Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/86254

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) license and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Clinical paper

EuReCa ONE—27 Nations, ONE Europe, ONE Registry
A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

Jan-Thorsten Gräsner a, b, *, Rolf Lefering c, Rudolph W. Koster d, Siobhán Masterson e, Bernd W. Böttiger f, Johan Herlitz g, Jan Wnent a, b, Ingvild B.M. Tjelmeland h, Fernando Rosell Ortiz i, Holger Maurer j, Michael Baubin k, Pierre Mols l, Irzl Hadžibegović m, Marios Ioannides n, Roman Škulec o, Mads Wissenberg p, Ari Salo q, Hervé Hubert r, Nikolaos I. Nikolaou s, Gerda Lőczy i, Hildigunnur Svavarssdóttir u, Federico Semeraro v, Peter J. Wright w, Carlo Clarens x, Ruud Pijs y, Grzegorz Cebula z, Vitor Gouveia Correia aa, Diana Cimpoesu ab, Violetta Raffay ac, Stefan Trenkler ad, Andrej Markota ae, Anneli Strömösö af, Roman Burkart ag, Gavin D. Perkins ah, Leo L. Bossaert bh, on behalf of EuReCa ONE Collaborators bi

a University Hospital Schleswig-Holstein, Dep. Anaesthesiology and Intensive Care Medicine, Kiel, Germany
b University Hospital Schleswig-Holstein, Institute for Emergency Medicine, Kiel, Germany
c University Witten/Herdecke, Cologne, Germany
d Academic Medical Center, Amsterdam, The Netherlands
e National University of Ireland Galway, Ireland
f University Hospital of Cologne, Germany
g University of Borås, Sahlgrenska University Hospital, Sweden
h Norwegian National Advisory Unit on Prehospital Emergency Medicine (NAKOS), Oslo, Norway
i Empresa Pública de Emergencias Sanitarias, Almería, Spain
j University Hospital Schleswig-Holstein, Dep. Anaesthesiology and Intensive Care Medicine, Campus Lübeck, Germany
k University Hospital Innsbruck, Austria
l Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Belgium
m Medical Faculty Osijek, Josip Juraj Strossmayer University, Osijek, Croatia
n Nicosia General Hospital, Cyprus
o Emergency Medical Service of the Central Bohemian Region, Kladno, and J.F. Purkinje University, Masaryk Hospital Usti nad Labem, Czech Republic
p Emergency Medical Services Copenhagen, University of Copenhagen, Denmark
q Emergency Medical Services, Department of Emergency Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
r University of Lille, France
s Konstantopoulou General Hospital, Athens, Greece
t Health Care Centers of Konsgynd County Hódmezovásárhely - Makó, Hungary
u Akureyri Hospital/University of Akureyri, Iceland
v Ospedale Maggiore “Carlo Alberto Pizzardi” AUSL Bologna, Italy
w Health Service Executive Ballyshannon, Ireland
x Luxembourg Resuscitation Council, Luxembourg
y Maastricht University, The Netherlands
z Jagiellonian University, Kraków, Poland
aa Serviço de Emergência Médica Regional – SEMER/EMIR, Portugal
ab University of Medicine and Pharmacy Gr.T. Popa and University County Hospital Sf. Spiridon, Iași, Romania
ac Municipal Institute for Emergency Medicine Novi Sad, Serbia
ad P.J. Safarik University, Košice, Slovakia
ae University Medical Centre Maribor, Maribor, Slovenia
af Mälardalens University, Västerås, Sweden
ag Fondazione Ticino Cuore, Breganzona, Switzerland
ah University of Warwick and Heart of England NHS Foundation Trust, Coventry, United Kingdom
ai University of Antwerp, Department of Medicine and Health Sciences, Antwerp, Belgium

* A Spanish translated version of the summary of this article appears as Appendix in the final online version at http://dx.doi.org/10.1016/j.resuscitation.2016.06.004.
* Corresponding author at: University Hospital Schleswig-Holstein, Institute for Emergency Medicine, Germany.
E-mail address: jan-thorsten.graesner@uksh.de (J.-T. Gräsner).
1 Names listed at the end of the manuscript.

http://dx.doi.org/10.1016/j.resuscitation.2016.06.004
0300-9572/© 2016 The Author(s). Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ARTICLE INFO
Article history:
Received 19 May 2016
Received in revised form 31 May 2016
Accepted 8 June 2016

Keywords:
Cardiac arrest
Resuscitation
Epidemiology
Resuscitation registry
Emergency medicine, Europe

ABSTRACT

Introduction: The aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.

Methods: This was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.

Results: Data on 10,682 confirmed OHCA’s from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%). Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.

Conclusion: The results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.

EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events.

© 2016 The Author(s). Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Out-of-hospital cardiac arrest (OHCA) is a major health problem in Europe and in the United States. The numbers of patients who have OHCA annually in these two parts of the world have traditionally been reported to be 275,000 and 420,000 respectively. This corresponds with an incidence rate of approximately 38.0–55.0 all-rhythm OHCA’s per 100,000 person-years with resuscitation attempted by Emergency Medical Services (EMS).

The best way to describe the epidemiology of a disease is to create a registry to which the disease is reported. With regard to OHCA, such registries can involve an EMS service, a region, or a whole country. A registry can describe changes over time in incidence, survival, and various modes of treatment. An important modifiable factor to measure in OHCA is bystander cardiopulmonary resuscitation (CPR) which reflects the community involvement in treatment of this emergency condition. In terms of OHCA, a number of registries have been built up outside Europe. Of particular note are the Cardiac Arrest Registry to Enhance Survival (CARES), the Resuscitation Outcomes Consortium Epistry (ROC) in North America, the All-Japan Utstein Registry, and the Pan-Asian Resuscitation Outcomes Registry (PAROS).

During the last decades a number of registries for OHCA have been implemented in Europe. These registries cover varied parts of the participating countries. The greater part of Europe however is not included in a registry with the aim of continuous reporting of OHCA. A registry covering larger areas of Europe should create the opportunity to build an overall picture of the epidemiology of OHCA in these areas.

The lack of a pan-European registry means there is still a gap in actual knowledge regarding the current incidence of OHCA and furthermore, the survival after OHCA. The aim of this project of the European Registry of Cardiac Arrest (EuReCa ONE) was to determine the incidence, process, and outcome for OHCA in a large number of countries in Europe. Major outcomes that were addressed in this prospective analysis were return of spontaneous circulation (ROSC), admission to hospital, and/or 30-day survival.

Methods

EuReCa ONE was an international, prospective, multi-centre one-month study, designed as initial first step to establish a European Registry of Cardiac Arrest (EuReCa). Patients who had an OHCA during October 2014 which occurred in any participating region and who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Patients were eligible for inclusion regardless of performance or non-performance of a resuscitation attempt, arrest aetiology, initial arrest rhythm, age, or gender. The study dataset was developed by the Steering Committee (SC) in accordance with Utstein definitions. A revised Utstein dataset was introduced close to the time of study inception, which included a new category of aetiology i.e. ‘medical’. As well as ‘presumed cardiac’, the ‘medical’ category includes all other medical causes in which there is no obvious cause of cardiac arrest. In order to facilitate data collection from existing systems, data on aetiology was collected for both the ‘presumed cardiac’ and ‘medical’ categories. The EuReCa ONE study is registered with ClinicalTrials.gov (NCT02236819). The study protocol has been published previously and describes all questions to be addressed in the EuReCa ONE Study (see Supplement S1).

Countries were recruited to participate in EuReCa ONE through an open invitation meeting during the European Resuscitation Council (ERC) Congress in 2013. The recruitment process resulted in 27 countries committing to participate in EuReCa ONE. Each participating country was requested to identify one National Coordinator (NC). All NCs signed a Memorandum of Understanding agreeing that they were responsible for obtaining ethical approval/waiver for participation in EuReCa ONE, coordinating national data collection, assuring data quality, and for submitting de-identified data for analysis. National Coordinators were supplied with electronic copies of the dataset, coding, and definitions and given a contact for the Study Management Team (SMT) so that any specific queries could be dealt with by the SMT or escalated to the SC as required. Each SMT member acted as a liaison person for a group of countries and kept in contact with NCs in case of issues arising.

Data were extracted from national, regional or local OHCA registries and databases, or by use of a paper version of the EuReCa ONE datasheet for data collection. Data were obtained from: existing registries with national coverage (five countries); existing registries with partial country coverage (eight countries); registries provided by the local Resuscitation Council (three countries); patient ambulance records (three countries). Eight countries used paper-based data collection and reported cases directly to the NC. Data elements were de-identified and data was transcribed by each NC onto a EuReCa ONE Data Export Template and submitted via password-encrypted secure electronic transfer to the specialty designed EuReCa website. Prior to transcription, NCs were expected to assure the quality of the data being sent in terms of comprehensiveness and adherence to data definitions and coding.
After exploratory analysis on submitted data and clarification of outstanding issues in relation to data quality were addressed with NCs, the final data submission was completed in August 2015.

Statistical analysis

Incidence rates for one month were extrapolated to incidence rates per 100,000 population per year. In countries with partial coverage the covered population was calculated by adding regional populations. Descriptive analyses of patient demographics, case characteristics, and treatment and outcome variables were performed for the whole group as well as for each participating country in order to investigate the degree of variability between countries and regions. Survival was derived from status at 30 days, and replaced by hospital discharge status in case of missing 30 days status. Statistical analysis is based on cases where CPR was started by a bystander or by the EMS.

In order to limit statistical uncertainty, for some analyses only countries with ten or more cases were included. For selected categorical variables, e.g. ROSC or survival, 95% confidence intervals (CI 95) were calculated based on the Poisson distribution.

Role of the funding source

The study was funded by the European Resuscitation Council (ERC) and by the individual registries within participating countries. Co-funding was provided by the German Anaesthesiology Association (BDA). The Laerdal Foundation for Acute Medicine co-funded a meeting of the NCs, the SMT, and the SC. The funding organisations had no influence on the data analysis or preparation of the manuscript.

The ERC appointed a SC that was responsible for the study design, conduct, and data analyses. Technical and administrative support was given by the SMT. Members of the SC had full access to the study data and all NCs were responsible for critical revision of the submitted version of the manuscript.

Results

Patient and process characteristics

Data on 10,682 confirmed OHCAs were collected from 248 different regions in 27 countries, covering an estimated population of 174 million (34%) of 514 million people living in these European countries (Table 1). Seven countries provided national data, other countries reported data from selected regions within the country (range 1–51 regions). The population covered varied from 3% to 100% of the total population of the country. Three countries provided only cases when CPR was started. The lowest number of reported patients for one country was four (Cyprus) and the highest number was 1536 (United Kingdom). In 7146 cases, CPR was started by a bystander or by the EMS. We found an OHCA incidence rate of 84.0 per 100,000 population for patients considered for resuscitation by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year (Table 1).

The following calculations are based on all cases where CPR was started by EMS or bystander. Mean patient age was 66.5 (SD 18.6) years, and the median age was 70.0 years, (range 0–104) (Table 2). The majority of patients were male (66.3%). The majority of OHCAs (69.9%) occurred in a private residence. In 54.3% of cases the collapse was witnessed by bystanders and in 11.9% by the EMS. In 47.4% of cases CPR was initiated by a bystander. The cause of OHCA was presumed to be medical in 91.4% of cases. This included cases where the presumed cause was reported as unknown or where data was missing (24.0%), as these are also considered medical (including cardiac) following the Utstein recommendations. A traumatic cause was reported in 4.1% of cases (range 0–16.0%). The proportion of telephone assisted CPR was reported from 21 countries. The

Table 1
Summary data for all participating countries.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Total population (in thousands)</th>
<th>Population covered (in thousands)</th>
<th>Percentage covered</th>
<th>Regions</th>
<th>Cases with CA</th>
<th>CA per 100,000 per year</th>
<th>CPR attempted</th>
<th>CPR per 100,000 per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Austria</td>
<td>8474</td>
<td>1538</td>
<td>18%</td>
<td>7</td>
<td>71</td>
<td>55</td>
<td>54</td>
<td>42</td>
</tr>
<tr>
<td>B</td>
<td>Belgium</td>
<td>11,200</td>
<td>1530</td>
<td>14%</td>
<td>6</td>
<td>105</td>
<td>4</td>
<td>105</td>
<td>82</td>
</tr>
<tr>
<td>CRO</td>
<td>Croatia</td>
<td>4285</td>
<td>1893</td>
<td>44%</td>
<td>6</td>
<td>98</td>
<td>62</td>
<td>66</td>
<td>42</td>
</tr>
<tr>
<td>CYP</td>
<td>Cyprus</td>
<td>0.800</td>
<td>0.200</td>
<td>25%</td>
<td>1</td>
<td>6</td>
<td>36</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Rep.</td>
<td>10,520</td>
<td>4359</td>
<td>41%</td>
<td>7</td>
<td>886</td>
<td>244</td>
<td>379</td>
<td>104</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>5614</td>
<td>1726</td>
<td>31%</td>
<td>1</td>
<td>116</td>
<td>81</td>
<td>101</td>
<td>70</td>
</tr>
<tr>
<td>SF</td>
<td>Finland</td>
<td>5439</td>
<td>4445</td>
<td>82%</td>
<td>20</td>
<td>467</td>
<td>126</td>
<td>216</td>
<td>58</td>
</tr>
<tr>
<td>F</td>
<td>France</td>
<td>66,318</td>
<td>17,166</td>
<td>26%</td>
<td>44</td>
<td>855</td>
<td>60</td>
<td>743</td>
<td>52</td>
</tr>
<tr>
<td>D</td>
<td>Germany</td>
<td>80,620</td>
<td>13,416</td>
<td>17%</td>
<td>51</td>
<td>1369</td>
<td>122</td>
<td>738</td>
<td>66</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td>11,030</td>
<td>6144</td>
<td>56%</td>
<td>7</td>
<td>253</td>
<td>49</td>
<td>165</td>
<td>32</td>
</tr>
<tr>
<td>H</td>
<td>Hungary</td>
<td>9909</td>
<td>1288</td>
<td>13%</td>
<td>3</td>
<td>127</td>
<td>118</td>
<td>85</td>
<td>79</td>
</tr>
<tr>
<td>ICE</td>
<td>Iceland</td>
<td>0.328</td>
<td>0.328</td>
<td>100%</td>
<td>6</td>
<td>13</td>
<td>58</td>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>I</td>
<td>Ireland</td>
<td>4588</td>
<td>4588</td>
<td>100%</td>
<td>1</td>
<td>209</td>
<td>76</td>
<td>155</td>
<td>41</td>
</tr>
<tr>
<td>LUX</td>
<td>Luxembourg</td>
<td>59,830</td>
<td>8015</td>
<td>13%</td>
<td>4</td>
<td>773</td>
<td>116</td>
<td>428</td>
<td>64</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>16,800</td>
<td>4870</td>
<td>29%</td>
<td>3</td>
<td>250</td>
<td>62</td>
<td>190</td>
<td>47</td>
</tr>
<tr>
<td>N</td>
<td>Norway</td>
<td>5048</td>
<td>3931</td>
<td>78%</td>
<td>11</td>
<td>188</td>
<td>57</td>
<td>167</td>
<td>51</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>38,530</td>
<td>2265</td>
<td>6%</td>
<td>1</td>
<td>275</td>
<td>146</td>
<td>133</td>
<td>70</td>
</tr>
<tr>
<td>P</td>
<td>Portugal</td>
<td>10,460</td>
<td>0.262</td>
<td>3%</td>
<td>1</td>
<td>35</td>
<td>160</td>
<td>16</td>
<td>73</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>19,960</td>
<td>5344</td>
<td>27%</td>
<td>3</td>
<td>378</td>
<td>85</td>
<td>229</td>
<td>51</td>
</tr>
<tr>
<td>SRB</td>
<td>Serbia</td>
<td>7164</td>
<td>3200</td>
<td>45%</td>
<td>7</td>
<td>488</td>
<td>183</td>
<td>159</td>
<td>60</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>5421</td>
<td>5421</td>
<td>100%</td>
<td>1</td>
<td>670</td>
<td>148</td>
<td>343</td>
<td>76</td>
</tr>
<tr>
<td>SLO</td>
<td>Slovenia</td>
<td>2050</td>
<td>0.660</td>
<td>32%</td>
<td>4</td>
<td>38</td>
<td>69</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>E</td>
<td>Spain</td>
<td>47,270</td>
<td>47,270</td>
<td>100%</td>
<td>17</td>
<td>1107</td>
<td>28</td>
<td>756</td>
<td>19</td>
</tr>
<tr>
<td>S</td>
<td>Sweden</td>
<td>9593</td>
<td>7482</td>
<td>78%</td>
<td>20</td>
<td>301</td>
<td>4</td>
<td>301</td>
<td>48</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>8081</td>
<td>0.346</td>
<td>4%</td>
<td>1</td>
<td>22</td>
<td>76</td>
<td>14</td>
<td>48</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
<td>64,597</td>
<td>26,346</td>
<td>41%</td>
<td>12</td>
<td>1536</td>
<td>4</td>
<td>1536</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>514,478</td>
<td>174,582</td>
<td>34%</td>
<td>248</td>
<td>10,682</td>
<td>–</td>
<td>7146</td>
<td>–</td>
</tr>
</tbody>
</table>

* B, S, UK: only cases with cardiopulmonary resuscitation (CPR) attempted.
average percentage was 30.0%. A shockable initial rhythm was reported in 22.2% of patients, ranging between 4.4% and 50.0%.

Outcomes

Data on return of spontaneous circulation at any stage (ROSC) was available for 6963 of 7146 patients (97.4%) (Fig. 1). Percentage ROSC for all countries was 28.6% (n = 1994) (Fig. 2). There was a wide range of percentage ROSC reported (9.0–50.0%). Some countries with a small number of cases reported high proportions of ROSC with wide confidence intervals, but the range of reported ROSC from countries with larger numbers of cases and narrow confidence intervals also varied from less than 10.0% to more than 40.0%. The incidence rate of ROSC ranged between 6.0 and 32.0 per 100,000 population per year.

The status on arrival at hospital was known for 6884 of the 7146 patients (97.3%) for whom a resuscitation attempt was started (Fig. 3). Of these patients, 4409 died on scene or en route to the hospital (64.0%). One fourth of patients (n = 1735) had sustained ROSC on arrival at ED (ROSC at hospital) (25.2%), and 740 patients (10.7%) arrived with ongoing CPR. Of the patients with ROSC at hospital for whom survival data was available, 543/1291 (42.0%) survived for 30 days or to hospital discharge. Of the patients with ongoing CPR for whom data was available, 26/538 (4.8%) survived for at least 30 days or to hospital discharge (Fig. 4).

Data on survival to 30 days or to hospital discharge was available for 2005 of patients admitted to hospital, including those with ongoing CPR and missing ROSC at hospital data. Of these patients, 662 (33.0%,) survived. The values of the participating countries ranged from 6.4% to 66.7%. In all patients where CPR was started, and hospital outcome was available (n = 6414), 10.3% survived for at least 30 days after OHCA or to hospital discharge (Fig. 5). This percentage ranged from 1.1% and 30.8% among the participating countries. The extrapolated incidence rate of survival for admitted patients ranged between 0.2 and 17.3 per 100,000 population per year (Supplementary Table S3).

Table 2

<table>
<thead>
<tr>
<th>No. of countries</th>
<th>No. of cases</th>
<th>Overall average</th>
<th>Median of country values</th>
<th>Range of country values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases with CPR attempted</td>
<td>27</td>
<td>7146</td>
<td>264.7</td>
<td>159</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>27</td>
<td>6826</td>
<td>66.5</td>
<td>66.0</td>
</tr>
<tr>
<td>Male gender (%)</td>
<td>27</td>
<td>7004</td>
<td>66.3</td>
<td>65.7</td>
</tr>
<tr>
<td>Medical/cardiac cause* (%)</td>
<td>27</td>
<td>7146</td>
<td>91.4</td>
<td>90.1</td>
</tr>
<tr>
<td>Traumatic cause (%)</td>
<td>27</td>
<td>7146</td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Location: residence (%)</td>
<td>27</td>
<td>7052</td>
<td>69.4</td>
<td>67.1</td>
</tr>
<tr>
<td>Telephone CPR (%)</td>
<td>21</td>
<td>3439</td>
<td>29.9</td>
<td>30.4</td>
</tr>
<tr>
<td>Collapse witnessed (%)</td>
<td>27</td>
<td>6815</td>
<td>66.1</td>
<td>67.5</td>
</tr>
<tr>
<td>Bystander CPR (%)</td>
<td>27</td>
<td>6619</td>
<td>47.4</td>
<td>50.0</td>
</tr>
<tr>
<td>Shockable rhythm (%)</td>
<td>26</td>
<td>6533</td>
<td>22.2</td>
<td>23.6</td>
</tr>
<tr>
<td>ROSC (%)</td>
<td>27</td>
<td>6963</td>
<td>28.6</td>
<td>30.6</td>
</tr>
</tbody>
</table>

* Missing or unknown values were considered as medical/cardiac.

Fig. 1. Flow chart with number of cases. OHCA = out of hospital cardiac arrest, ROSC = Return of spontaneous circulation, CPR = cardiopulmonary resuscitation.

Fig. 2. ROSC rate in patients with CPR attempted. The vertical lines represent the 95% confidence intervals (CI). The graph includes 6963 patients from 27 countries (range per country 4 – 1475). The overall result is 28.6%. Abbreviations: ROSC = return of spontaneous circulation. Abbreviations for Countries names are explained in Table 1.
Thus, however, the incidence of OHCA was similar during the remaining eleven months of the year, we found an incidence rate of 84 per 100,000 population. A previous study reported 87.4 OHCA per 100,000 person-years for Europe. Thus, our results suggest that the incidence of OHCA in Europe is in the range of what has previously been reported.

We found the overall incidence of OHCA where CPR was started to be 49 patients per 100,000 population. This Fig. includes EMS and bystander-treated cardiac arrests. It is clearly higher than previously reported from Europe ten years ago (38.0 per 100,000). On the other hand, our findings are in good agreement with more recent data from national surveys in Denmark and Sweden. In our study, for both these estimates, there was substantial variability between countries which may reflect a variation in disease, reporting bias or a natural variability which will be commented upon in the Limitations Section.

The proportion of patients with CPR attempted who were found in ventricular fibrillation was 22.2%. This is a relatively low figure as compared with the reported incidence 10 years ago in Europe (42.9%). However, these findings are in good agreement with a reported decline in the incidence of VF both from Europe and from USA. Our findings also concur with more recent studies of the incidence of VF among patients with OHCA where CPR was attempted. However, there are countries in Europe where a higher incidence of VF has recently been reported.

Three previous studies have reported on the incidence and survival of OHCA from a European perspective. The first survey was published in 1999 and reported that many EMS systems in Europe showed good results in terms of survival after OHCA. The second survey was published in 2005 and reported an overall incidence of 38 EMS-treated OHCA per 100,000 person years in Europe. The corresponding Fig. for ventricular fibrillation (VF) was 17. The overall percentage survival to hospital discharge was 10.7% for all rhythms and 21.2% for VF. It was extrapolated that 29,000 persons were successfully resuscitated each year after OHCA in Europe. The third survey was published in 2011 and included five regional/national registries. The incidence of attempted resuscitations after OHCA was reported to vary between 17.0 and 53.0.
per 100,000 person-years. There was a wide variability in terms of bystander CPR and early survival.

Our study reports variability of ROSC from less than 10.0% up to 50.0%, and hospital survival ranging from less than 5.0% to 30.0%. Differences in EMS structures and CPR practices may be a reason for this and it should be remembered that reported data are average values from every country. Nevertheless, we found a similar difference within the systems and variability in the outcome parameters.26

The “Ulstein comparator group” is one way of defining a uniform population of victims of OHCA with the best chance of survival. Within this group we also found a wide variability of incidence, ROSC, admission to hospital, discharge and/or 30-day survival. It may seem reasonable to assume that there should be similar numbers of survivors in this group. However we found hospital survival rates ranging from less than 6.0% up to 55.0%. Recent publications describe a 30-day survival ranging from 20 to 31% in victims with witnessed cardiac arrest and VF.11,27 In a longitudinal study from North America, an increasing number of survivors were found but also with variability within the participating systems.28 In relation to these outcome differences, we might assume differences in bystander-CPR, quality of CPR and post-ROSC treatment in our study group within the different countries and systems. Recommendations for unique CPR metrics have been published and should be used for describing quality.29 Also, a risk adjustment with more details about the victims and the setting might be helpful to understand the variability in outcome.30

Europe is a continent with different nations, cultures, medical treatment standards and OHCA outcomes. Differences in EMS systems and community factors including bystander CPR may also influence the outcome after cardiac arrest.

Limitations

First, the methods of data collection were not standardised between contributing countries and regions and quality control was limited to queries to the NCs. This may explain some of the variation of incidence rates of initiated resuscitation between countries with ranges between 24 and 104 per 100,000 patients per year. Considering that some variables had missing data, it is possible that data were difficult to obtain in certain subgroups, such as patients attended by the EMS for whom resuscitation was considered futile.

Second, the results of our study show large differences in the processes for data collection and outcomes between countries. Percentage ROSC following a resuscitation attempt varied between 9.0% and 50.0%, survival to discharge varied between 6.4% and 66.7%. This wide variation may be due to genuine differences between countries, similar to the large variation in outcome as reported for the Resuscitation Outcome Consortium centres.31 That study employed rigid and standardised methods of data collection within one nation, to ensure data completeness and data quality. They reported a five-fold range, much less than the 20-fold range in survival rate that is reported in our study. Several explanations therefore may play a role in the wide variability in outcomes in our study.

First, our study is a snapshot of OHCA in one month. Given the inherent variability of outcomes of cardiac arrest, especially in small samples in part of the contributing countries, the comparison between countries over such a short time period has limitations. However, the combined data of all countries may add to the robustness of the overall outcome as reported.

Third, variation in incidence rate may be due to seasonal variations or indicate, legal, cultural, and religious differences in the willingness to activate EMS and to initiate resuscitation when a low probability of success is expected, or to terminate efforts in the field, which may affect admission rates. Three countries only reported cases where resuscitation was started or continued by EMS staff. Another issue that can influence outcome is the actual availability of EMS resources to the population served. Higher availability may promote the decision to start resuscitation, especially countries where bystander CPR is lower. These factors are not recorded and it is not known how they may have affected individual cases. This limits our interpretation of the data and attribution of these differences to biological patient factors or to system parameters of health care for OHCA.

Conclusions

The results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.

EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events.

Funding

The study was funded by the European Resuscitation Council (ERC) and by the individual registries within participating countries. Co-funding was provided by the German Anaesthesiology Association (BDA). The Laerdal Foundation for Acute Medicine co-funded a meeting of the NCs, the SMT and the SC. The open-Access Option was funded by the German Resuscitation Registry. The funding organisations had no influence on the data analysis or preparation of the manuscript.

EuReCa ONE-Local Contributor Group:

Conflict of interest statement

There are no financial and personal relationships with other people or organisations that could influence this paper. COI statements are available for all authors.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.resuscitation.2016.06.004.

References

