An Investigation of Temperature Sensitive Electrical Parameters for SiC Power MOSFETs

Jose Ortiz Gonzalez, Student Member, IEEE, Olayiwola Alatise, Ji Hu, Li Ran Senior Member, IEEE, and Philip Mawby, Senior Member, IEEE

Abstract—This paper examines dynamic Temperature Sensitive Electrical Parameters (TSEPs) for SiC MOSFETs. It is shown that the output current switching rate (dIout/dt) coupled with the gate current plateau (Iop) during turn-ON would be the most effective under specific operating conditions. Both parameters increase with the junction temperature of the device as a result of the negative temperature coefficient of the threshold voltage. The temperature dependency of dIout/dt has been shown to increase with the device current rating (due to larger input capacitance) and external gate resistance (Rext). However, as dIout/dt is increased by using a small Rext, parasitic inductance suppresses the temperature sensitivity of the drain and gate current transients by reducing the “effective gate voltage” on the device. Since the temperature sensitivity of dIout/dt is at the highest with maximum Rext, there is a penalty from higher switching losses when this method is used in real time for junction temperature sensing. This paper investigates and models the temperature dependency of the gate and drain current transients as well as the compromise between the increased switching loss and the potential to implement effective condition monitoring using the evaluated TSEPs.

Index Terms— Power Semiconductor Devices, Power MOSFETs, Switching Transients, Temperature Measurement

I. INTRODUCTION

Condition monitoring of power electronic devices involves ascertaining the state of health of the devices during field operation. This can be used, through lifetime estimation and operational management, for prolonging the service of the converter and minimizing the damage. The junction temperature of the power device is often used as an indicator of device condition [1]. Devices that have been subjected to numerous power and temperature cycles typically exhibit higher junction-to-case thermal resistances resulting from solder cracks, die attach voiding and may also exhibit higher source and gate contact resistance [2]. This is due to the constant thermo-mechanical stresses resulting from the mismatch in the coefficients of thermal expansion at critical interfaces like the semiconductor/die-attach/substrate interfaces or the wirebond/source metal interface. The most effective and direct way of sensing the condition of the device is to integrate temperature and current sensors directly with the chip. This is usually done for industrial organizations using custom made power devices fabricated specifically for targeted applications, hence, such design solutions are usually not available for generic power devices. Another effective method of condition monitoring is using TSEPs to estimate the junction temperature indirectly through the known temperature dependence of an electrical parameter. Using TSEPs the temperature can be estimated during on-line and off-line operation. This is a wide area of research, with several TSEPs proposed and evaluated [3]. In [4-7], the threshold voltage is proposed as a TSEP using the known negative temperature coefficient of the threshold voltage to estimate the junction temperature during device switching. However, the time resolution required by the measurement instruments coupled with the background noise makes this a difficult technique to implement especially since 2 sensors are needed. Other reports have cited the IGBT on-state voltage drop as a TSEP at both low and high currents [8-10] and results have shown that it can be an effective way for monitoring the degradation of the power module [11]. In [12] the discharge time of the Miller capacitance is used as a TSEP and a circuit capable of detecting its temperature dependency is presented. However, using the Miller capacitance discharge time in SiC is complicated by the fact that SiC devices typically have significantly smaller parasitic capacitance than silicon IGBTs/MOSFETs because of the smaller die size. Furthermore, this technique is difficult to implement in SiC MOSFETs since the turn-OFF dV/dt is not as temperature sensitive as it is in silicon IGBTs [13]. The fast switching rate in SiC MOSFETs coupled with parasitic inductances induces electromagnetic oscillations in the voltage and current characteristics [14]. Furthermore, oscillations in the drain-source voltage resulting from source inductance are transmitted back to the gate voltage characteristics through the Miller capacitance [15], hence, monitoring the gate transient as a TSEP is complicated. In [16], harmonic analysis of an IGBT converter output is used as a TSEP whereas in [17, 18] the temperature dependency of the gate current in MOSFETs and IGBTs has been used as a TSEP for condition monitoring with promising results demonstrated. In the case of Si
MOSFETs, the switching rate during turn ON was evaluated as a TSEP in [19], and the characteristics of SiC MOSFETs [20-22] suggest that the dynamic properties of SiC during turn ON can be a suitable TSEP.

SiC MOSFETs have demonstrated higher energy conversion efficiency and power density through reduced conduction and switching losses based on the material properties of silicon carbide [23]. SiC devices are gaining popularity and if their potential is to be maximized, the question of condition monitoring will become an important topic. Due to the wide bandgap in SiC (~3.3 eV), the intrinsic carrier concentration is lower and more thermal energy is needed to excite carriers across the bandgap. As a result, SiC devices allow operation at high temperature exceeding 200°C. This fact makes condition monitoring of SiC MOSFETs using TSEPs a challenging task. The temperature dependency of the on-state resistance in SiC is not linear [24] and is low. Fig. 1(a) shows the measured ON-state resistances of different MOSFET technologies at different temperatures including two 1.2 kV SiC MOSFETs (from Cree/Wolfspeed with datasheet reference CMF10120D and C2M0160120D), a 1.2 kV silicon MOSFET (from IXYS with datasheet reference IXFX20N120P) and a 900 V CoolMOS device (from Infineon with datasheet reference IPW90R340C3). It can be seen that the SiC MOSFETs show the lowest temperature sensitivity as far as the ON-state resistance is concerned, with the Cree/Wolfspeed second generation device showing higher temperature sensitivity than the first generation. Fig. 1(b) shows the reverse recovery characteristics of a silicon PiN diode during turn-OFF at different temperatures where it can be seen that the reverse recovery charge increases with temperature [25]. This is due to the positive temperature coefficient of minority carrier lifetime which has the effect to increase the stored charge in the diode drift region. Fig. 1(c) shows the turn-OFF transient of the SiC Schottky diode at different temperatures where it can be seen that there is no noticeable temperature sensitivity in the switching transients. Fig. 1(d) presents the gate voltage (V_{GE}) turn-OFF transient of a 1.2 kV Si IGBT, where the temperature sensitivity of the discharge of the Miller capacitance can be easily observed, especially when a large gate resistance is used. The temperature sensitivity of the IGBT V_{GE} turn-OFF transient results from the bipolar nature of the device since minority carrier lifetime increases with temperature and the rate of the V_{CE} transient depends on the lifetime. In the case of silicon carbide MOSFETs, Fig. 1(e), the significantly faster V_{DS} transient resulting from a much lower Miller capacitance results in a non-flat Miller plateau [20] and the unipolar nature of the device means there is less temperature sensitivity since there are no minority carriers.

Furthermore, the switching energy in SiC actually reduces as the temperature increases, thereby causing the device to dissipate less power during operation [21]. Hence, using the losses as a TSEP is therefore not straightforward in SiC MOSFETs. In this paper it is shown that the temperature dependency of the current commutation rate (dI_{DS}/dt) and the gate current plateau I_{GP} can be the effective TSEPs. However, this becomes more challenging at high current commutation rates because parasitic inductances affect the temperature sensitivity of the gate and drain current transients. This paper will show that the temperature dependency of the dI_{DS}/dt and the gate current depends on the current rating (the die size) of the device as well as the external gate resistance. This dependency is based on the device capacitances and internal
gate resistances which affect the dI_{DS}/dt and its temperature sensitivity through parasitic inductance. Section II analyses the gate/drain current and its temperature dependency through analytical modelling and experimental measurements. Section II also discusses and models the impact of parasitic inductance on the temperature sensitivity of the I_{DS} turn ON transient. Section III discusses the load current and DC link voltage dependency of dI_{DS}/dt and I_{GP} and shows how it can be decoupled from its temperature sensitivity while Section IV concludes the paper.

II. ANALYTICAL MODELLING OF THE GATE AND DRAIN CURRENT TEMPERATURE SENSITIVITY

The double pulse test set-up shown in Fig. 2 has been used for characterizing the turn-ON transient of SiC power MOSFETs at different temperatures, using a small temperature controlled heater attached to the discrete device. A 2 mH inductor L, a 470 μF DC link capacitor C_D and a 1.2 kV SiC Schottky diode with datasheet reference C4D10120A from Cree/Wolfspeed are the other elements of the test configuration. The electrical schematic and the test rig are shown in Fig. 2(a) and Fig. 2(b) respectively. The measurements were performed at a DC link voltage $V_D=200$ V, load current $I_{DS}=9$ A, gate driver voltage $V_{GG}=0/18$ V and a range of external gate resistances from $R_{GEXT}=10$ Ω to 220 Ω. A Tektronix current probe model TCP312 in conjunction with a Tektronix probe amplifier model TCPA300 were used for measuring the current. The current rating of the probe is 30 A DC, with a bandwidth of 100 MHz and a rise time of 3.5 ns.

The oscilloscope used for capturing the data was a Lecroy WaveSurfer 104MXs-B, with a bandwidth of 1 GHz and a rise time of 300 ps.

It is a general observation that the current commutation rate (dI_{DS}/dt) increases with temperature during the turn-ON transient of SiC power MOSFETs [20, 21] however what has not been adequately investigated is the impact of temperature on the gate current plateau and how this, together with the turn-ON dI_{DS}/dt can be used as a TSEP for junction temperature sensing in SiC power MOSFETs. The turn-ON of a MOSFET is described in [26-28]. The idealized plots of the gate current (I_G), the drain-source current (I_{DS}) and the gate-source voltage (V_{GG}) transients for a SiC MOSFET during turn-ON at a low (25°C) and high (150 °C) junction temperatures are shown in Fig. 3(a). Fig. 3(b) shows experimental measurements for a 1.2 kV/42 A SiC MOSFET from Cree/Wolfspeed with datasheet reference CMF20120D. As can be seen from the measurements, the turn-ON dI_{DS}/dt increases with temperature, the gate-current plateau (I_{GP}) increases with temperature and the gate voltage plateau (V_{GP}) reduces with increasing temperature. During the turn-ON transient of the SiC MOSFET, the total gate current supplied by the gate driver is given by the time dependent combination of 3 stages described by (1), where I_D is the total gate current, C_{GS} is the gate source capacitance, $C_{GD,HV}$ is the Miller capacitance at high drain voltage, $C_{GD,LY}$ is the Miller capacitance at low drain voltage, V_{GD} is the gate drive voltage, R_{G}^{EXT} is the external gate resistance, R_{G}^{INT} is the internal gate resistance and V_{GP} is the plateau voltage.

$$I_G = \begin{cases} \frac{C_{GS}}{(C_{GS} + C_{GD,LY})} V_{GD} & \text{for } t_1 < t < t_4 \\ \frac{V_{GD} - V_{GP}}{R_{G}^{EXT} + R_{G}^{INT}} & \text{for } t_1 < t < t_2 \\ \frac{C_{GS}}{(C_{GS} + C_{GD,LY})} \left(\frac{V_{GD} - V_{GP}}{R_{G}^{EXT} + R_{G}^{INT}} \right) e^{\frac{t - t_2}{R_{G}^{EXT} + R_{G}^{INT} \cdot C_{GD,LY}}} & \text{for } t_2 < t < t_5 \end{cases}$$

Fig. 2. (a) Electrical schematic of the experimental setup, (b) Experimental setup.
Assuming that the MOSFET gate is triggered at time t_0 according to Fig. 3(a), between time t_0 and t_1, the gate current charges the input capacitance C_{ISS} which is given by the sum of the gate-source capacitance (C_{GS}) and the Miller capacitance (C_{GD}).

$$C_{ISS} = C_{GS} + C_{GD}$$

Equation (2) models t_{TH}.

$$t_{TH} - t_0 = (R_{G}^{INT} + R_{G}^{EXT})C_{GS} \ln \left(\frac{V_{GS}}{V_{GS} - V_{TH}} \right)$$

As I_{DS} reaches the load current, V_{GS} reaches its plateau value (V_{GP}) and the gate current reaches its plateau value (I_{GP}). The gate voltage plateau (V_{GP}) is given by (4).

$$V_{GP} = V_{TH} + \frac{I_{LOAD}}{\mu C_{GS} W_{CH}}$$

where μ is the effective mobility, W_{CH} the MOSFET channel width, C_{OX} the gate oxide capacitance density and L_{CH} the MOSFET channel length. The 2 temperature sensitive parameters that determine the value of V_{GP} in (4) are the threshold voltage (V_{TH}) and the effective mobility of the electrons in the channel of the MOSFET (μ). V_{TH} reduces with temperature as a result of temperature induced bandgap narrowing, which increases the intrinsic carrier concentration of the semiconductor thereby making the channel easier to invert [26]. The temperature dependency of V_{TH} is given by (5).

$$\frac{dV_{TH}}{dT} = \frac{dV_{TH}}{dT} \left(2 + \frac{1}{\mu_{OX} \psi_{B}} \frac{e_{OX} q V_{A}}{\psi_{B}} \right)$$

where...
Between time t_1 and t_2, the Miller capacitance is charged and the V_{DS} transient occurs. At the end of t_2, the V_{DS} transient is complete and the V_{GS} resumes its exponential rise to V_{GG} but with a larger time constant since the Miller capacitance has increased due to its dependency on the V_{DS}. Between time t_0 and t_1, corresponding to the idealized switching transients shown in Fig. 3(a), the gate voltage (V_{GS}) and its time derivative is given respectively by (7) and (8).

$$
V_{GS} = V_{GG} \left(1 - e^{-(R_{G}^{INT} + R_{G}^{EXT})/V_{GS}} \right)
$$

$$
\frac{dV_{GS}}{dt} = \frac{V_{GG}}{(R_{G}^{INT} + R_{G}^{EXT})C_{ISS}} e^{-(R_{G}^{INT} + R_{G}^{EXT})/V_{GS}}
$$

When the gate voltage reaches the threshold voltage V_{TH}, the current starts to flow. Between time instants t_1 and t_2, assuming the MOSFET drain current is in saturation, the drain-source current (I_{DS}) and its time derivative is given by (9) and (10) respectively.

$$
I_{DS} = \frac{\beta}{2} (V_{GS} - V_{TH})^2
$$

$$
\frac{dI_{DS}}{dt} = \beta (V_{GS} - V_{TH}) \frac{V_{GG}}{(R_{G}^{INT} + R_{G}^{EXT})C_{ISS}} e^{-(R_{G}^{INT} + R_{G}^{EXT})/V_{GS}}
$$

The temperature dependency of the current commutation rate (dI_{DS}/dt) during turn-ON can be calculated by taking the derivative of (10) with respect to temperature and is given by (11).

$$
\frac{d^2I_{DS}}{dt \cdot dT} = \frac{V_{GG}}{(R_{G}^{INT} + R_{G}^{EXT})C_{ISS}} \left(\beta \frac{dV_{GS}}{dT} - (V_{GS} - V_{TH}) \frac{d\beta}{dT} \right)
$$

Fig. 4(a) shows the V_{GS} turn-ON transient for a 1.2 kV/20 A Si MOSFET while Fig. 4(b) shows the same measurements for a 1.2 kV/24 A SiC MOSFET. These measurements where performed with a low $R_{G}^{EXT}=220 \Omega$. In this figure, some of the characteristics that define the Si MOSFETs have a similar V_{TS} and (iii) a significantly reduced V_{DS} transient duration in the SiC MOSFETs as a result of the lower input capacitance compared to the silicon MOSFET. It should however be noted that at high dI_{DS}/dt, the presence of parasitic inductance in the path of I_{DS} masks the changing behavior of V_{GP} with temperature since the oscillations in I_{DS}, V_{GS} and V_{DS} dominate the measured transient characteristics.
Given the temperature characteristics of different power MOSFETs, (11) can be used to identify the temperature sensitivity of the switching rate as a potential TSEP for condition monitoring. The switching rate of different MOSFET technologies has been measured and shown as a function of the external gate resistance \(R_{G}^{\text{EXT}} \) in Fig. 5 for 25 °C and 150 °C measurements. By comparing the switching rate measured at both temperatures, it can be seen that the switching rate of the silicon MOSFET is temperature invariant while that of the SiC MOSFETs increases with temperature for larger \(R_{G}^{\text{EXT}} \). The 3 factors affecting \(dI_{DS}/dT \) and its temperature sensitivity, namely device technology, current rating and external gate resistance, are evaluated in the following subsections.

A. Impact of Device Technology on \(dI_{DS}/dT \) as a TSEP

Equation (11) applies to all MOSFET technologies, however, the behavior of \(dI_{DS}/dT \) with respect to temperature differs according to the device technology, as the measurements on Fig. 5 show. Measurements from literature and datasheets show that for SiC MOSFETs, the turn-ON \(dI_{DS}/dT \) increases with temperature [21, 29, 31], while for silicon MOSFET devices [32], the turn-ON \(dI_{DS}/dT \) is either temperature invariant or decreases with temperature. The reason for this is due to \(d\beta/dT \), which is very low in SiC MOSFETs but is negative in silicon MOSFETs. \(\beta \) is dependent on temperature through the effective channel mobility which decreases as temperature increases but can be considered constant for SiC MOSFETs due to its wide bandgap characteristics [33].

Fig. 6(a) and Fig. 6(b) show the turn-ON drain-source \((I_{DS}) \) and gate \((I_{G}) \) current transients for a 1.2 kV/24 A SiC MOSFET. The measurements were done using an external gate resistance \(R_{G}^{\text{EXT}} \) of 220 \(\Omega \) and it can be seen that the turn-ON \(dI_{DS}/dT \) and the gate current plateau both increase with temperature. In the case of silicon and silicon carbide MOSFETs, the drain current transient shifts leftwards in time as the temperature is increased due to the negative temperature coefficient of the threshold voltage causing the device to switch sooner at higher temperatures. In the case of silicon MOSFETs, the \(dI_{DS}/dT \) does not increase with temperature so the current transients are approximately parallel, since the \(d\beta/dT \) counteracts \(dV_{TH}/dT \) [32], thereby making \(dI_{DS}/dT \) less temperature sensitive. However, in SiC MOSFETs, \(d\beta/dT \) can be neglected over the temperature range selected [33], hence \(dI_{DS}/dT \) increases with temperature due to \(dV_{TH}/dT \).

B. Impact Impact of Device Current Rating on \(dI_{DS}/dT \) as a TSEP

The turn-ON current commutation rate of the SiC MOSFET has been identified as a potential TSEP. However, the temperature sensitivity of \(dI_{DS}/dT \) in SiC power MOSFETs needs to be investigated as a function of the device current rating. Fig. 7(a) shows the drain-source and gate current transient during turn-ON for a 1.2 kV/42 A SiC MOSFET while Fig. 7(b) shows similar measurements for the 1.2 kV/10 A SiC MOSFET. In both measurements the external gate resistance used is 220 \(\Omega \). It can be seen by comparing Fig. 7(a) and Fig. 7(b), that the temperature sensitivity of \(dI_{DS}/dT \) is smaller for the 10 A SiC power MOSFET compared to the 42 A SiC MOSFET. The temperature sensitivity of the gate current plateau \((I_{GP}) \) is also higher for the 42 A MOSFET. Due to the fact that the 10 A die is physically smaller compared to the 42 A die, it has a smaller switching time constant which can be expressed as the product of the total input resistance and the total input capacitance i.e. \((R_{G}^{\text{EXT}}+R_{G}^{\text{INT}})C_{ISS} \). According to the datasheets, the 10 A SiC MOSFET has an input capacitance of 0.259 nF while the 42 A device has an input capacitance of 1.915 nF. The result is significantly higher \(dI_{DS}/dT \) in the 10 A MOSFET as can be seen in Fig. 5 where significantly higher \(dI_{DS}/dT \) is measured in the 10 A SiC MOSFET compared to the 42 A SiC MOSFET. It can also be seen from Fig. 5 that at low external \(R_{G}^{\text{EXT}} \), the temperature sensitivity of \(dI_{DS}/dT \) reduces for both SiC MOSFETs. A large external gate resistance of 220 \(\Omega \) was used in these
measurements, partially to limit the impact of the internal gate resistance (which is 5 Ω for the 42 A SiC MOSFET and 11.4 Ω for the 10 A device) and to improve the time resolution of the gate current plateau. However, in practical applications where there is a need to minimize switching losses and expedite the fast switching potential of SiC MOSFETs, a smaller gate resistance is preferable. As will be shown later, this increases the impact of the parasitic inductance which affects the effectiveness of $\frac{dI}{dt}$ as a TSEP in SiC MOSFETs.

C. Impact of the External R_G on dI_{DS}/dt as a TSEP

In this subsection, the effectiveness of the turn-ON dI_{DS}/dt as a TSEP in SiC MOSFETs is investigated over a range of external gate resistance for devices of 3 different current ratings. The dI/dt was calculated as the slope of the linear regression of the drain current for the 3 SiC MOSFETs (10 A, 24 A and 42 A) and the results are presented in Table I. In this table, the switching time constant, which is given by $(R_G^{EXT}+R_G^{INT})C_{ISS}$ is used to compare the switching rates of the different devices. Fig. 8(a) and 8(b) are the graphical representation of the plots presented in table I. Fig. 8(a) shows the switching rate as a function of the RC constant for the 3 SiC MOSFETs (10 A, 24 A and 42 A) evaluated at a temperature of 25 °C. It can be observed that the 3 devices have similar maximum switching rates for the smaller RC constants, but in the case of the 10 A SiC MOSFET, the dI_{DS}/dt is limited by the impact of the inductance on the load path. Fig. 8(a) shows the MOSFETs with a higher transconductance will exhibit a higher switching rate compared to a lower one even if they are switched with the same RC time constant. Hence, in Fig. 8(a), the 42 A MOSFET switches with the highest switching rate because transconductance increases with the current rating. Fig. 8(b) shows the measured dI_{DS}/dt as a function of the RC constant for the 42 A SiC MOSFET at 25 °C and 150 °C, where the reduced temperature sensitivity at lower RC constants, i.e. lower R_G^{EXT}, can be seen. Figs. 9(a), 9(b) and 9(c) show the normalized dI_{DS}/dt as a function of temperature for different external gate resistances (R_G^{EXT}) in the 10 A, 24 A and the 42 A SiC MOSFETs respectively. The results here generally show that the temperature sensitivity of dI/dt decreases with the external gate resistance as well as with the current rating i.e. to use dI_{DS}/dt as a TSEP, the SiC MOSFET must be driven

<table>
<thead>
<tr>
<th>Device</th>
<th>10 A SiC MOSFET (C2M0280120D)</th>
<th>24 A SiC MOSFET (CMF10120D)</th>
<th>42 A SiC MOSFET (CMF20120D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(R_G^{EXT}+R_G^{INT})C_{ISS}$ (ns)</td>
<td>5.5 15.1 28.9 59.9</td>
<td>21.9 56.2 105.4 216.8</td>
<td>28.7 99.6 201.1 430.9</td>
</tr>
<tr>
<td>dI_{DS}/dt, $T = 25$ °C (A/μs)</td>
<td>235.8 218.3 167.3 106.6</td>
<td>223.9 138.9 90.1 51.1</td>
<td>215.5 132.0 80.0 42.1</td>
</tr>
<tr>
<td>dI_{DS}/dt, $T = 75$ °C (A/μs)</td>
<td>234.0 222.1 173.8 112.1</td>
<td>228.8 153.7 101.3 57.6</td>
<td>219.7 145.1 88.9 47.0</td>
</tr>
<tr>
<td>dI_{DS}/dt, $T = 105$ °C (A/μs)</td>
<td>231.6 227.2 179.5 116.6</td>
<td>229.9 161.2 106.3 60.7</td>
<td>224.0 151.6 92.5 49.7</td>
</tr>
<tr>
<td>dI_{DS}/dt, $T = 150$ °C (A/μs)</td>
<td>229.9 222.3 184.1 116.9</td>
<td>231.2 168.0 112.9 64.6</td>
<td>225.4 158.4 98.4 52.4</td>
</tr>
</tbody>
</table>
IEEE TRANSACTIONS ON POWER ELECTRONICS

with a large external gate resistance and the technique is most effective when the device current rating is high.

To understand the reduction of temperature sensitivity of \(\frac{di_{DS}}{dt} \) at small \(R_{GEXT} \) and at smaller current ratings, it is important to re-derive the equations of \(\frac{di_{DS}}{dt} \) and its temperature sensitivity with the added effect of the parasitic source inductance (\(L_s \)) [34, 35]. Equations (12) and (13) model the turn-ON \(I_{DS} \) for the MOSFET and its time derivative respectively. However, the presence of the source inductance means that the source voltage can no longer be assumed to be zero but instead is given as the product of the source inductance and the \(\frac{di_{DS}}{dt} \).

\[
I_{DS} = \frac{\beta}{2} (V_G - V_S - V_{TH})^2 \quad \text{where} \quad V_S = L_s \frac{di_{DS}}{dt} \tag{12}
\]

\[
\frac{di_{DS}}{dt} = \beta \left(V_G - L_s \frac{di_{DS}}{dt} - V_{TH} \right) \left(\frac{dV_G}{dt} - L_s \frac{d^2 I_{DS}}{dt^2} \right) \tag{13}
\]

Equation (13) is a 2nd order ODE that can be simplified by assuming a constant \(di_{DS}/dt \) whose derivative (\(d^2 i_{DS}/dt^2 \)) is therefore zero. This assumption does not reduce the accuracy of the proposed model as will be seen later. Hence, the turn-ON \(di_{DS}/dt \) can be expressed using (14).

\[
\frac{di_{DS}}{dt} = \frac{\beta (V_G - V_{TH}) \left(\frac{dV_G}{dt} \right)}{1 + \beta L_s \frac{dV_G}{dt}} \tag{14}
\]

When (14) is combined with (8), the resultant equation is given by (15)

\[
\frac{di_{DS}}{dt} = \frac{\beta (V_G - V_{TH}) \left(\frac{V_{GG}}{(R_G + R_{EXT}) (C_{ISS}) e^{\frac{-1}{R_G + R_{EXT} \times C_{ISS}}} \right)}{1 + \beta L_s \frac{dV_G}{dt} \left(\frac{V_{GG}}{(R_G + R_{EXT}) (C_{ISS}) e^{\frac{-1}{R_G + R_{EXT} \times C_{ISS}}} \right)} \tag{15}
\]

Figs. 10(a) and 10(b) show the gate current measurements for the 42 A SiC MOSFET using a \(R_{GEXT} = 10 \) \(\Omega \) and a \(R_{GEXT} = 220 \) \(\Omega \) respectively. It can be seen from Fig. 10, that the temperature dependency of the gate current plateau is higher for the large external gate resistance and the impact of the oscillations has also been minimized.

Equation (15) is useful for understanding how the current commutation rate is determined by the external gate resistance and temperature in the presence of parasitic inductance in the source-drain current path. It is well understood that reducing the \(R_{GEXT} \) increases \(di_{DS}/dt \), however, the rate at which this occurs also depends on the parasitic capacitances, the internal gate resistance, the parasitic inductance and temperature.
Using (15), $\frac{dI_{DS}}{dt}$ has been calculated for the 1.2kV/42 A SiC MOSFETs for different external gate resistances, temperatures and parasitic inductances. The $\frac{dI_{DS}}{dt}$ has been calculated for a load current I_{DS} of 9 A and assuming a constant mobility for the SiC MOSFET as has been discussed in Subsection II-a. Datasheet parameters were used in (15) and these include C_{GS} being 1.915 nF, V_{GG} being 18 V, internal gate resistance R_{GINT} being 5 Ω and the threshold voltage being 3.2 V at 25 °C and 2.3 V at 150 °C. Fig. 11(a) shows the results of the model for different R_{GEXT} and parasitic inductance together with experimental measurements at 25 °C while Fig. 11(b) shows similar modeling and measurement results at 150 °C. It can be seen that the model and measurements agree at large R_{GEXT}, however, as R_{GEXT} is reduced and $\frac{dI_{DS}}{dt}$ is increased, the model matches the measurements when parasitic inductance is accounted for. The model shows that the parasitic inductance is within the range of 15 to 20 nH. By comparing the modelled and measured $\frac{dI_{DS}}{dt}$ at the different temperatures for the different R_{GEXT}, it was observed that the positive temperature coefficient of $\frac{dI_{DS}}{dt}$ reduced with decreasing R_{GEXT} as a result of the parasitic inductance. And this effect was more apparent at high $\frac{dI_{DS}}{dt}$ which explains why the 10 A SiC MOSFET (with significantly reduced input capacitance) exhibited a $\frac{dI_{DS}}{dt}$ that was temperature insensitive at low R_{GEXT}. Hence, this shows that the parasitic inductance reduces the temperature sensitivity of $\frac{dI_{DS}}{dt}$. It is important to mention that the impact of the parasitic inductance L_S not only limits the temperature sensitivity of $\frac{dI_{DS}}{dt}$ as shown in this paper, but it can also be used as a temperature sensor if there is an additional terminal connected to the internal source of the power module so that the voltage drop across the parasitic inductance can be sensed. This method of using internal terminals across the stray inductance has been proposed for identifying the turn-off delay in IGBTs [36]. Equation (12) suggests that the voltage across the stray inductance can be used for identifying $\frac{dI_{DS}}{dt}$ and junction temperatures in SiC MOSFETs.

RESULTS FOR CONDITION MONITORING IMPLEMENTATION

If the switching rate is to be used as a TSEP for condition monitoring in SiC power MOSFETs, then its relationship with other parameters like load current and DC link voltage must be calibrated. Any load current and/or voltage dependency of $\frac{dI_{DS}}{dt}$ should be decoupled from its temperature dependency so that it can be used for junction temperature sensing. The measurements and analysis presented in section II were performed using a DC link voltage of 200 V which is well below the 1200 V rated blocking voltage of the devices studied. Considering an application point of view, DC link voltages of 300 to 600 V are widely used in applications like automotive drivetrains [37], hence the evaluation of $\frac{dI_{DS}}{dt}$ and its temperature sensitivity at those voltage levels should be investigated. The dependency of the switching rate on the DC link voltage and temperature has been investigated by experimental measurements. The results are shown in Fig. 12(a) where the turn-ON current transient has been shown for different DC link voltages for the 42A SiC power MOSFET at a temperature of 25 °C switched with $R_{GEXT}=220$ Ω. The DC link voltage values (V_{DC}) are 75 V, 150 V, 300 V and 600 V.
Fig. 12(b) shows the measured dI_{DS}/dt characteristics as a function of the DC link voltage for two temperatures, namely 25 °C and 125 °C.

It can be seen from Fig. 12(a) that the turn-ON switching rate is increasing with the supply voltage. This is due to the fact that the input capacitance reduces with increasing DC supply voltage as a result of the voltage-dependent Miller capacitance. The Miller capacitance is comprised of a series combination of an oxide capacitance and a voltage dependent depletion capacitance that increases as the supply voltage reduces. Increasing the supply voltage increases the depletion width and hence reduces the Miller capacitance [26]. Hence, at low V_{DC}, the high Miller capacitance slows down the MOSFET. Since the DC link voltage is usually held constant in voltage source converter applications, the dependency of dI_{DS}/dt on V_{DC} is not critical in its use as a TSEP. In addition, by analyzing the switching rate as a function of the supply voltage for two temperatures presented in Fig. 12(b), it can be seen that the temperature sensitivity of the switching rate is constant for the different DC voltages evaluated. As the DC voltage is increased from 75 V to 600 V, dI_{DS}/dt increases with temperature by 20%. However, as the nominal switching rate is affected by the DC link voltage value, the use of dI_{DS}/dt as TSEP would require an initial calibration.

The impact of the load current on the switching transient is presented in Fig. 13. Fig. 13(a) shows the turn-ON drain-source current characteristics of the 42 A SiC power MOSFET switched with $R_G=220 \, \Omega$ for 3 different load currents namely 5, 13 and 21 A at 25 °C. Fig. 13(b) shows the corresponding gate current characteristics of the SiC MOSFET during turn-ON. These characteristics are repeated at 125 °C as can be seen in Figs. 14(a) and 14(b) where the turn-ON I_{DS} and I_G
transients are shown at a higher temperature. It can be seen from Fig. 13 and Fig. 14 that the instantaneous switching rate of I_{GS} is independent of the load current while the gate current plateau is inversely proportional to the load current. Since the gate current plateau occurs at the time instant that I_{DS} reaches the load current, then for the same switching rate, the gate current plateau will increase with decreasing load current. This is due to the fact that the transition point of the gate current from the C_{GS} + $C_{GD,INV}$ (high Miller capacitance) charging phase to the C_{GS} + $C_{D,INV}$ (low Miller capacitance) charging phase occurs after the load current has been reached.

In the case of the gate current plateau, if the load current is known, the junction temperature can be deduced from the plateau value, especially when a high R_{EXT} is used as shown by the results in Fig. 13(b) and Fig. 14(b). If the load current is changing, using the gate current plateau as a TSEP will require separating the effect of the load current change from the effect of the junction temperature. As can be seen in Fig. 13(b) and Fig. 14(b), it is possible to measure the same gate current plateau at 2 different junction temperatures and load currents. For example, a gate current plateau of 30 mA results from a load current of 21 A at 125 °C while the same gate current plateau also results from a load current of 13 A and a junction temperature of 25 °C.

The gate current plateau (I_{GP}) can be calculated from the gate current characteristics shown in Fig. 3(a) at the time instant when the gate current transits from the gate-source capacitance charging component to the Miller capacitance charging component and it can be expressed as

$$ I_{GP} = \frac{C_{GS}}{C_{GS} + C_{GD,INV}} \cdot \frac{V_{GS}}{(R_G^{INT} + R_G^{EXT})} \cdot e^{(R_{EXT} + R_{INV}) \cdot C_{GS} \cdot t_{l1-t0}} $$

where t_1 is the time when V_{GS} becomes equal to V_{GP}. The time t_{l1-t0} can be expressed as the sum of the current rise time and the time it takes for V_{GS} to reach V_{TH}.

$$ t_{l1-t0} = t_{rise} + (t_{TH} - t_0) = \frac{I}{(dI_{DS}/dt)} + (t_{TH} - t_0) $$

where the current rise time is given by the ratio of the current to the switching rate. Hence, I_{GP}, according to the equations above, will increase with decreasing load current and increase with junction temperature.

Using the switching rate as a TSEP requires the ability to measure high dI_{DS}/dt. Recent power modules include current sensors embedded, hence, the evaluation of these sensors for measuring temperatures in SiC power MOSFETs could be the next step. In addition, intelligent gate drivers with closed loop control and dI/dt feedback and control have been presented and evaluated for IGBTs. Here, the voltage across the parasitic inductance of the power module is used for measuring the switching rate [38, 39] thus requiring an auxiliary emitter connection. Recent advances in current sensors like Rogowski coils with high dI/dt detection [40] or magnetoresistive current sensors [41] suggest that the identification of the temperature by means of the switching rate can be feasible.

The ability to change the gate drive resistance during operation [42], by using an intelligent programmable gate driver [43, 44], could also enable this technique of junction temperature sensing without suffering the penalty of increased switching losses. The devices will be driven at high switching rates (using reduced gate drive resistances) and at the occasional instants when junction temperature sensing becomes necessary, a higher gate resistance is used momentarily for monitoring the temperature dependent switching parameters. Hence, the device switching rate will only be slowed down when junction temperature sensing is required, which will be occasional. Slowing down the switching transients for improving the sensitivity of a TSEP can have impact in the operation of a converter, if the temperature is to be estimated online. Slowing down the turn-OFF transient can improve the temperature sensitivity of the turn OFF delay of IGBTs and MOSFETs, as it was shown in Figs. 1(d) and 1(e), but it could affect the operation of the converter in the case that fixed dead times are implemented. In the case of slowing down the turn-ON for enabling the junction temperature measurement, if the turn-OFF of the transistor is done at the nominal switching rate, the use of fixed dead times would not be affected.

IV. CONCLUSION

The junction temperature of SiC power MOSFETs can be measured for on-line condition monitoring using the turn-ON current switching rate (dI_{DS}/dt) and the gate current transient. The turn-ON dI_{DS}/dt and the gate current plateau both linearly increase with temperature. Using device mathematical models, it has been demonstrated that the negative temperature coefficient of the threshold voltage and the temperature invariance of the channel mobility is the reason behind the positive temperature coefficient of dI_{DS}/dt in SiC MOSFETs. In silicon MOSFETs, the negative temperature coefficient of threshold voltage is balanced by the negative temperature coefficient of the channel mobility, hence, dI_{DS}/dt is temperature invariant. However, the temperature sensitivity of dI_{DS}/dt and I_{GP} is reduced by high speed switching due to the presence of parasitic inductance. The source parasitic inductance has the effect of slowing the device down and reducing the temperature sensitivity of the turn-ON dI_{DS}/dt. Dynamic models have been presented which correctly predict how the parasitic inductance limits the temperature sensitivity of dI_{DS}/dt. The switching rate increases with the DC link supply voltage and it will require an initial calibration to be used as a TSEP, however the temperature sensitivity is approximately the same for the DC link voltages evaluated. In the case of the gate current plateau, it depends on both temperature and load current, hence it needs decoupling. For both TSEPs, reducing the switching rate improves the temperature sensitivity. However to exploit the benefits of SiC power devices, fast switching is recommended for reducing the switching losses although this will be at the expense of effective junction temperature sensing using the TSEPs identified in this paper. Hence, either the device is slowed...
down at the expense of higher switching losses or intelligent gate drivers with the capability of variable gate drive impedance are used. These have been demonstrated in recent research, together with fast sensors for \(\frac{dI}{dt} \) control. In this case, the device would be slowed down occasionally to measure the junction temperature whenever the information is needed.

REFERENCES

IEEE TRANSACTIONS ON POWER ELECTRONICS

Jose Ortiz Gonzalez (S’15) received a degree in electrical engineering in 2009 from the University of Vigo, Vigo, Spain. From 2010 to 2012, he was a Support Technician in the Department of Electronics Engineering, University of Vigo. Since 2013, he has been with the School of Engineering, University of Warwick, Coventry, U.K., as an Electronic Power Research Assistant while working towards the Ph.D. degree in power electronics. His current research interests include condition monitoring, reliability, circuits and device evaluation.

Olaiyiwola A. Alatise received the BEng degree (first-class Hons.) in electronic engineering and the PhD degree in Microelectronics and Semiconductors from Newcastle University, U.K., in 2005 and 2008. In June 2008, he joined NXP where he designed, processed and qualified discrete power trench MOSFETs for automotive applications and switched-mode power supplies. In November 2010, he became a Science City Research Fellow at the University of Warwick, UK, where he has been serving as Associate Professor of Electrical Engineering since August 2012. His research interests include investigating advanced power semiconductor materials and devices for improved energy conversion efficiency.

Ji Hu received the B.Sc. degree in electronic and electrical engineering from Northumbria University, Newcastle upon Tyne, U.K., in 2011. He received the M.Sc. degree in energy and power electronics and the PhD degree in power electronics from the University of Warwick, U.K. in 2013 and 2016. His research interest is on the reliability and robustness of high voltage SiC power devices and finite element device simulations.

Li Ran (M’98–SM’07) received the Ph.D. degree in power systems engineering from Chongqing University, Chongqing, China, in 1989. He was a Research Associate with the Universities of Aberdeen, Nottingham, and Heriot-Watt, at Aberdeen, Nottingham, and Edinburgh in the U.K., respectively. He became a Lecturer in power electronics with Northumbria University, Newcastle upon Tyne, U.K., in 1999 and was seconded to Alstom Power Conversion, Kidsgrove, U.K., in 2001. Between 2003 and 2012, he was with Durham University, Durham, U.K. He joined the University of Warwick, Coventry, U.K., as a Professor in power electronics - systems in 2012. His research interests include the application of power electronics for electric power generation, delivery and utilization.

Philip A. Mawby (S’85–M’86–SM’01) received the B.Sc. and Ph.D. degrees in electronic and electrical engineering from the University of Leeds, Leeds, U.K., in 1983 and 1987, respectively. His Ph.D. degree was focused on GaAs/AlGaAs heterojunction bipolar transistors for high-power radio frequency applications at the GEC Hirst Research Centre, Wembley, U.K. In 2005, he joined the University of Warwick, Coventry, U.K., as the Chair of power electronics. He was also with the University of Wales, Swansea, U.K., for 19 years and held the Royal Academy of Engineering Chair for power electronics, where he established the Power Electronics Design Center. He has been internationally recognized in the area of power electronics and power device research. He was also involved in the development of device simulation algorithms, as well as optoelectronic and quantum-based device structures. He has authored or coauthored more than 100 journal and conference papers. His current research interests include materials for new power devices, modeling of power devices and circuits. Professor Mawby has been involved in many international conference committees, including the ISPSD, EPE, and the ESSDERC. He is a Chartered Engineer, a Fellow of the IET, and a Fellow of the Institute of Physics. He is a Distinguished Lecturer for the IEEE Electron Devices Society.