Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Mass transfer between double white dwarfs

Tools
- Tools
+ Tools

Marsh, T. R., Nelemans, G. and Steeghs, D. (2004) Mass transfer between double white dwarfs. Monthly Notices of the Royal Astronomical Society, Volume 350 (Number 1). pp. 113-128. doi:10.1111/j.1365-2966.2004.07564.x ISSN 0035-8711.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1111/j.1365-2966.2004.07564.x

Request Changes to record.

Abstract

Three periodically variable stars have recently been discovered (V407 Vul, P=9.5 min; ES Cet, P=10.3 min; RX J0806.3+1527, P=5.3 min) with properties that suggest that their photometric periods are also their orbital periods, making them the most compact binary stars known. If true, this might indicate that close, detached, double white dwarfs are able to survive the onset of mass transfer caused by gravitational wave radiation and emerge as the semi-detached, hydrogen-deficient stars known as the AM CVn stars. The accreting white dwarfs in such systems are large compared to the orbital separations. This has two effects. First, it makes it likely that the mass-transfer stream can hit the accretor directly. Secondly, it causes a loss of angular momentum from the orbit which can destabilize the mass transfer unless the angular momentum lost to the accretor can be transferred back to the orbit. The effect of the destabilization is to reduce the number of systems which survive mass transfer by as much as one hundredfold. In this paper we analyse this destabilization and the stabilizing effect of a dissipative torque between the accretor and the binary orbit. We obtain analytical criteria for the stability of both disc-fed and direct impact accretion, and we carry out numerical integrations to assess the importance of secondary effects, the chief one being that otherwise stable systems can exceed the Eddington accretion rate. We show that to have any effect upon survival rates, the synchronizing torque must act on a time-scale of the order of 1000 yr or less. If synchronization torques are this strong, then they will play a significant role in the spin rates of white dwarfs in cataclysmic variable stars as well.

Item Type: Journal Article
Subjects: Q Science > QB Astronomy
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Publisher: Wiley
ISSN: 0035-8711
Official Date: 2004
Dates:
DateEvent
2004Published
Volume: Volume 350
Number: Number 1
Number of Pages: 16
Page Range: pp. 113-128
DOI: 10.1111/j.1365-2966.2004.07564.x
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us