Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Learning based forensic techniques for source camera identification

Tools
- Tools
+ Tools

Li, Ruizhe (2016) Learning based forensic techniques for source camera identification. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Li_2016.pdf - Requires a PDF viewer.

Download (8Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3057779~S1

Request Changes to record.

Abstract

In recent years, multimedia forensics has received rapidly growing attention. One challenging problem of multimedia forensics is source camera identification, the goal of which is to identify the source of a multimedia object, such as digital image and video. Sensor pattern noises, produced by imaging sensors, have been proved to be an effective way for source camera identification. Precisely speaking, the conventional SPN-based source camera identification.has two application models: verification and identification. In the past decade, significant progress has been achieved in the tasks of SPN-based source camera verification and identification. However, there are still many cases requiring solutions beyond the capabilities of the current methods. In this thesis, we considered and addressed two commonly seen but less studied problems.

The first problem is the source camera verification with reference SPNs corrupted by scene details. The most significant limitation of using SPN for source camera identification.is that SPN can be seriously contaminated by scene details. Most existing methods consider the contaminations from scene details only occur in query images but not in reference images. To address this issue, we propose a measurement based on the combination of local image entropy and brightness so as to evaluate the quality of SPN contained by different image blocks. Based on this measurement, a context adaptive reference SPN estimator is proposed to address the problem that reference images are contaminated by scene details.

The second problem that we considered relates to the high computational complexity of using SPN in source camera identification., which is caused by the high dimensionality of SPN. In order to improve identification.efficiency without degrading accuracy, we propose an effective feature extraction algorithm based on the concept of PCA denoising to extract a small set of components from the original noise residual, which tends to carry most of the information of the true SPN signal. To further improve the performance of this framework, two enhancement methods are introduced. The first enhancement method is proposed to take the advantage of the label information of the reference images so as to better separate different classes and further reduce the dimensionality. Secondly, we propose an extension based on Candid Covariance-free Incremental PCA to incrementally update the feature extractor according to the received images so that there is no need to re-conduct training every time when a new image is added to the database. Moreover, an ensemble method based on the random subspace method and majority voting is proposed in the context of source camera identification.to tackle the performance degradation of PCA-based feature extraction method due to the corruption by unwanted interferences in the training set.

The proposed algorithms are evaluated on the challenging Dresden image database and experimental results confirmed their effectiveness.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software
T Technology > T Technology (General)
Library of Congress Subject Headings (LCSH): Image processing -- Digital techniques., Computer crimes -- Investigation., Data protection., Multimedia systems., Forensic sciences., Digital images., Identification.
Official Date: March 2016
Dates:
DateEvent
March 2016Accepted
Institution: University of Warwick
Theses Department: Department of Computer Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Li, Chang-Tsun
Extent: ix, 142 leaves : illustrations (colour), charts (colour).
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us