Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/87953

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Superconductivity in Weyl semimetal candidate MoTe$_2$

Yanpeng Qi1, Pavel G. Naumov1, Mazhar N. Ali2, Catherine R. Rajamathi1, Walter Schnelle1, Oleg Barkalov1, Michael Hanfland3, Shu-Chun Wu1, Chandra Shekhar1, Yan Sun1, Vicky Süss1, Marcus Schmidt1, Ulrich Schwarz1, Eckhard Pippel4, Peter Werner4, Reinald Hillebrand4, Tobias Förster5, Erik Kampert5, Stuart Parkin4, R.J. Cava2, Claudia Felser1, Binghai Yan1,6 & Sergey A. Medvedev1

Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS$_2$), recently discovered unexpected properties of WTe$_2$ are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe$_2$, MoTe$_2$, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe$_2$ exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

1 Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany. 2 Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA. 3 European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France. 4 Max Planck Institute of Microstructure Physics, 06120 Halle, Germany. 5 Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany. 6 Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany. Correspondence and requests for materials should be addressed to B.Y. (email: Yan@cpfs.mpg.de) or to S.A.M. (email: Sergiy.Medvediev@cpfs.mpg.de).
Transition metal dichalcogenides (TMDs) have attracted tremendous attention due to their rich physics and promising potential applications. TMDs share the same formula, MX$_2$, where M is a transition metal (for example, Mo or W) and X is a chalcogenide atom (S, Se, and Te). These compounds typically crystallize in many structures, including 2H-, 1T-, 1T'-, and Td-type lattices. The most common structure is the 2H phase, where M atoms are trigonal-prismatically coordinated by the chalcogenide atoms. These planes then stack on one another with van der Waals gaps in between. In contrast, the 1T structure corresponds to octahedral coordination of M. The 1T' phase is a monoclinic lattice that can be interpreted as a distortion of the 1T' phase by the formation of in-plane M–M bonds, resulting in a pseudo-hexagonal layer with zigzag metal chains. Finally, the Td phase is very similar to the 1T' phase, but the layers stack in a direct fashion, resulting in a higher-symmetry orthorhombic structure. Depending on the synthesis technique, the same composition of MX$_2$ can crystallize in a variety of structures with very different electronic properties. For example, MoTe$_2$ exists in 2H, 1T', and Td structures, while WTe$_2$ has commonly been observed in the Td structure. The 2H and 1T compounds are primarily semiconducting, whereas the 1T' and Td compounds are typically semimetallic.

Very recently, semimetallic TMDs have attracted considerable attention because of the discovery of salient quantum phenomena. For instance, Td-MoTe$_2$ has commonly been observed in the Td structure. The 2H and 1T compounds are typically semiconducting, whereas the 1T' and Td compounds are typically semimetallic.

Thus, MoTe$_2$ presents the opportunity to study the interaction of topological physics and superconductivity in a bulk material.

The discovery of superconductivity in WTe$_2$ is apparently contradictory to previous theoretical predictions, which claim that 2H TMDs may become superconducting at high P, but the 1T' phases will not. Thus the investigation of other TMDs for the appearance of superconductivity under pressure is of big interest. Molybdenum ditelluride (MoTe$_2$) is unique among the TMDs since it is the only material that can be grown in both 2H and 1T' forms, allowing for direct examination of this theory. If superconductivity exists in 1T'-MoTe$_2$, it may allow the topological edge states to also become superconducting because of the proximity effect in a bulk superconductor. This would open up a new platform for the study of topological superconductivity, which has potential application in quantum computation.

Here, we report on the transport properties of the 2H, 1T' and Td polytypes of MoTe$_2$ under various applied P. We find that Td-MoTe$_2$ exhibits superconductivity with T$_c$ = 0.10 K, according to electrical resistivity (ρ) measurements. Application of relatively low pressures below 1 GPa dramatically enhances the T$_c$, and a dome-shaped T$_c$-P phase diagram is observed with maximum T$_c$ = 8.2 K at 11.7 GPa; this is ~80 times larger than the ambient pressure value. In contrast, we do not observe any traces of superconductivity in the 2H phase, even when it becomes metallic under P. We assume that the extreme sensitivity of the superconductivity to P is a consequence of the unique electronic structure. Thus, MoTe$_2$ presents the opportunity to study the interaction of topological physics and superconductivity in a bulk material.

Results

Structure and transport properties at ambient pressure. Prior physical properties measurements, synthesized 1T'-MoTe$_2$

Figure 1 | MoTe$_2$ crystal structure. (a) HAADF-STEM image of 1T'-MoTe$_2$ along the [100] zone (scale bar, 0.5 nm). The red rectangle shows HAADF simulated image, and the red and blue spheres in the yellow rectangle represent Te and Mo atoms, respectively. (b) Corresponding electron diffraction images. (c) 1T' and Td-MoTe$_2$ crystal structures. (d) Energy-volume dependence for 1T' and Td phases from DFT calculations.
samples were structurally characterized (Fig. 1) using single-crystal x-ray diffraction (SXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The atomic arrangement of the 1T’ structure was determined using high-resolution HAADF-STEM images and diffraction patterns, as shown in Fig. 1a,b and Supplementary Fig. 1a,b. The crystal structures of 1T’ and T_d-MoTe_2 are sketched in Fig. 1c. At room temperature, the crystals exhibit the expected monoclinic 1T’-MoTe_2 structure, while the SXRD measurements at 120 K indicate a transition into the orthorhombic T_d structure. The 1T’-MoTe_2 structure crystallizes in the P2_1/m space group with lattice parameters of a = 6.320 Å, b = 3.469 Å, c = 13.86 Å and β = 93.917°; these results are consistent with the previously reported structure. The Raman spectra at ambient P contain two characteristic peaks (Supplementary Fig. 1c), which are due to the A_g and B_g vibrational modes of the 1T’-MoTe_2 structure; this is also in agreement with a previous report. A full structural solution was obtained for the orthorhombic T_d phase at 120 K, the refined parameters are given in Supplementary Tables 1 and 2.

Temperature dependence of electrical resistivity of MoTe_2 down to a minimum temperature of T_min = 0.08 K at ambient pressure is presented in Fig. 2. In contrast to the 2H phase, 1T’-MoTe_2 is semimetallic in nature. At zero field, the room-temperature resistivity is \(\rho = 1.0 \times 10^{-5} \Omega \text{m} \), which decreases to 2.8 \times 10^{-7} \Omega \text{m} at 0.25 K, yielding a residual resistance ratio (RRR) \(\approx 36 \). At T ≈ 250 K an anomaly with thermal hysteresis (Fig. 2a, inset) is observed, which is associated with the first-order structural phase transition from the 1T’ to the T_d polytype. A range of magneto-transport properties has been measured at zero pressure on our MoTe_2 crystals (Supplementary Figs. 2–4 and Supplementary Note 1). From Hall effect measurements, MoTe_2 shows dominant electron-type transport. Within a single-band model the electron concentration \(n_e \) is estimated to 5 \times 10^{19} \text{cm}^{-3} at 2 K and 8 \times 10^{20} \text{cm}^{-3} at 300 K (Supplementary Fig. 2), which is close to reported values. In addition, T_d-MoTe_2 gradually becomes superconducting below T ≈ 0.3 K (the onset of transition), while zero resistance is observed at \(T_c = 0.10 \) K (Fig. 2b). Note that, although potential superconductivity at \(\approx 0.25 \) K in MoTe_2 has been briefly mentioned in the literature, no related data have been published.

1T’-T_d structural transition under pressure. It is well known that high pressure can effectively modify lattice structures and the corresponding electronic states in a systematic fashion. Hence, we measured \(\rho(T) \) for the same 1T’-MoTe_2 single crystal at various pressure values P (Fig. 3). Figure 3a shows the typical \(\rho(T) \) curves for P up to 34.9 GPa. For increasing P, the metallic characteristic becomes stronger and \(\rho \) decreases over the entire temperature range. At low pressures, resistance curves exhibit an anomaly at a temperature \(T_a \) associated with the monoclinic 1T’-orthorhombic T_d structural phase transition similarly to the ambient pressure data. With pressure increase, the resistivity anomaly becomes less pronounced whereas the temperature of anomaly \(T_a \) is significantly shifted to lower T and disappears completely above 4 GPa. Thus, the application of P tends to stabilize the monoclinic phase. In addition, the Raman spectra recorded at room temperature under different pressures (Fig. 4a) contain only two characteristic peaks for the 1T’-structure A_g and B_g modes. The frequencies of both vibrational modes increase gradually with no discontinuities as P increases (Fig. 4b) indicating the absence of major structural phase transition in the whole studied pressure range at room temperature. The SXRD data (Fig. 4c and Supplementary Fig. 5) also indicate that application of pressure stabilizes the monoclinic 1T’ structure. Increase of P at room temperature results in enhancement of monoclinic distortion (increase of the monoclinic angle \(\beta \)). In an isothermal run at 135 K the reversible orthorhombic T_d to monoclinic 1T’ transition is observed at \(\approx 0.8 \) GPa (\(\approx 0.4 \) GPa) at pressure increase (decrease) (Fig. 4c). Thus, application of P well below 1 GPa decreases the temperature of structural transition to below 135 K. Furthermore, at P \(\approx 1.5 \) GPa, the 1T’ structure remains stable down to at least 80 K. The quantitative discrepancy in the \(T_c \) values derived from structural and resistivity data is most likely due to nonhydrostatic pressure conditions in the resistivity measurements, and the thermal hysteresis since the resistivity curves are recorded with increasing temperatures.

The stability of MoTe_2 in different phases can be explained using total energy calculations within density-functional theory (DFT). The optimized lattice constants are very close to experimental values for both phases, as shown in Supplementary Fig. 6 and Supplementary Table 3. After evaluating the total energies of the two phases at ambient pressure, we found that the T_d phase exhibits slightly lower energy (0.5 meV per formula unit) than the 1T’ phase. This is consistent with the fact that the low- and high-T phases are T_d and 1T’, respectively, without external pressure. As the 1T’ phase can be obtained by sliding between layers of the T_d phase, the former exhibits a slightly
Figure 3 | Transport properties of 1T-MoTe$_2$ as a function of pressure. (a) Electrical resistivity as a function of temperature for pressures of 0.76 – 34.9 GPa. The anomaly associated with the structural transition is completely suppressed with increasing pressure. (b,c) Electrical resistivity as a function of temperature for pressures of 0.7 – 11.7 and 11.7 – 34.9 GPa, respectively. Clear electrical resistivity drops and zero-resistance behaviour are apparent. T_c increases under increasing pressure and a dome-shaped superconducting phase in pressure–temperature space is observed for the maximum superconducting transition temperature corresponding to $T_c = 8.2$ K at 11.7 GPa. (d) Temperature dependence of resistivity under different magnetic fields of up to 3 T at 11.2 GPa. (e) Temperature dependence of MoTe$_2$ upper critical field H_{c2}. T_c is defined as temperature at which resistivity drops to 90% of its residual value in normal state. The red curve is the best least squares fit of the equation $H_{c2}(T) = H_{c2}^0(1-T/T_c)^{1+2}$ to the experimental data.
The Raman spectra contain two characteristic peaks due to the Ag and Bg vibrational modes of the 1T\(^{-}\) (filled blue circles)/decompression (open blue circles) run at 135 K. The values of Raman frequencies increase of the monoclinic distortion with pressure, whereas reversible orthorhombic T\(_d\)–monoclinic 1T\(^{-}\) frequencies in average values obtained from several Raman spectra (XRD patterns) collected from different areas across the sample. The error bars for Raman frequencies in b and monoclinic angle in c at each pressure are average values obtained from several Raman spectra (XRD patterns) collected from different areas across the sample. The error bars for Raman frequencies in b and monoclinic angle in c due to s.d. are smaller than the symbols size.

The dome-shaped superconductivity behaviour. Our pressure studies have revealed that the \(T_c \) is very sensitive to pressure. That is, \(T_c \) increases dramatically to 5 K at relatively low pressures below 1 GPa, before beginning a slower increase to a maximum \(T_c \) of 8.2 K at 11.7 GPa (Figs 3b and 5). Beyond this pressure, \(T_c \) decreases and no superconductivity with \(T_c > 1.5 \) K is found at \(P > 34.9 \) GPa (Fig. 3c). Remarkably, the drastic increase of \(T_c \) at low pressures is associated with a sharp decrease of the 1T\(^{-}\)–T\(_d\) structural phase transition temperature \(T_s \). Subsequently at higher pressures, \(T_c \) still increases to its maximum value with increasing \(P \) but with significantly lower rate. Our findings demonstrate that the strong enhancement of \(T_c \) at relatively low \(P \) is associated with suppression of the 1T\(^{-}\)–T\(_d\) structural phase transition. All the characteristic temperatures in the above experimental results are summarized in the \(T\)–\(P \) phase diagram in Fig. 5. A dome-shaped superconducting phase boundary is obtained for MoTe\(_2\), with a sharp slope towards the zero-\(P \) end of the diagram.

The bulk character of the superconductivity is confirmed by observations of the magnetic shielding effect in the low pressure range and at 7.5 GPa (Supplementary Fig. 7). The onset temperatures of the diamagnetism are consistent with that of the resistivity drop and confirm the drastic increase of \(T_c \) in the low pressure range (Fig. 5). Further, we conducted resistivity measurements in the vicinity of \(T_c \) under \(P = 11.2 \) GPa is gradually suppressed with increasing field.
Deviating from the Wertherman–Helfand–Hohenberg theory based on the single-band model, the upper critical field, $H_{c2}(T)$, of MoTe$_2$ has a positive curvature close to T_c ($H = 0$), as shown in Fig. 3e. This is similar to the behaviours of both WTe$_2$ (ref. 18) and NbSe$_2$ (ref. 32). The experimental $H_{c2}(T)$ data can be described within the entire T/T_c range by the expression $H_{c2}(T) = H_{c2}^0(1-T/T_c)^{2/3}$ (refs 18,33). The fitting parameter $H_{c2}^0 = 4.0$ T can be considered as the upper limit for the upper critical field $H_{c2}(0)$, which yields a Ginzburg–Landau coherence length $\xi_0(0)$ of ~9 nm. The corresponding data obtained at P = 1.1 GPa is also shown in Fig. 3e. It is also worth noting that our estimated value of $H_{c2}(0)$ is well below the Pauli–Clogston limit.

We repeated the high-pressure experiments using different crystal flakes. Similar superconducting behaviour with almost identical T_c was observed. For comparison with 1T’-MoTe$_2$, we also measured $\rho(T)$ for the 2H-MoTe$_2$ single crystal at various pressure values. We found a pressure-induced mettallization at 15 GPa (Supplementary Fig. 8), which is consistent with previous theoretical predictions 22. However, in contrast, we did not detect any signature of superconductivity in the 2H phase for pressures up to 40 GPa.

Discussion
For MoTe$_2$, the superconducting behaviour in the low- P region clearly differs from that in the high-P region. Under quite low P, the sharp increase in T_c is concomitant with a strong suppression of the structural transition, which is reminiscent of observations for other superconductors with various kinds of competing phase transitions. The drastic increase of the T_c occurs within the T_d phase, which is shown by DFT calculations to be a Weyl semimetal (Supplementary Fig. 9a and Supplementary Note 2) with a band structure around the Fermi level, which is extremely sensitive to changes in the lattice constants 24,34. Thus, one can expect that dramatic structural and electronic instabilities emerge in the low- P region, which may account for the strong enhancement of T_c. At high pressure, the topologically trivial (due to inversion and time reversal symmetry) 1T’ phase (Supplementary Fig. 9b and Supplementary Note 2) remains stable in the whole temperature range. Although within this phase T_c still increases to its maximum value, the rate of the increase is significantly lower and this growth is naturally explained by the increase of the electronic density of states at the Fermi level in the 1T’ phase (Supplementary Fig. 9c).

Thorough exploration of superconductivity in MoTe$_2$ from both experimental and theoretical perspectives is required.

Methods

Single-crystal growth. 1T’-MoTe$_2$ crystals were grown via chemical vapour transport using polycrystalline MoTe$_2$ powder and TeCl$_4$ as a transport additive 35. Molar quantities of Mo (Sigma Aldrich 99.99%) were ground in combination with 1/4 molar of Te (Sigma Aldrich 99.99%) and 1/4 molar of TeCl$_4$. The mixture was then charged into a quartz ampoule, which was then flushed with Ar, evacuated, and heated in a two-zone furnace. Crystalization was conducted at (1210) 1000 to (1210) 900 °C. The quartz ampoule was then quenched in ice water to yield the high-temperature monoclinic phase. The obtained crystals were silver-gray and rectangular in shape. 2H-MoTe$_2$ crystals were grown using a similar method, but without quenching.

Structural and transport measurements at ambient pressure. The structures of the MoTe$_2$ crystals were investigated using SXRD with Mo K_{α} radiation. To analyse the atomic structure of the material, HAADF-STEM was performed. The dependence of the electrical resistivity ρ on temperature T was measured using a conventional four-probe method (low-frequency alternating current, Physical Property Measurement System (PPMS), Quantum Design). Temperatures down to 0.8 K were achieved using a home-built adiabatic demagnetization or stage. The pulsed magnetic field experiments were conducted at the Dresden High Magnetic Field Laboratory (Helmholtz-Zentrum Dresden-Rossendorf, HLD-HZDR).

Experimental details of high-pressure measurements. A non-magnetic diamond anvil cell was used for P measurements under P values up to 40 GPa. A cubic BN/diamond mixture was used for the insulating gaskets and Pt foil was employed in the electrical leads. The diameters of the flat working surface of the diamond anvil and the sample chamber were 500 and 200 μm, respectively. The initial sample thickness was ~40 μm. Electrical resistivity at zero magnetic field was measured using the dc current in van der Pauw technique in a customary cryogenic setup (lowest achievable temperature 1.5 K). The resistivity values were defined as an average of five successive measurements at constant temperature. Resistivity measurements in magnetic field were performed on PPMS. Pressure was measured using the ruby scale 26 by measuring the luminescence from small chips of ruby placed in contact with the sample.

Magnetization was measured on MoTe$_2$ ($m = 3.1$ mg) in a pressure cell ($m = 170$ mg) for $P \leq 0.7$ GPa and $T \geq 0.5$ K (Quantum Design Magnetic Property Measurement System (MPMS), iQanum 3He insert). Shielding (after zero-field cooling) and Meißner effect curves (in field-cooling) were recorded. The high-P Raman spectra were recorded using a customary micro-Raman spectrometer with a HeNe laser as the excitation source and a single-grating spectrograph with 1 cm$^{-1}$ resolution. Raman scattering was calibrated using Ne lines with an uncertainty of ±1 cm$^{-1}$.

High-pressure diaphragm experiments have been performed at ID9/19 synchrotron spectrometer with a HeNe laser as the excitation source and a single-grating spectrograph with 1 cm$^{-1}$ resolution. Raman scattering was calibrated using Ne lines with an uncertainty of ±1 cm$^{-1}$.

DFT calculations. DFT calculations were performed using the Vienna Ab-initio Simulation Package with projected augmented wave potential 18,39. The exchange and correlation energy was considered at the generalized gradient approximation level for the geometry optimization 24, and the electronic structure was calculated using the hybrid functional (HSE06) 41. Spin–orbital coupling was included in all calculations. Semi-empirical 19–21 parameterizations were included via a pair-wise force field of the Grimme method 42. In the lattice relaxation, the volumes were fixed while lattice constants and atomic positions were optimized. The pressure was derived by fitting the total energy dependence on the volume with the Murnaghan equation 43. After checking the k convergence, the $24 \times 12 \times 8$ and $7 \times 5 \times 3$ k-meshes with Gaussian-type smearing were used for the crystallographic gradient approximation (Supplementary Fig. 10) and HSE06 calculations, respectively. The band structures, density of states and Fermi surfaces were interpolated in a dense k-mesh of 200 \times 200 \times 200 using the maximally localized Wannier functions 44 extracted from HSE06 calculations.

References

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11038 | www.nature.com/naturecommunications

