
Permanent WRAP URL:
http://wrap.warwick.ac.uk/86436

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0) license and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by-nc-sa/4.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Short Communication to British Journal of Cancer

Title: Discrepancies in central review re-testing of patients with ER positive and HER2 negative breast cancer in the OPTIMA prelim randomised clinical trial.

Authors: SE Pinder¹, AF Campbell², JMS Bartlett³, A Marshall², D Allen⁴ M Falzon⁵, JA Dunn², A Makris⁶, L Hughes-Davies⁷, RC Stein⁸ on behalf of OPTIMA Trial Management Group.

1. Division of Cancer Studies, King’s College London, London, UK
2. Warwick Medical School, University of Warwick, Coventry, UK
3. Ontario Institute of Cancer Research, Toronto, ON, Canada
4. UCL-Advanced Diagnostics, University College London, London, UK
5. Department of Pathology, University College London Hospitals, London, UK
6. Department of Clinical Oncology, Mount Vernon Cancer Centre, Mount Vernon Hospital, Northwood, UK
7. Oncology Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundations Trust, Cambridge, UK
8. Department of Oncology, University College London Hospitals, London, UK

Corresponding author:
Professor Sarah E Pinder
Professor of Breast Pathology
Division of Cancer Studies
King’s College London
3rd Floor, Bermondsey Wing
Guy’s Hospital
Great Maze Pond
LONDON
SE1 9RT
Tel: 020 7188 4260
Sarah.pinder@kcl.ac.uk
Abstract:

Background: There is limited data on results of central re-testing of samples from patients with invasive breast cancer categorised in their local hospital laboratories as oestrogen receptor (ER) positive and human epidermal growth factor receptor homologue 2 (HER2) negative.

Methods: The Optimal Personalised Treatment of early breast cancer using Multiparameter Analysis preliminary study (OPTIMA prelim) was the feasibility phase of a randomised controlled trial to validate the use of multiparameter assay directed chemotherapy decisions in the UK National Health Service (NHS). Eligibility criteria included ER positivity and HER2 negativity. Central re-testing of receptor status was mandatory.

Results: Of the 431 patients tested centrally, discrepant results between central and local laboratory results were identified in only 19 (4.4%; 95% confidence interval 2.5%-6.3%) patients (with 21 tumours). On central review, seven patients had cancers that were ER negative (1.6%) and/or HER2 positive (13 (3.2%) patients with 15 tumours); including one tumour discrepant for both biomarkers.

Conclusion: Central re-testing of receptor status of invasive breast cancers in the UK NHS setting shows a high level of reproducibility in categorising tumours as ER positive and HER2 negative and raises questions regarding the costs and the value of central re-testing in this sub-group of breast cancers in this setting.

Keywords: Breast cancer; oestrogen receptor; HER2
Introduction
Oestrogen receptor (ER) and human epidermal growth factor receptor homologue 2 (HER2) are established biomarkers in invasive breast cancer and form the backbone of clinical decision making related to targeted therapies in the adjuvant setting. Although data from external quality assurance schemes (such as UK NEQAS ICC), successful participation in which is mandatory for UK laboratories, indicates good performance for testing these receptors nationally, there is relatively little published evidence comparing local results to central re-testing of local ER and HER2 expression in large clinical trial datasets. In particular, information from central laboratory testing/validation of series of invasive breast carcinomas that have been designated as ER positive and HER2 negative is limited; reports have largely described data from central re-testing of breast cancers which have been recorded as HER2 positive in local laboratories, such as in the Breast Intergroup Trial N9831 [Roche 2002][Suman 2006]. However, some of these publications have indicated alarming proportions of discrepancy in defining HER2 positivity. There are fewer publications comparing central repeat testing of hormone receptors from clinical trial samples but Viale et al examined 6291 of 8010 tumours from women in BIG1-98 and found that central review confirmed 97% of tumours were hormone receptor-positive (defined as ER and/or PgR > or = 10%) [Viale 2007]. Using tissue microarrays (TMAS) of tumours from 4,598 samples from patients in the Tamoxifen and Exemestane Adjuvant Multinational (TEAM) trial, 219 contained insufficient tumour and 12 were ineligible for other reasons, but of the remainder only 42 + 14 were ER negative (1.2%) [Bartlett 2011].

The accuracy of defining hormone receptor positive and HER2 negative invasive breast cancer in local centres is clearly vital for patient management outside of the clinical trial setting, but also has significant resource and cost implications within randomised trials where ER and/or HER2 are critical components of eligibility. The question remains whether local biomarker results are sufficiently robust to allow trialists to avoid the costly re-analysis of biomarkers in central laboratories to confirm patient eligibility. To address this question we have examined data in the UK setting within OPTIMA prelim.

Material and methods:
The Optimal Personalised Treatment of early breast cancer using Multiparameter Analysis preliminary study (OPTIMA prelim) (ISRCTN42400492) was the feasibility phase of a randomised
controlled trial designed to validate the use of multiparameter assay directed chemotherapy
decisions in the UK National Health Service [Bartlett 2013][Stein 2016][Bartlett JM et al. 2016].
Patients were aged ≥ 40 years at entry with surgically treated ER positive, HER2 negative primary
invasive breast cancer, with 1 to 9 involved axillary nodes or, if node negative, a tumour of at
least 30mm in maximum dimension. Patients were randomised to standard care (chemotherapy
followed by endocrine therapy) or an Oncotype DX® test (Genomic Health Inc., Redwood City,
CA, USA) was performed on the surgically resected tumour to assign patients either to standard
care (if ‘recurrence score’ (RS) was > 25), or to endocrine therapy alone (if RS was ≤ 25). In this
feasibility study, ER and HER2 were both reassessed by a central laboratory (UCL Advanced
Diagnostics) after registration into the trial to confirm eligibility prior to randomisation.

ER was assessed centrally by immunohistochemistry (6F11; Leica Biosystems) and an Allred
score of 3 or more was regarded as positive, as per national guidance at that time [Harvey JM et
al. 1999]. If central ER results were discordant with the local report, and there was any doubt,
the assay was repeated with a second antibody (EP1, Dako). HER2 was re-assessed centrally with
dual-color dual-hapten brightfield in situ hybridisation (DDISH) (Ventana Medical Systems) and,
as per UK national guidelines, a ratio of Her2 to chromosome 17 centromeric probe (CEP17) of
2.00 - 2.20 was considered to represent borderline/positive gene amplification, whilst a ratio of
Her2:CEP17 of >2.20 was regarded as Her2 gene amplification [Bartlett et al, 2011]. If DDISH
proved unsuccessful, FISH was attempted using the HER2 PathVysion probe (HER2 PathVysion;
Abbott Molecular). Her-2 Immunohistochemistry (4B5; Ventana Medical Systems) was applied
in cases where no result was achievable by either HER2 ISH technique.

Results
Between October 2012 and August 2014, 442 patients were registered into OPTIMA prelim, but
11 patients were subsequently withdrawn prior to central testing. Thus a total of 431 patients
had their tumours tested centrally. Nineteen patients with 21 tumours, showed discrepancies
in receptor status between local and central laboratories results (4.4%; 95% confidence interval
(CI) 2.5%-6.3%). The remaining 412 patients (95.6%) with concordant results went on to be
randomised into OPTIMA prelim.
Seven tumours in 7 patients (1.6%) were found to be ER negative on central re-testing (Table 1). Two of the 7 were heterogeneous, with an uncommon admixture of ER negative and ER positive cells identified in the surgically excised tumour. Two appear to represent true errors in local laboratory tests; as local laboratory re-testing on the same sample found the tumours to indeed be ER negative. For one patient with 2 eligible tumours and 1 ineligible tumour on central review, only the core biopsy was examined locally. Two other cases are unexplained regarding the reason for the discordance.

In total 15 tumours in 13 patients (3.0%) from the total 431 patients tested centrally were discrepant for HER2 results (Table 2). One patient had one tumour that was centrally categorised as ER negative and also showed Her2 amplification (ratio of Her2:CEP17 = 3.59). Seven others also showed Her2 amplification (ratio of Her2:CEP17 ranged from 2.39-3.92). An additional patient had one tumour that was Her2 amplified and one tumour that was borderline amplified (ratio of Her2:CEP17 = 2.78 and 2.11, respectively). The remaining four patients had tumours showing borderline Her2 gene amplification (ratio between 2.00-2.20); including one patient with two tumours both showing borderline amplification. Only three of the 15 tumours demonstrated what some consider ‘high-level’ gene amplification (ratio >3.00) [Starczynski 2012] and none what others have described as ‘high-grade’ amplification (ratio >/=4.00) [Seol 2012].

Discussion

Central re-testing of HER2 positive breast cancers has shown high levels of variability in some clinical trials; for example, HER2 positivity was only confirmed in 85.8% of 2,535 patients in the North Central Cancer Treatment Group N9831 intergroup adjuvant trial [Perez EA et al 2006]. Some of these trials, however, pre-date stringent guidelines for HER2 assessment and reporting and the reasons for discordance is often not clear. The value of central re-testing of breast cancers defined locally as HER2 negative as an eligibility criterion for other, more recent, clinical trials has not been well studied. Outwith clinical trials generally lower degrees of discrepancy, have been reported [Vani K 2008][Kaufman 2014]; for example, Kaufman et al identified that only 4% of 552 patients with metastatic HER2 negative carcinoma (defined locally) in a large observational cohort were HER2 positive on central re-testing [Kaufman 2014]. These data are
essentially similar to the results in our UK clinical trial where 4.4% of tumours defined locally as HER2 negative were HER2 positive on central re-analysis.

These data highlight that approximately 3% of patients could be being excluded from HER2 directed therapies due to a potentially faulty local result in real-world testing in the UK. However, of note, we report here the proportion of cases that are discordant between local and central laboratory testing. Although for 2 cases, repeat re-testing of the same samples locally confirmed the tumour was ER negative (rather than ER positivity as initially reported), for others it is only possible to record that the other results were “discordant”. It is not per se the case that the central laboratory is correct and the local laboratory inaccurate.

Central repeat testing of hormone receptor status from clinical trial samples have reported similar, albeit slightly higher, levels of difference between local and central laboratories than we have found. Viale et al. [Viale 2007] examined 6291 of 8010 tumours from women in BIG1-98 and found that central review confirmed 97% of tumours were hormone receptor-positive, although this incorporated both ER and progesterone receptor and with different cut-offs than applied as routine in the UK (i.e. defined as ER and/or PgR > or =10%). Indeed, the authors note that, of 105 carcinomas that were reported locally as ER negative, 73 had >10%, and eight had 1% - 9% positive cells. This highlights the difficulty of non-standard definitions globally for hormone receptor positivity and the need for pathologists, as well as all other members of the multidisciplinary team, to be aware of study protocols and definitions.

Notwithstanding that these results compare favourably to the (albeit limited) published data, there are a number of possible explanations for discrepant results between local and central laboratories. Additional challenges include variation in methodology (for example, immunohistochemistry Vs fluorescence in situ hybridisation (FISH) Vs chromogenic in situ hybridisation (DDISH) for assessment of HER2 status), as well as differences in the antibody clones used, variation in the material assessed (cores Vs surgical excision specimens) and pathologist interpretation. It is well recognised that variation between core biopsy specimens and surgical excision is uncommon (<2% of cases showing heterogeneity) [Arnedos 2009][Lee 2012], although this clearly does occur and may potentially explain variations in receptor status if different specimens are submitted for central testing than examined locally. Indeed, this variation appears to explain at least 3 of the 7 cases with discrepant ER status in this study.
These potential discrepancies are all applicable even if the central review is undertaken in ‘real time’, i.e. prior to patient randomisation as in OPTIMA prelim. Nevertheless, particular care must be taken when analysing historical data on ER status, even in meta-analysis of clinical trials or when comparing to present day results; data extracted from local reports may be based on entirely different methodologies; Collins et al examined (on TMA) 1851 cases where tissue and histology reports were available and highlighted that in 82% of the cases the original assays were biochemical. Even where immunohistochemistry was applied both locally and centrally as the technique of choice, agreement was only 92% for ER status (310 of 336 specimens) [Collins 2008]. Again, the 1.6% difference seen in OPTIMA prelim compares favourably.

Despite all the potential technical and interpretive differences in biomarker analysis, the results from OPTIMA prelim indicate good concordance between local laboratories and central re-testing centre in the UK in classification of invasive breast cancers as ER positive and HER2 negative. Such re-testing in large randomised clinical trials recruiting thousands of patients is very expensive and, in the setting of this group of patients (as opposed to HER2 positive disease, for example, where discrepancies may be higher), the value is questionable.

References:

Arnedos M, Nerurkar A, Osin P, A'Hern R, Smith IE, Dowsett M (2009). Discordance between core needle biopsy (CNB) and excisional biopsy (EB) for estrogen receptor (ER), progesterone receptor (PgR) and HER2 status in early breast cancer (EBC). Ann Oncol. 20:1948-52

from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial. J Clin Oncol. 24(19):3032-8

Acknowledgements: OPTIMA prelim (ISRCTN42400492) was funded by the National Institute for Health Research Health Technology Assessment Programme (project 10/34/01). The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Health Technology Assessment Programme, NIHR, NHS or the Department of Health.

Conflicts of Interest: None to declare
Table 1: Details of the 7 patients (from 431 patients registered and tested centrally) with discrepant oestrogen receptor results.

<table>
<thead>
<tr>
<th>Patient</th>
<th>CENTRAL ER RESULTS</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ER Status</td>
<td>Allred score</td>
</tr>
<tr>
<td>A</td>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>Patient</td>
<td>HER2 STATUS</td>
<td>Her2: CEP17 ratio</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>D</td>
<td>Amplified</td>
<td>3.59</td>
</tr>
<tr>
<td>H</td>
<td>Borderline amplified</td>
<td>2.00</td>
</tr>
<tr>
<td>I1*</td>
<td>Borderline amplified</td>
<td>2.14</td>
</tr>
<tr>
<td>I2*</td>
<td>Borderline amplified</td>
<td>2.06</td>
</tr>
<tr>
<td>J</td>
<td>Borderline amplified</td>
<td>2.20</td>
</tr>
<tr>
<td>K</td>
<td>Amplified</td>
<td>2.70</td>
</tr>
<tr>
<td>L</td>
<td>Amplified</td>
<td>2.39</td>
</tr>
<tr>
<td>M</td>
<td>Amplified</td>
<td>2.81</td>
</tr>
<tr>
<td>N</td>
<td>Amplified</td>
<td>3.23</td>
</tr>
<tr>
<td>O1*</td>
<td>Amplified</td>
<td>2.78</td>
</tr>
<tr>
<td>O2*</td>
<td>Borderline amplified</td>
<td>2.11</td>
</tr>
<tr>
<td>P</td>
<td>Amplified</td>
<td>2.45</td>
</tr>
<tr>
<td>Q</td>
<td>Amplified</td>
<td>2.64</td>
</tr>
<tr>
<td>R</td>
<td>Amplified</td>
<td>3.92</td>
</tr>
<tr>
<td>S</td>
<td>Borderline amplified</td>
<td>2.11</td>
</tr>
</tbody>
</table>
Table 2: Details of the 15 discrepant tumours (13 patients) for human epidermal growth factor receptor homologue 2 (HER2) status.

Amplified: human epidermal growth factor receptor homologue 2 (HER2) to chromosome 17 centromeric probe (CEP17) ratio >2.20;
Borderline amplified: HER2 to CEP17 ratio 2.00-2.20;
*G1 & G2, and N1 & N2, are tumours from the same patient respectively.