are a result of an instability due to tide–bottom interactions. There are at least two mechanisms responsible for the growth of sand banks and sand waves. One is linear instability, and the other is nonlinear coupling between long sand banks and short sand waves. One novel feature of this work is the suggestion that the latter is more important for the generation of sand banks. We derive nonlinear amplitude equations governing the coupled dynamics of sand waves and sand banks. Based on these equations, we estimate characteristic features for sand banks and find that the estimates are consistent with measurements.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Sand bars  Mathematical models, Sand waves  Mathematical models, Sediment transport  Mathematical models, Tides, Fluid mechanics 
Journal or Publication Title:  Journal of Fluid Mechanics 
Publisher:  Cambridge University Press 
ISSN:  00221120 
Date:  July 2000 
Volume:  Vol.41 
Page Range:  pp. 285321 
Identification Number:  10.1017/S0022112000008855 
Status:  Peer Reviewed 
Access rights to Published version:  Open Access 
References:  Bagnold, R. A. 1956 The flow of cohesionless grains in fluids. Proc. R. Soc. Lond. A 249, 235{279. Bailard, J. A. 1981 An energetics total load sediment transport model for a plane sloping beach. J. Geophys. Res. 86 (C11), 10938{10954. Bailard, J. A. & Inman, D. L. 1981 An energetics bedload model for a plane sloping beach: local transport. J. Geophys. Res. 86 (C3), 2035{2043. Blondeaux, P. 1990 Sand ripples under sea waves. Part 1. Ripple formation. J. Fluid Mech. 218, 1{17. Bowden, K. F. 1983 Physical Oceanography of Coastal Waters. Ellis Horwood. Bryan, K. 1969 A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4, 347. Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851{1112. De Swart, H. E. & Zimmerman, J. T. F. 1993 Rectication of the winddriven ocean circulation on the beta plane. Geophys. Astrophys. Fluid Dyn. 71, 17{41. De Vriend, H. J. 1990 Morphological processes in shallow tidal seas. In Residual Currents and Longterm Transport (ed. R. T. Cheng), pp. 276{301, Springer. Dyer, K. R. 1986 Coastal and Estuarine Sediment Dynamics. John Wiley. Dyer, K. R. & Huntley, D. A. 1999 The origin, classication and modelling of sand banks. Cont. Shelf Res. 19, 1285{1330. Dyer, K. R. & Soulsby, R. L. 1988 Sand transport the continental shelf. Ann. Rev. Fluid Mech. 20, 295{324. Engelund, F. 1970 Instability of erodible beds. J. Fluid Mech. 42, 225{244. Falques, A., Montoto, A. & Iranzo, V. 1996 Bedflow instability of the longshore current. Cont. Shelf Res. 16, 1927. Flaschka, H. & Newell, A. C. 1980 Monodramy and spectrum preserving deformations. Commun. Math. Phys. 76, 65{116. Fokas, A. S. & Its, A. R. 1993 The isomonodromy method and the Painleve equations. In Important Developments in Soliton Theory (ed. A. S. Fokas & V. E. Zakharov), pp. 99{122. Springer. Fredsoe, J. 1974 On the development of dunes in erodible channels. J. Fluid Mech. 64, 1{16. Fredsoe, J. & Engelund, F. 1975 Bed congurations in open and closed alluvial channels. Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Series Paper 8. Gerkema, T. 1998 A note on the eect of nite Stokeslayer thickness in a morphodynamic stability problem. In Physics of Estuaries and Coastal Seas (ed. J. Dronkers & M. B. A. M. Scheers), pp. 387{395. Balkema. Gerkema, T. 1999 A linear stability analysis for tidally generated sand waves. J. Fluid Mech. submitted. Hulscher, S. J. M. H. 1996 Tidalinduced largescale regular bed form patterns in a three dimensional shallow water model. J. Geophys. Res. 101 (C9), 20727{20744. Hulscher, S. J. M. H., De Swart, H. E. & De Vriend, H. J. 1993 Generation of offshore tidal sand banks and sand waves. Cont. Shelf Res. 13, 1183{1204. Huntley, D. A., Huthnance, J. M., Collins, M. B., Liu, C.L., Nicholls, R. J. & Hewitson, C. 1993 Hydrodynamics and sediment dynamics of North Sea sand waves and sand banks. Phil. Trans. R. Soc. Lond. A 343, 461{474. Knaapen, M. A. F. 1999 On the modeling of rhythmic morphological patterns using a Ginzburg{Landau equation. Civil Engineering & Management Rep. 99W007/MICS004. University of Twente, The Netherlands. Komarova, N. L. & Hulscher, S. J. M. H. 2000 Linear instability mechanisms for sand wave formation. J. Fluid Mech. 413, 219{246. Komarova, N. L. & Newell, A. C. 1995 The mean flow driven by sandbar instabilities. In Nonlinear Dynamics and Pattern Formation in the Natural Environment (ed. A. Doelman & A. van Harten), pp. 147{167. Longman. Larcombe, P. & Jago, C. F. 1996 The morphological dynamics of intertidal megaripples in the Mawddach Estuary, North Wales, and the implications for palaeoflow reconstruction. Sedimentology 43, 541{559. Leeder, M. R. 1982 Sedimentology: Process and Product. G. Allen and Unwin. Maas, L. R. M. & Haren, J. J. M. van 1987 Observations on the vertical structure of tidal and internal currents in the central North Sea. J. Mar. Res. 45, 293{318. Newell, A. C. & Moloney, J. V. 1992 Nonlinear Optics. AddisonWesley. Newell, A. C., Passot, T. & Lega, J. 1993 Order parameter equations for patterns. Ann. Rev. Fluid Mech. 25, 399. Parker, G. 1976 On the cause and characteristic scales of meandering and braiding in rivers. J. Fluid Mech. 76, 457{480. Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer. Phillips, O. M. 1977 The Dynamics of the Upper Ocean, 2nd edn. Cambridge University Press. Pinardi, N., Rosati, A. & Pacanowski, R. C. 1995 The sea surface pressure formulation of rigid lid models. Implications for altimetric data assimilation studies. J. Mar. Syst. 6, 109{119. Prandtl, L. 1932 Zur turbulenten Stroeming in Roehren und langs Plaetten. Ergebn. Aerodyn. Versuchsanst, Goettingen 4, 18{29 (in German). Rubin, D. M. & McCulloch, D. S. 1980 Single and superimposed bedforms: a synthesis of San Francisco Bay and flume observations. Sedimentary Geol. 26, 207{231. Schielen, R., Doelman, A. & De Swart H. E. 1993 On the nonlinear dynamics of free bars in straight channels. J. Fluid Mech. 252, 325{356. Schuttelaars, H. M. & De Swart, H. E. 1996 An idealized longterm model of a tidal inlet. Eur. J. Mech B/Fluids 15, 55{80. Seminara, G. & Tubino, M. 1992 Weakly nonlinear theory of regular meanders. J. Fluid. Mech. 244, 257{288. Soulsby, R. L. 1990 Tidal current boundary layers. In The Sea, vol. 9, part A (ed. B. le Mehaute, & D. M. Hanes), pp. 523{566. John Wiley and Sons. Soulsby, R. L. 1997 Dynamics of Marine Sands: A Manual for Practical Applications. London: Telford. Stride, A. H. (Ed.) 1982 Oshore Tidal Sands: Processes and Deposits. Chapman and Hall. Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press. Van Rijn, L. C. 1993 Handbook of Sediment Transport by Currents and Waves. Aqua Publ., Amsterdam. Vittori, G. & Blondeaux, P. 1990 Sand ripples under sea waves. Part 2. Finiteamplitude development. J. Fluid Mech. 218, 19{39. Wilkens, J. 1997 Sandwaves and possibly related characteristics. Report for Alkyon Hydraulic Consultancy and Research. 
URI:  http://wrap.warwick.ac.uk/id/eprint/840 
Actions (login required)
View Item 