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Abstract 21 

Nitrite-dependent anaerobic methane oxidation (n-damo) process uniquely links microbial 22 

nitrogen and carbon cycles. Research on n-damo bacteria progresses quickly with 23 

experimental evidences through enrichment cultures. Polymerase chain reaction 24 

(PCR)-based methods for detecting them in various natural ecosystems and engineered 25 

systems play a very important role in the discovery of their distribution, abundance and 26 

biodiversity in the ecosystems. Important characteristics of n-damo enrichments were 27 

obtained and their key significance in microbial nitrogen and carbon cycles was 28 

investigated. The molecular methods currently used in detecting n-damo bacteria were 29 

comprehensively reviewed and discussed for their strengths and limitations in applications 30 

with a wide range of samples. The pmoA gene-based PCR primers for n-damo bacterial 31 

detection were evaluated and, in particular, several incorrectly stated PCR primer 32 

nucleotide sequences in the published papers were also pointed out to allow correct 33 

applications of the PCR primers in current and future investigations. Furthermore, this 34 

review also offers the future perspectives of n-damo bacteria based on current information 35 

and methods available for a better acquisition of new knowledge about this group of 36 

bacteria. 37 

 38 
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Introduction  41 

Biological denitrification process has been investigated for more than half a century (Hill 42 

1979; Keeney et al. 1971; McGarity 1961). However, the anaerobic methane oxidation 43 

coupled to denitrification was once considered only thermodynamically feasible before the 44 

experimental evidences obtained in 2006 (Raghoebarsing et al. 2006). There was no direct 45 

evidence of any microorganisms capable of coupling methane oxidation and denitrification 46 

under anoxic conditions (Knowles 2005; Mason 1977; Strous and Jetten 2004), although the 47 

process can provide enough energy as shown in the following equations (Raghoebarsing et al. 48 

2006).  49 

4 3 2 2 25 CH  8 NO  8 H  5 CO + 4 N + 14 H O                        [1] 50 

1

4( 765 kJ mol  CH ) G      51 

4 2 2 2 23 CH  8 NO  8 H  3 CO + 4 N + 10 H O                        [2] 52 

1

4( 928 kJ mol  CH ) G      53 

Obtained from the anoxic sediments, a microbial consortium consisting of two 54 

microorganisms (a bacterium belonging to NC10 phylum without any cultured species and an 55 

archaeon distantly clustering with marine methanotrophic Archaea) showed a denitrification 56 

rate of 21.5 ± 2 μmol N2 h
-1 with the simultaneous conversion of the added methane at a rate 57 

of 22.0 ± 2 μmol CH4 h-1 (Raghoebarsing et al. 2006). Using the enrichment culture of 58 

Raghoebarsing et al. (2006) as inocula, Ettwig et al. (2008) demonstrated that the specific 59 

inhibitor, Bromoethane at a concentration of 20 mM, for the key mcr gene of methanotrophic 60 

and methanogenic archaea showed no effect on the subculture oxidizing methane and 61 

reducing nitrite, which was further enhanced with the decline of the archaeal population. 62 
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Results showed a stoichiometry of 8: 3.5 for NO2
-: CH4 after 22 months of enrichment, very 63 

close to the above equations (Ettwig et al. 2008).  64 

A comparison of the parameters and results of several n-damo enrichments is presented in 65 

Table 1. Some important characteristics of n-damo inocula in these studies (Ettwig et al. 2008; 66 

Ettwig et al. 2009; Hu et al. 2009; Hu et al. 2011; Luesken et al. 2011a; Luesken et al. 2011b; 67 

Zhu et al. 2011) are: first, no pure culture of n-damo bacteria is available and the enrichments 68 

so far contained around 30-80% of NC10 phylum bacteria closely related to M. oxyfera (Shen 69 

et al. 2015b); second, almost all of the n-damo enrichments were successfully established 70 

from freshwater habitats as inocula, including wastewater treatment plant (WWTP). One 71 

investigation reported that the highest n-damo activity was achieved without NaCl addition 72 

into the culture medium in a study on the effect of a range of NaCl concentrations (0-20 g 73 

NaCl L-1) (He et al. 2015b). Only very recently, a halophilic denitrifying methanotrophic 74 

culture (optimal salinity of 20‰) was obtained after 20 months of enrichment based on the 75 

microbial community in the coastal mudflat sediment, of which the active species belonged to 76 

NC10 bacteria (He et al. 2015a). Third, n-damo enrichment usually requires a very long 77 

culturing and enriching period before the activity can be detected and stable. Ettwig et al. 78 

(2009) reported that there was no measurable n-damo activity before 110 days in the 79 

enrichment, and then it started to be detectable and increase. The estimated doubling time for 80 

n-damo bacteria is one to two weeks under laboratory condition (Ettwig et al. 2008) with a 81 

methane conversion rate of 1.7 nmol min-1 mg protein-1 (Ettwig et al. 2009). Finally, n-damo 82 

bacteria are often simultaneously co-cultured with anaerobic ammonium oxidizing (anammox) 83 

bacteria (Luesken et al. 2011a; Zhu et al. 2011), which also used nitrite as electron acceptor, 84 



 

- 5 - 

but utilized ammonium as electron donor instead of methane under anaerobic conditions. We 85 

would like to make an updated evaluation of the current PCR primers available for detection 86 

of n-damo and in particular point out the error in some of the published PCR primer set, 87 

which has been widely used in molecular detection of n-damo. Such awareness is necessary 88 

so that the science and new knowledge can be built systematically on sound foundation. 89 

 90 

Significance of n-damo bacteria in microbial nitrogen and carbon cycles 91 

Microbial process couples anaerobic methane oxidation to denitrification 92 

Microbes capable of simultaneously oxidizing methane and denitrifying anaerobically had 93 

not been found in nature nor isolated in pure culture (Knowles 2005; Strous and Jetten 2004) 94 

before the first report of direct evidence of anaerobic methane oxidation with denitrification 95 

(Raghoebarsing et al. 2006). Ettwig et al. (2008) further showed that the microbial 96 

consortium in the study of Raghoebarsing et al. (2006) could perform the n-damo process 97 

without the presence of archaea. The active bacterium was named as Candidatus 98 

Methylomirabilis oxyfera that could reduce nitrite to dinitrogen (N2) and utilize methane as 99 

an electron donor under anaerobic conditions based on genomic analyses and experimental 100 

results (Ettwig et al. 2010; Ettwig et al. 2008; Ettwig et al. 2009). This nitrite-driven 101 

anaerobic oxidation of methane (AOM) provides a very unique link between the microbial 102 

nitrogen and carbon cycles, previously unknown to science. Later on, Haroon et al. (2013) 103 

reported a novel archaeal lineage, Candidatus Methanoperedens nitroreducens, which can 104 

carry out AOM with reduction of nitrate to nitrite and needs the participation of anammox 105 

bacteria to complete the denitrification process. Very recently, aerobic methanotroph 106 
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Methylomonas denitrificans sp. nov. strain FJG1T was suggested to couple nitrate reduction 107 

to methane oxidation under oxygen limitation, but oxygen was still required because M. 108 

denitrificans FJG1T could not grow under strictly anaerobic condition (Kits et al. 2015). 109 

Nevertheless, Ca. Methylomirabilis oxyfera is so far the most important and unique 110 

microorganism capable of carrying out the n-damo process. 111 

 112 

Novel denitrification pathway 113 

The significant biochemical pathways of Methylomirabilis oxyfera was summarized by 114 

Ettwig et al. (2010). M. oxyfera encodes, transcribes and expresses the full biochemical 115 

pathway for aerobic methane oxidation, which oxidizes methane through methanol, 116 

formaldehyde and formate to CO2 as the end product (Ettwig et al. 2010; Wu et al. 2011). On 117 

the other side, the assembly and annotation of the genome indicated that M. oxyfera lacks the 118 

gene cluster encoding the enzymes for reducing nitrous oxide to dinitrogen gas (N2) in a 119 

conventional denitrification pathway (Ettwig et al. 2010). Isotope and proteomic experiments 120 

further suggested the production of N2 by M. oxyfera was directly driven by a novel enzyme, 121 

a putative NO dismutase (Ettwig et al. 2010; Wu et al. 2011).  122 

 123 

An intra-aerobic pathway and oxygen production without photosynthesis 124 

Interestingly, although the addition of oxygen into the enrichment culture (2% or 8%) directly 125 

inhibited the methane and nitrite conversion rates by M. oxyfera (Luesken et al. 2012), the 126 

organism utilizes the classical aerobic methane oxidation pathway in the absence of 127 

externally supplied oxygen (Ettwig et al. 2010). The model of the unusual denitrification 128 
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pathway by M. oxyfera indicated electron transport in n-damo process (Simon and Klotz 2013) 129 

and the production of oxygen when converting NO to N2. Isotope experiments showed that 130 

the majority of the oxygen produced via this oxygenic denitrification (75%) were used for 131 

activation of the particulate methane monooxygenase (pMMO) to convert methane to 132 

methanol, while the remaining might be consumed by other terminal oxidases (Ettwig et al. 133 

2010). These incredibly integrated biochemical pathways using oxygen as an intermediate 134 

were also incorporated into the naming of this n-damo bacterium (methyl (Latin): the methyl 135 

group; mirabilis (Latin): astonishing, strange; oxygenium (Latin): oxygen; fera (Latin): 136 

carrying, producing) (Ettwig et al. 2010). The production of its own supply of oxygen under 137 

anoxic conditions makes M. oxyfera performing a peculiar and novel inter-aerobic 138 

biochemical pathway in driving methane oxidation when compared with other 139 

sulfate-reducing methanotrophs (Wu et al. 2011).  140 

On the other hand, M. oxyfera is one of the only two known microorganisms so far that could 141 

produce oxygen in the darkness (Ettwig et al. 2012a). Only three biochemical pathways are 142 

known to produce oxygen before the discovery of n-damo bacteria: photosynthesis, bacterial 143 

reduction of chlorates (chlorate-reducing bacteria), and the enzymatic conversion of reactive 144 

oxygen species (Mascarelli 2010). Photosynthesis is considered the only biological source for 145 

oxygen production and plays a critical role in the initial emission of oxygen, building up in 146 

the atmosphere, and recycling of oxygen on Earth (Ettwig et al. 2010; Ettwig et al. 2012b). 147 

The production of oxygen via bacterial n-damo process yields new aspect of the potential 148 

aerobic biochemical pathways in a methane rich and oxygen limited environment before the 149 

great oxidation event in the Archaean Earth (Oremland 2010).  150 
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 151 

Molecular methods for the detection of n-damo bacteria 152 

PCR approach 153 

Based on the fluorescence in situ hybridization (FISH) probes designed by Raghoebarsing et 154 

al. (2006) for measuring the denitrifying AOM microbial consortium, Ettwig et al. (2009) 155 

developed a series of 16S rRNA gene-based PCR primers specifically for denitrifying 156 

methanotrophic bacteria of the NC10 phylum in the enrichment cultures (Table 2), which 157 

were intensively used in the n-damo investigations. The combination of specific PCR primer 158 

202F (1043R) and general primer 1492R (8F, 1545R) had been popularly applied for 159 

detecting M. oxyfera-like bacteria in the early studies of n-damo bacterial enrichments and 160 

their diversity in the environments, such as wastewater treatment plants, lake sediments, 161 

natural and artificial forests, and paddy soils (Ettwig et al. 2009; Kojima et al. 2012; Luesken 162 

et al. 2011b; Meng et al. 2016; Wang et al. 2012; Yang et al. 2012). But later on, a nested 163 

PCR approach was developed with PCR primer set 202F-1545R in the first round and 164 

qP1F-qP2R in the second round for retrieving n-damo 16S rDNA sequences from the 165 

sediments of environmental samples, e.g., the sediments of Jiaojiang Estuary and Qiantang 166 

River (Shen et al. 2014b; Shen et al. 2014c). It should be noted that the nucleotide sequence 167 

of the PCR primer 8F in a recent review on n-damo research in the natural ecosystems (Shen 168 

et al. 2015d) was incorrectly designated and the actual one referred to in the study was primer 169 

202F. Primers qP1F/qP1R and qP2F and qP2R were used for qPCR analysis. With no 170 

mismatches and 100% PCR efficiencies, it was found that primer pair qP1F and qP1R 171 

generated a higher abundance than the gene copies numbers revealed by qP2F and qP2R 172 
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consistently along the enrichment period, and their deviation eventually reduced when the 173 

biomass increased to a certain extent by the end of day 120 (Ettwig et al. 2009). 174 

Unfortunately, there is no other specific PCR primer available currently for targeting n-damo 175 

bacterial genes except for those based on 16S rRNA and pmoA genes although M. oxyfera has 176 

some unique features, including the putative NO dismutase (Ettwig et al. 2010; Wu et al. 177 

2011). 178 

Because of the critical mismatches between M. oxyfera’s and other methanotrophs’ sequences 179 

in the gene fragments of the alpha subunit of particulate methane monooxygenase (PmoA), 180 

specific PCR primers targeting the pmoA gene were designed for revealing n-damo bacteria 181 

in several oxygen-limited freshwater environments (Luesken et al. 2011c). Primer pair of 182 

A189_b and cmo682 was developed based on A189 and A682 (Holmes et al. 1995) with a 183 

second set of primer cmo182 and cmo568 for a nested PCR approach specific for n-damo 184 

bacteria (Luesken et al. 2011c). The combination of A189_b and cmo682 resulted in multiple 185 

and faint PCR bands of the PCR products (Luesken et al. 2011c) and therefore an extremely 186 

low coverage (Luesken et al. 2011b). Meanwhile, the thermal cycling for both PCR reactions 187 

of step 1 and 2 was based on the annealing gradient with temperatures of 50-60 °C or 188 

53-63 °C for different samples (Luesken et al. 2011c), intending to minimize the effects of 189 

random polymerase errors and primer mismatches. The current available pmoA primers 190 

specifically designed for detection of n-damo bacteria are summarized in Table 3. Amplicon 191 

(Jarman 2004) was applied for the evaluation with the pmoA gene of Methylosinus sporium 192 

(DQ119048) as the excluded group and that of M. oxyfera as the target group (DAMO_2450 193 

downloaded from the complete genome FP565575, site 2106349-2107080). All these 194 
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biomarkers resulted in false priming either in the sequence of M. oxyfera or the excluded 195 

group, and some of them might form hairpins and self-complementarity (Table 3), suggesting 196 

the potential problems of their specificity and efficiency. However, nested PCR approach 197 

with primer sets A189_b + cmo682, and cmo182 + cmo568 was soon popularly applied for 198 

recovering M. oxyfera-like pmoA gene sequences from the freshwater environments (Hu et al. 199 

2014; Kojima et al. 2012; Luesken et al. 2011b; Shen et al. 2014b; Wang et al. 2012; Zhu et al. 200 

2015). Importantly, primers HP3F1 and HP3R1 were the only one developed for quantifying 201 

the gene copy numbers of M. oxyfera-like sequences based on n-damo pmoA gene (Han and 202 

Gu 2013). Furthermore, it is confirmed that the sequences of pmoA primers 682R, cmo682 203 

and cmo568 in a previous publication by Luesken et al. (2011b) were incorrectly stated and 204 

should be reversed for correct use (personal communication). It should also be mentioned that 205 

there is a nucleotide ‘T’ missing in the sequence of PCR primer cmo568 in several 206 

publications (Hu et al. 2014; Shen et al. 2015c; Shen et al. 2015d; Wang et al. 2012; Zhu et al. 207 

2015) compared with the original paper where it was published (Luesken et al. 2011c) and 208 

with the genome sequence of M. oxyfera (FP565575), which is shown in bold and italic 209 

(Table 3). These differences and errors in the PCR primers of incorrect form used in their 210 

investigations resulted in non-reliable data report and furthermore wrongly stated conclusions 211 

deviated greatly from the genuine community of the different samples. This may also lead to 212 

the propagation of the errors to a much great community because of unawareness of this 213 

error. 214 

 215 

Fluorescence in situ hybridization (FISH) 216 
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Raghoebarsing et al. (2006) designed the specific bacterial probes S-*-DBACT-0193-a-A-18 217 

(5’-CGC TCG CCC CCT TTG GTC-3’), S-*-DBACT-0447-a-A-18 (5’-CGC CGC CAA 218 

GTC ATT CGT -3’) and S-*-DBACT-1027-a-A-18 (5’-TCT CCA CGC TCC CTT GCG-3’) 219 

based on the bacterial 16S rRNA gene sequences in a microbial consortium capable of 220 

coupling anaerobic methane oxidation to denitrification that consisted of bacteria and archaea 221 

following the FISH method of Raghoebarsing et al. (2005). These molecular probes were 222 

later applied for identifying the M.oxyfera-like bacteria in the n-damo cultures after 7 months 223 

of enrichment (Ettwig et al. 2008; Ettwig et al. 2009). Hu et al. (2009) also developed a FISH 224 

probe S-*-NC10-1162-a-A-18 (5’-GCC TTC CTC CAG CTT GAC GCT G -3’) to target the 225 

NC10 phylum sequences. S-*-NC10-1162-a-A-18 hybridized around 15% (Enrichment 226 

temperature of 22 °C) and 50% (Enrichment temperature of 35 °C) of the bacteria in n-damo 227 

enrichments after culturing for 260 and 297 days, respectively. Considering as the first 228 

application in the environmental sediments, catalyzed reporter deposition fluorescence in situ 229 

hybridization (CARD-FISH) with the probe S-*-DBACT-1027-a-A-18 was used to examine 230 

the n-damo bacteria in Lake Biwa sediments and resulted in a very low frequency of n-damo 231 

cells on a singly occurrence with large amount of diatom debris, which failed to accurately 232 

count the CARD-FISH-positive cells (Kojima et al. 2012). By applying the probes 233 

DBACT1027 and DBACT193, Deutzmann et al. (2014) calculated the potential n-damo rate 234 

in relation to the cell density in the profundal sediment core of Lake Constance. Luesken et al. 235 

(2011b) reported that although specific FISH probes for M. oxyfera could detect 236 

approximately 2-3% or 60-70% of the total microbial communities after 64 or 308 days of 237 

inoculations, no n-damo cells could be revealed in the original inoculum. The application of 238 



 

- 12 - 

FISH in the environment is limited to the abundance of n-damo bacteria and is less sensitive 239 

compared with PCR/qPCR approach. 240 

 241 

Unique fatty acid 242 

New biomarkers were investigated by detecting the lipid composition of M. oxyfera in several 243 

enrichment cultures, where up to 46% of the detected lipid profile was 244 

10-methylhexadecanonic acid (10MeC16:0) (Kool et al. 2012). Kool et al. (2012) also 245 

identified a unique fatty acid of monounsaturated 10-methylhexadecanonic acid with a double 246 

bond at the Δ7 position (10MeC16:1Δ7) comprised up to 10% of the total fatty acid measured in 247 

multiple n-damo enrichments, which had not been reported previously. These branched fatty 248 

acids of 10MeC16:0 and 10MeC16:1Δ7 were proposed to be important and characteristic 249 

chemical signatures of Ca. Methylomirabilis oxyfera and may serve as the biomarkers for 250 

detecting them from the environment (Kool et al. 2012). However, up to now there is no other 251 

publication of n-damo bacteria with application of this method. The possible reasons are: (1) 252 

although as a major chemical component, 10MeC16:0 is not only found in M. oxyfera, but also 253 

presents in other sulfate-reducing bacteria (i.e., Desulfobacter), actinobacteria, anammox 254 

bacteria, iron-reducing Geobacter, Marinobacter and the marine denitrifier Pseudomonas 255 

nautica (Buhring et al. 2005; Doumenq et al. 1999; Londry et al. 2004; Rütters et al. 2002; 256 

Sinninghe Damste et al. 2005; Sittig and Schlesner 1993; Yoon et al. 2007; Zhang et al. 2003), 257 

which means positive signal of this biomarker in anaerobic methane oxidation enrichment 258 

cannot exclude either sulfate or nitrite driven pathways, and the diagnosis could be more 259 

complex in environmental samples; (2) 10MeC16:1Δ7 could represent up to 10% of the fatty 260 
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acid signatures in n-damo enrichment, but it accounted for a maximum of 0.5% of the total 261 

fatty acid detected in a vertical soil profile in peatland (therefore up to 5% abundance of 262 

n-damo bacteria in the samples), where qPCR analysis suggested that up to 8% of the total 263 

bacterial community were M. oxyfera-like bacteria (Kool et al. 2012). The low proportion of 264 

10MeC16:1Δ7 and the bias in extraction, measurement and calculation may affect the 265 

application of these biomarkers in the analysis of environmental samples. 266 

 267 

In addition to the above methods, universal 16S rRNA gene primers were developed for 268 

high-throughput sequencing of n-damo bacteria in freshwater sediment and damo-anammox 269 

co-culture (Lu et al. 2015). 270 

 271 

Distribution of n-damo bacteria in the environments 272 

Lake 273 

The discovery of n-damo process in the wetland systems could have a drastic influence on the 274 

conventional nitrogen cycling network, although it has only been reported in a very limited 275 

number of freshwater habitats (Zhu et al. 2010). The study of n-damo bacteria in the different 276 

environments began with the development of specific pmoA PCR primers for the detection of 277 

denitrifying methanotrophs in the alpine peat bog, wastewater treatment plants and 278 

contaminated aquifers (Luesken et al. 2011c).  279 

Later, radiotracer experiments using the sediments of Lake Constance in Germany, were 280 

conducted and indicated the formation of 14CO2 from 14CH4 in the presentence of electron 281 

acceptors of nitrate and nitrite, while the effect of sulfate addition on 14CO2 production was 282 
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negligible (Deutzmann and Schink 2011). Molecular analyses suggested that the 16S rRNA 283 

gene sequences belonging to Group a were retrieved in Lake Constance profundal sediments, 284 

although Group b sequences were obtained from both littoral and profundal sediments, while 285 

n-damo pmoA gene sequences were only recovered in the profundal sediments (Deutzmann 286 

and Schink 2011). Despite the low diversity of n-damo Group a 16S rRNA and pmoA gene 287 

sequences in the study of Lake Constance, this work provided the first indications that 288 

anaerobic methane oxidation coupled to denitrification in the oligotrophic freshwater 289 

ecosystems could be a widespread process that plays an important role in affecting the 290 

methane production and consumption, flux (Deutzmann and Schink 2011). Further studies on 291 

the sediment cores from Lake Constance by applying high-resolution micro-sensor and 292 

culture-independent molecular approaches confirmed that n-damo could be the dominant 293 

methane sink with the presence of nitrate in the stable and deep sediments of the freshwater 294 

lake (Deutzmann et al. 2014). The potential n-damo rates calculated from cell densities 295 

(660-4890 μmol CH4 m
-2 d-1) and measured by microsenor (31-437 μmol CH4 m

-2 d-1) were 296 

both high enough to prevent the emission of methane from the profundal lake sediments 297 

solely and showed a strong correlation with the abundance of M. oxyfera-like bacteria in the 298 

sampling cores (Deutzmann et al. 2014). 299 

The investigation on sediments in Lake Biwa, Japan also showed that n-damo 16S rRNA 300 

gene Group a bacteria were detected in profundal sediments, when Group b sequences were 301 

retrieved in shallow water sediments (Kojima et al. 2012). Similar to the previous study in 302 

Lake Constance sediments (Deutzmann and Schink 2011), no PCR product targeting n-damo 303 

pmoA gene was obtained in the Lake Biwa littoral sediments (Kojima et al. 2012). 304 
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Interestingly, the abundance of M. oxyfera-like bacteria was the highest in the surface layer of 305 

the deep sediments where the oxygen penetration was higher (around 225 μM), and dropped 306 

to the lowest with the decrease of dissolved oxygen along the sediment depth downward 307 

(Kojima et al. 2012), suggesting the importance of anaerobic interface on the n-damo process. 308 

Meanwhile, the examination of n-damo bacteria in two Qinghai-Tibetan saline lakes also 309 

added new information on their distribution in the lake ecosystems (Yang et al. 2012). PCR 310 

amplified sequences belonged to Group b clade (16S rRNA) and a unique pmoA gene lineage 311 

(closely with other n-damo sequences), which suggested the occurrence and adaptation of 312 

n-damo bacteria in the natural hypersaline ecosystems with salinity as high as 84 g/L (Yang et 313 

al. 2012). Recently, the distribution of n-damo bacteria was reported in both oligotrophic and 314 

eutrophic lake ecosystems and the oxic/anoxic interfaces in these habitats were hypothesized 315 

to provide suitable conditions for the growth of M. oxyfera-like bacteria (Zhu et al. 2015). In 316 

the sediments of various freshwater lakes on the Yunnan Plateau (China), novel M. 317 

oxyfera-like sequences of pmoA gene were retrieved, where the ratio of organic matter and 318 

total nitrogen showed a positive correlation with the n-damo pmoA gene diversity by 319 

Pearson’s correlation analysis (Liu et al. 2015).  320 

On the other hand, the n-damo bacteria were reported in the deep water samples (90 m of the 321 

water depth) of a subtropical reservoir and accounted for a larger portion than the Type I and 322 

II methane oxidizing bacteria revealed by 16S rRNA gene analyses (Kojima et al. 2014). 323 

However, they were not detected in the water sample at the depth of 10 m, possibly due to the 324 

lack of methane (Kojima et al. 2014). Reconstructed phylogeny based on amplified pmoA 325 

gene sequences indicated a close phylogenetic distance between those in the water column of 326 
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the subtropical reservoir (Kojima et al. 2014) and the sediments of Lake Biwa (Kojima et al. 327 

2012). In the sediments of Shangqiu reservoir, M. oxyfera-like bacteria were very minor in 328 

the total bacterial community by the analysis of amplified gene copy numbers (Zhu et al. 329 

2015). In the water-level fluctuation zone of the Three Gorges Reservoir in China, qPCR 330 

revealed the significant increase of their abundance to 103-104 copies g-1 ds after around 6 331 

months’ of flooding (Wang et al. 2016). In addition, the n-damo bacterial community based 332 

on retrieved pmoA gene sequences in freshwater reservoir sediment of Hong Kong had a 333 

closer relationship with that in wastewater treatment plant than in Lake Constance 334 

(Deutzmann and Schink 2011) and Lake Biwa (Kojima et al. 2012) using unweighted 335 

Jackknife Environmental Clusters (Han and Gu 2013). 336 

 337 

Wetland 338 

The freshwater wetland ecosystem was another environmental habitat that was intensively 339 

studied for the distribution of n-damo bacteria in the last five years, especially in the paddy 340 

fields. In agreement with the observations in lake sediments, n-damo bacteria were found to 341 

be most abundant in the cultivated horizon, lower in the plough pan and steadily decrease 342 

with the increase of soil depth (sediment core length: 100 cm) in the paddy fields (Wang et al. 343 

2012). Phylogenetic analysis showed that the upper layers (0-30 cm) of the paddy sediments 344 

hosted the sequences distantly related to the known n-damo bacteria, while the 16S rRNA 345 

sequences from the lower layers (40-70 cm) clustered within Group a that contains M. 346 

oxyfera sequence from the enrichment cultures (Wang et al. 2012). Stable isotope 347 

experiments indicated that the potential n-damo rates ranged from 0.2-2.1 nmol CO2 g
-1 dry 348 
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weight day-1 in different layers of sediment cores from a flooded paddy field, and it is 349 

estimated that the n-damo process contributed to a total of 0.14 g CH4 m
-2 year-1 consumption 350 

in the paddy field based on the data in the layer of 20-30 cm (Shen et al. 2014a). The 351 

diversity of pmoA gene based n-damo community in subsurface layer (10-20 cm) sediments 352 

of paddy soil was lower than that in the WWTP and reservoir sediments in Hong Kong (Han 353 

and Gu 2013). Furthermore, high abundances and diversity of n-damo bacteria were reported 354 

in Jiangyin paddy soils [up to 1.0×108 gene copies (g dry soil)-1], whose portion to the total 355 

bacteria reached the peak value of 2.80% (summer) and 4.41% (winter), respectively (Zhou et 356 

al. 2014). Along the sampling core (0-200 cm), the groundwater level affected the abundance 357 

of n-damo bacteria and highest Chao1 index was observed in layer 120-140 cm (summer) and 358 

180-200 cm (winter), respectively (Zhou et al. 2014). Additionally, n-damo bacterial 359 

sequences were also recovered in Jiaxing paddy field with a similarity of 91.3-97.4% to M. 360 

oxyfera 16S rRNA gene sequence (Zhu et al. 2015). 361 

Molecular evidence proved that n-damo bacteria had a wide geographical distribution at the 362 

oxic/anoxic interfaces of different wetlands (n=91) in China and contributed to up to nearly 363 

0.62% of the total number of bacteria (Zhu et al. 2015). Isotope tracer experiments revealed 364 

that the potential denitrifying AOM rates ranged from 0.31-5.43 nmol CO2 g-1 dry weight 365 

day-1 in various layers of soil cores in three freshwater wetlands (Hu et al. 2014), higher than 366 

those examined in the flooded paddy field (Shen et al. 2014a). Around 0.51 g CH4 m
-2 could 367 

be linked to n-damo process annually in the tested wetlands, which predicted that n-damo 368 

could reduce 4.1-6.1 Tg CH4 m
-2 year-1 in wetlands under anaerobic conditions, nearly 2-6% 369 

of current global methane flux estimates for wetlands (Hu et al. 2014). Study on the vertical 370 
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distribution of M. oxyfera-like bacteria suggested that the deep wetland sediments (at the 371 

depth of 50-60 cm and 90-100 cm) were the preferred habitat zones for n-damo bacteria, and 372 

it was estimated that the CH4 flux might increase 2.7-4.3% without n-damo in the largest 373 

natural freshwater wetland (Xiazhuhu) on the southern Yangtze River in China (Shen et al. 374 

2015c). The n-damo process was also confirmed to be responsible for consuming 0.3-0.8 g 375 

CH4 m
-2 year-1 in Xiazhuhu wetland, therefore resulted in the loss of 0.7-1.9 g N m-2 per year 376 

based on the stoichiometry of 3 CH4 -4 N2 via this process (Raghoebarsing et al. 2006; Shen 377 

et al. 2015c). In an urban wetland (Xixi), n-damo activity was mainly detected at the depth of 378 

50-60 cm and 90-100 cm with the potential rates of 0.7-5.0 nmol CO2 g
-1 dry weight day-1, 379 

and did not occur in the surface layer (0-10 cm) (Shen et al. 2015a). Molecular analysis 380 

further implied that 16S rRNA Group a members were the dominant bacteria carrying out the 381 

denitrifying AOM in the sediments of Xixi wetland (Shen et al. 2015a). Moreover, n-damo 382 

pmoA sequences were also retrieved from the sediments of reed beds at Mai Po Nature 383 

Reserve in Hong Kong and showed a lower diversity (Han and Gu 2013). 384 

Recently, the co-existence of n-damo archaea and bacteria was investigated and confirmed in 385 

the paddy fields by using next generation pyrosequencing (Ding et al. 2016). With the 386 

available PCR primers for Illumina MiSeq sequencing (Lu et al. 2015), the molecular 387 

detection of n-damo bacteria is now extended to high throughput sequencing to reveal their 388 

diversity and community structure in the environmental samples. After Illumina-based 16S 389 

rRNA gene sequencing for the samples from agriculture soils, NC10 related reads accounted 390 

for 0.8-4.5% of 16S rDNA pools in the samples and showed a higher percentage in deep soils 391 

(Shen et al. 2016). 392 
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 393 

River 394 

The distribution of n-damo bacteria in the river ecosystems was firstly investigated in the 395 

sediments of Qiantang River by molecular analysis (Shen et al. 2014b). Amplified 16S rRNA 396 

and pmoA gene sequences showed 89.8%-98.9% and 85.1-95.4% identifies to those of M. 397 

oxyfera, respectively (Shen et al. 2014b). Shen et al. (2014b) found that the total inorganic 398 

nitrogen content and ammonium content in the river sediments were the most significant 399 

factors affecting n-damo community based on pmoA gene-PCR amplified sequences, while 400 

n-damo 16S rRNA gene abundance significantly related to the sediment organic carbon 401 

content. By comparison, the gene copy number of n-damo bacteria and their ratio to total 402 

bacteria was the highest in canal sediments, then lowered in the riparian sediments, and was 403 

the lowest in the river sediments (Zhu et al. 2015). 404 

 405 

Coastal ecosystem 406 

The investigation of n-damo bacteria in the coastal ecosystems is very limited. Shen et al. 407 

(2014c) reported the molecular evidence of n-damo bacteria in the surface sediments of the 408 

Jiaojiang Estuary in China. In their work, the majority of the amplified 16S rRNA gene 409 

sequences belonged to Group a, whereas others clustered within Group b. Meanwhile, the 410 

highest abundances of n-damo bacteria were found in the sediments of the estuarine intertidal 411 

zone other than the sub-tidal zone (Shen et al. 2014c). Sediment organic matter strongly 412 

impacted the spatial variation and also significantly correlated with the diversity and 413 

abundance of n-damo bacterial community by Redundancy analysis and Pearson Moment 414 
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Correlation (Shen et al. 2014c). M. oxyfera-like sequences were also recovered in the 415 

sediment of Honghaitan tidal land, which was influenced by polluted seawater (Zhu et al. 416 

2015). The abundance of n-damo bacteria in the tidal sediments was higher than that in the 417 

sediments of rivers, paddy fields and reservoir (Zhu et al. 2015). More recently, 16S rDNA 418 

sequences of n-damo Group a and b were retrieved from the Yellow River Estuary sediments 419 

with 103-105 gene copies of 16S rRNA and pmoA genes per gram of wet sediment (Yan et al. 420 

2015).  421 

In the intertidal sediments of mudflat, mangrove and reed bed at Mai Po wetland of Hong 422 

Kong, M. oxyfera-like sequences with high diversity were retrieved and analyzed (Chen et al. 423 

2015b), which indicating that the pmoA gene-amplified sequences in MP wetland clustered 424 

within both freshwater and marine subclusters, and were different from the so far reported 425 

n-damo communities in other two coastal environments (Shen et al. 2014c; Zhu et al. 2015). 426 

Community structures based on detected 16S rDNA sequences from dry season samples 427 

distributed between the freshwater and marine groups toward the environmental changes in 428 

PCoA plots, while those using amplified pmoA gene sequences grouped with the marine ones 429 

only (Chen et al. 2015b). This observation on n-damo is mirrored the observation made at the 430 

same site on anammox bacteria for its community composition shift between seasons due to 431 

the ocean or terrestrial dominance in dry or wet seasons, respectively (Han and Gu 2015; Li 432 

et al. 2011). Community of n-damo may respond to anthropogenic influence in a similar but 433 

competitive fashion as anammox in coastal ecosystem (Han and Gu 2015).  434 

 435 

Marine sediments 436 
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As a newly identified contributor to both N and C cycles, little information is known about 437 

the diversity and distribution of n-damo bacteria in the marine environments. Marine M. 438 

oxyfera-like sequences were poorly reported in published papers or GenBank database. Even 439 

less studied is on the correlation of possible n-damo bacterial community and the associated 440 

environmental factors to allow understanding of their relationship with environmental 441 

variables. In the South China Sea (SCS) sediments sampled in the inner continental shelf, 442 

outer continental shelf, the slope and the deep abyss, M. oxyfera-like sequences were 443 

retrieved by applying the specific PCR primers of 16S rRNA and pmoA genes (Chen et al. 444 

2015a; Chen et al. 2014). The reconstructed phylogeny using amplified 16S rDNA sequences 445 

showed that none of the SCS sequences belonged to the Group a where the M. oxyfera 16S 446 

rDNA gene clustered within, but the majority of them grouped into clade e (Chen et al. 2015a; 447 

Chen et al. 2014). Amplified 16S rDNA sequences from surface sediments showed a higher 448 

alpha diversity and formed more sub clusters compared with those from the subseafloor, 449 

while retrieved pmoA gene sequences had lower diversity and richness compared with the 450 

obtained 16S rDNA sequences (Chen et al. 2014). On the other hand, the SCS n-damo pmoA 451 

gene sequences distinctively clustered within three newly identified clusters, which contained 452 

none of the sequences amplified from the freshwater habitats and were tentatively named as 453 

SCS-1, SCS-2 and SCS-3 (Chen et al. 2014). The analysis of the beta diversity based on 454 

amplified 16S rRNA and pmoA gene sequences together with those available in the GenBank 455 

database indicated that marine n-damo bacterial communities had a clear difference from 456 

those recovered in freshwater environments (Chen et al. 2015a; Chen et al. 2014). The gene 457 

copy numbers of n-damo bacterial 16S rRNA gene in SCS sediments ranged from 1.6×105 to 458 



 

- 22 - 

1.4×108 gene copies per gram dry sediment (Jing Chen and Ji-Dong Gu, unpublished data). 459 

NOx
- significantly and positively correlated with 16S rDNA Group a and pmoA gene Cluster 460 

SCS-2, when NH4
+ showed a directly adverse effect on the community structure based on 461 

either recovered 16S rRNA or pmoA genes-amplified sequences (Chen et al. 2014). This 462 

information of n-damo in SCS also showed similar information of anammox as previously 463 

observed in that unique species of anammox Ca. Scalindua zhenhei I, II and III were 464 

discovered (Hong et al. 2011). Nitrate/nitrite-driven AOM was questioned for their roles in 465 

marine habitats (Orcutt et al. 2011). Molecular evidences on existence of n-damo bacteria in 466 

coastal and marine environments now suggest the potential role of n-damo process in coastal 467 

and deep-sea sediments (Chen et al. 2015a; Chen et al. 2014; Chen et al. 2015b; Shen et al. 468 

2014c; Zhu et al. 2015). 469 

 470 

The diversity of n-damo bacteria based on pmoA gene in the environments 471 

The amplified pmoA gene sequences of M. oxyfera-like bacteria were retrieved from 472 

GenBank database and summarized in Table 4. Fastgroup II (Yu et al. 2006) was applied to 473 

calculate the OTU, Shannon-Wiener and Chao1 based on percentage sequence identity of 474 

95% pmoA gene sequences. Jiaojiang Estuary (Shen et al. 2014c), Qiantang River (Shen et al. 475 

2013) and Jiaxing constructed wetland (Zhu et al. 2015) had much higher Shannon-Wiener 476 

and Chao 1 indexes compared with other samples. Lake Biwa, reed bed, Yellow River, Panjin 477 

swamp, two paddy fields and XZ wetland showed very limited alpha diversity of n-damo 478 

bacterial community (Han and Gu 2013; Hu et al. 2014; Kojima et al. 2012; Wang et al. 2012; 479 

Zhu et al. 2015). Generally, the Shannon-Wiener indexes of pmoA gene sequences recovered 480 
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from paddy soils were significantly lower than in other environmental habitats. Meanwhile, 481 

the diversity and richness based on amplified n-damo pmoA gene sequences in different lakes 482 

and rivers varied drastically, which implied the niche adaptation of n-damo bacterial 483 

community. Furthermore, Shannon-Wiener and Chao1 index of Pearl River samples collected 484 

in winter were higher than those in summer, but the alpha diversity of Jiaxing constructed 485 

wetland decreased in the winter samples, suggesting the complex effect of seasonal change 486 

on the n-damo diversity in different environments. On the other hand, the alpha diversity of 487 

n-damo bacterial community in the South China Sea sediments was lower than those in lake 488 

and river sediments. In addition, n-damo enrichments had a relatively higher OTU numbers 489 

than some pristine environments, where only one OTU was obtained. 490 

 491 

Future Perspectives and Trends 492 

Despite the fast development of n-damo study in recent years, the documentation and 493 

knowledge of n-damo process and the microbial species responsible for it are still largely 494 

limited. It is important and necessary to conduct further investigations to advance our 495 

knowledge in the following directions. 496 

 497 

Marine enrichment of halophilic n-damo microbes 498 

There is still no culture of n-damo bacteria from either the shallow or deep-sea sediments 499 

with salinity of up to 34-36‰. For further understanding the ecophysiology, biochemsitry and 500 

metabolisms of marine n-damo bacteria, it is important to obtain such cultures of n-damo 501 

bacteria from the marine sediments, especially the aphotic and pelagic zones. Enrichment 502 
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cultures are basis for further research from characterization, phylogenetics, ecophysiology, 503 

biochemistry to gene expression and evolutionary analysis to allow understand of this group 504 

microorganisms more comprehensively from single cell to global climate change. 505 

 506 

The development of specific PCR primers 507 

It is apparent that there is a limitation of marine n-damo enrichment and the poor 508 

understanding of them in the ocean. Recent works added a large amount of marine M. 509 

oxyfera-like sequences into the GenBank database (Chen et al. 2015a; Chen et al. 2014). 510 

However, the low coverage of the applied primer sets in this work was consistently 511 

encountered (Chen et al. 2015a). It is urgent to develop additional specific PCR primers that 512 

can be applied to marine sample with high efficiency and specificity.  513 

On the other hand, n-damo bacteria involve in two significant pathways of aerobic methane 514 

oxidation and denitrification under anaerobic condition. As far as known to us, the specific 515 

PCR primers for n-damo bacterial detection are limited to 16S rRNA and pmoA genes. It is 516 

interesting and important to investigate PCR primers targeting other genes unique to n-damo 517 

bacteria. 518 

Successful enrichment of n-damo microbes from other ecosystems, like marine sediments, 519 

will pave the way for genome sequencing of the specific bacteria involved. The sequences 520 

can be used in effective design of new PCR primers used for further amplification of n-damo 521 

from a wide range of environmental samples. Through genome information, it is also possible 522 

to decipher the genes involved in n-damo biochemical processes and to identify any novel 523 

genes in this microorganism. 524 
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 525 

The contribution of n-damo process in coastal and ocean environments 526 

Anaerobic methane oxidation tied to denitrification is largely overlooked in marine 527 

environments. The popular investigation of anaerobic methane oxidation in coastal and ocean 528 

sediments focused on sulfate reduction as the electron acceptor. The contribution of n-damo 529 

process is not reported in neither coastal nor ocean ecosystems. Therefore, it is meaningful to 530 

perform quantification of the n-damo activity in marine ecosystems to obtain the rate and flux 531 

and a comparison with other methane oxidation or denitrification/nitrification processes to 532 

identify their role in the nitrogen and carbon cycles. 533 

 534 

Investigation of n-damo bacteria in other marine ecosystems 535 

The understanding of n-damo bacterial diversity and distribution is currently confined in the 536 

west Pacific region of the South China Sea (Chen et al. 2015a; Chen et al. 2014; Chen et al. 537 

2015b) and the coastal areas of the East China Sea and Bohai Sea (He et al. 2015a; Shen et al. 538 

2014c; Zhu et al. 2015). It is important to study n-damo bacteria in other marine sediments or 539 

unique wetlands to further understand their diversity and contribution to the C and N cycling 540 

in aquatic ecosystems. 541 

Current available techniques, including pyrosequencing, transcriptomics, metabolomics and 542 

single cell sequencing, can advance research on this topic significantly in the near future with 543 

the selection of a research niche for the n-damo to be focused on. It is clear that enrichment 544 

and possible pure culturing will be the major obstacle and bottleneck to further research and 545 

development. Any pure culture of n-damo will allow a great leap in the research on this topic. 546 
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However, other approaches can also be used to assess the transformation processes and rates 547 

in samples of interest to obtain important data on contribution of n-damo to the overall 548 

transformation rate of CH4 and NO2
-. At the same time, it is also necessary to recognize the 549 

relationship between n-damo and other microorganisms, e.g., anammox bacteria, in the 550 

natural ecosystems. Co-existence of them may have significant biological basis even though 551 

the relationship may be a competitive one through the common substrate NO2
-.  552 
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