Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/88159

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher statement:
© 2017 American Physical Society

Published version: http://dx.doi.org/10.1103/PhysRevB.95.184504

A note on versions:
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. Please see the ‘permanent WRAP url’ above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Normal state above the upper critical field in Fe$_{1+y}$Te$_{1-x}$(Se,S)$_x$

Aifeng Wang (王爱峰), 1 Erik Kampert, 2 Ha Sadaoui, 3 H. Luetkens, 3 Rongwei Hu (胡荣伟), 1† E. Morenzoni, 3 J. Wosnitza, 2, 4 and C. Petrovic 1

1 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
2 Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany
3 Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
4 Institut für Festkörperphysik, TU Dresden, D-01062, Dresden, Germany

(Dated: March 31, 2017)

We have investigated the magnetotransport above the upper critical field (H_{c2}) in Fe$_{1.4}$Te$_{0.7}$Se$_{0.3}$, Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$, Fe$_{1.05}$Te$_{0.86}$Se$_{0.14}$, and Fe$_{1.06}$Te$_{0.86}$Se$_{0.14}$. The μSR measurements confirm electronic phase separation in Fe$_{1.06}$Te$_{0.86}$Se$_{0.14}$, similar to Fe$_{1+y}$Te$_{1-x}$Se$_x$. Superconductivity is suppressed in high magnetic fields above 60 T, allowing to gain insight into the normal-state properties below the zero-field superconducting transition temperature (T_c). We show that the resistivity of Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ and Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ above H_{c2} is metallic as $T \rightarrow 0$, just like the normal-state resistivity above T_c. On the other hand, the normal-state resistivity in Fe$_{1.05}$Te$_{0.86}$Se$_{0.11}$ and Fe$_{1.06}$Te$_{0.86}$Se$_{0.14}$ is nonmetallic down to lowest temperatures, reflecting the superconductor-insulator (SIT) transition due to electronic phase separation.

PACS numbers: 74.81.-g, 74.25.F-, 74.70.Xa

I. INTRODUCTION

It is important to understand the normal state of iron-based superconductors since the mechanism of conductivity carries the information about the interactions and correlations in the electronic system out of which superconductivity develops. The conductivity, however, is often connected with crystal lattice imperfections or defects. Granular Al-Ge films host superconducting Al islands embedded in an amorphous Ge matrix. In underdoped copper oxides such chemical (crystallographic) phase separation on two space groups is absent; yet the inhomogeneous hole concentration induces nanoscale phase separation into superconducting domains and electronically distinct background. Both granular aluminum and underdoped copper oxides feature metallic state above zero-field T_c. Magnetic-field induced breakdown of superconductivity is expected to give rise to a metallic state below the zero-field T_c in a conventional superconductor. However upon applying pulsed magnetic fields, SIT was revealed log-T nonmetallic resistivity that is unrelated to SIT. Such studies are also infrequent for FeSe-based superconductors. Yet due to complexity of nanoscale inhomogeneity iron-selenide materials offer an opportunity to correlate conducting states below zero-field T_c in high magnetic fields with the aspects of crystal structure. K_xFe$_{2-y}$Se$_2$ superconductors feature crystal structure that is phase-separated in two space groups where electronic phase separation comes naturally in superconducting islands immersed in an insulating matrix, just like in granular aluminum. On the other hand and similar to copper oxides, Fe$_{1+y}$Te$_{1-x}$Se$_x$ superconductors exhibit electronic phase separation below zero-field T_c whereas their crystal structure is chemically inhomogeneous but not phase separated since they crystallize in one space group with defects and interstitial atoms irrespective of Se/Te ratio. Whereas SIT has been reported in doped K_xFe$_{2-y}$Se$_2$, the nature of conducting states below zero-field T_c for $H > H_{c2}$ is still unknown in Fe$_{1+y}$Te$_x$(Se,S).

The normal-state resistivity reflects the electronic structure underlying the high-temperature superconductivity and hints at the origin of its mechanism. It is of interest to understand the normal state of FeCh (Ch = S, Se, or Te) in high magnetic fields since FeCh tetrahedra constitute potential building-blocks of high-temperature superconductivity. Bulk β-FeSe superconductors below 8.5 K can be enhanced up to 15 K by Te doping in bulk Fe$_{1+y}$Te$_{1-x}$Se$_x$ or up to about 30 K by pressure or in K_xFe$_{2-y}$Se$_2$. FeSe films on SrTiO$_3$ have shown T_c as high as 100 K.

The doping-phase diagrams of Fe$_{1+y}$Te$_{1-x}$Se$_x$ and Fe$_{1+y}$Te$_{1-x}$S$_x$ indicate a superconducting dome as a function of Se or S doping on Te site. They also suggest an electronic phase separation below zero-field T_c in superconducting and magnetic volume fractions.
This allows for investigation of SIT in FeSe superconductors with no crystallographic phase separation inherent to $K_xFe_{2-y}Se_2$.

In this work we have examined normal state in high magnetic fields when superconductivity is suppressed for $x = 0.14$ sulfur and $x = 0.11, 0.30, 0.39$ of Se substitution. We compare the normal-state transport below zero-field T_c in high magnetic fields for materials with different normal-state transport above T_c (metallic vs. nonmetallic) and with different amount of interstitial Fe which favors Kondo-type scattering. These crystals exhibit a different electronic phase separation below zero-field T_c. The volume fractions of superconductivity are about 1% for $x = 0.11$ Se, about 10% for $x = 0.30$ and $x = 0.39$ Se. We show electronic phase separation below zero-field T_c in Fe$_{1.06}$Te$_{0.86}$Se$_{1.14}$, similar to Fe$_{1+y}$Te$_{1-x}$Se$_{2}$. We also show that the normal state in Fe$_{1.05}$Te$_{0.89}$Se$_{1.11}$ and Fe$_{1.06}$Te$_{0.86}$Se$_{1.14}$ below zero-field T_c above H_{c2} is nonmetallic whereas the in-plane resistivity below T_c for Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ and Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ is metallic for $H > H_{c2}$, just like the the normal state resistivity above the T_c. In the absence of Kondo-type scattering and which is suppressed in high magnetic fields, the results for Fe$_{1.05}$Te$_{0.89}$Se$_{1.11}$ and Fe$_{1.06}$Te$_{0.86}$Se$_{1.14}$ show clear SIT behavior. This is the first observation of SIT in electronically granular Fe superconductors in the absence of crystallographic phase separation, similar to copper oxides.

II. EXPERIMENT

The single crystals used in this study were grown and characterized as described previously. Pulsed-field experiments were performed up to 61 T using a magnet with 150 ms pulse duration at the Dresden High Magnetic Field Laboratory. The magnetic field is applied parallel to the c axis to most effectively suppress superconductivity. Data were obtained via a fast data-acquisition system operating with ac current in the kHz range. The exposure of the samples to ambient conditions was minimized by handling the samples in a glove box. The contacts were made on freshly cleaved surfaces inside the glove box using silver paint and platinum wires. The elemental and micro structure analysis were performed using energy-dispersive X-ray spectroscopy in an JEOL JSM-6500 scanning electron microscope. The average stoichiometry was determined by examination of multiple points on the crystals. The measured compositions were Fe$_{1.14(2)}$Te$_{0.70(2)}$Se$_{0.30(2)}$, Fe$_{1.02(3)}$Te$_{0.61(4)}$Se$_{0.39(4)}$, Fe$_{1.05(3)}$Te$_{0.89(2)}$Se$_{1.11(2)}$, and Fe$_{1.06(3)}$Te$_{0.86(1)}$Se$_{1.14(2)}$. The error bars reflect maximum distance from the average stoichiometry (inhomogeneity). Typical crystal size was about 4x1x0.2 mm. The contact resistance was between 10 and 50 Ohms and the excitation current was 0.3 mA which corresponds to a current density of approximately 105 A/m2, ensuring the absence of resistive heating effects. Transverse-field (TF) and zero-field (ZF)-μSR experiments were carried out at the Paul Scherrer Institute (Villigen, Switzerland) on Fe$_{1.05}$Te$_{0.89}$Se$_{1.11}$ in order to detect and quantify magnetic and superconducting phases. The sample was cooled to the base temperature of 5 K in zero field for the ZF-μSR experiments. The ZF- and TF-μSR data were analyzed by using the MUSRFIT software package.

III. RESULTS AND DISCUSSION

![FIG. 1. (a) Temperature dependence of the in-plane resistivity for Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$, Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$, Fe$_{1.05}$Te$_{0.89}$Se$_{1.11}$, and Fe$_{1.06}$Te$_{0.86}$Se$_{1.14}$ single crystals. For comparison we also plot resistivity of K$_2Fe_{2-y}Se_2$.](image)

The normal-state resistivities of Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ and Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ are metallic, whereas Fe$_{1.05}$Te$_{0.89}$Se$_{1.11}$ and Fe$_{1.06}$Te$_{0.86}$Se$_{1.14}$ feature a temperature dependence of an incoherent metal (Fig. 1). The resistivity values are higher than of K$_2Fe_{2-y}Se_2$ where grain boundaries also contribute due to crystallographic phase separation. We note that the mean free path of Fe$_{1.14}$Te$_{0.91}$Se$_{0.09}$ is $l = 1.35$ nm. Assuming similar mean free path for Fe$_{1.06}$Te$_{0.80}$Se$_{1.14}$ investigated here and noting that for Fe$_{1+y}$Te$_{0.5}$Se$_{0.5}$, carrier concentration is about 2·1021 cm$^{-3}$, we see that for resistivities of about (1-2) mΩcm, Drude mean free path $l = (\hbar/2\pi\rho e^2)^{1/2}$ should be about (0.3-0.5) nm. This is comparable to interatomic spacing where resistivity should saturate. Therefore high temperature resistivity (Fig. 1) should also be affected by the Mott-Ioffe-Regel saturation similar to SrFe$_{2-y}$M$_y$As$_2$ (M=Co,Ni), in addition to localization and incoherence due to Kondo scattering.

The magnetoresistances (MR) at different temperatures for Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ and Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ are shown in Figs. 2(a) and 2(b). Superconductivity is suppressed by increasing magnetic field at fixed temperature,
and the transition in field-dependent ρ_{ab} data is shifted to lower magnetic fields with increasing temperature. We observe a finite resistance in the superconducting state of Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$, which may be caused either by experimental artifacts or by thermally activated vortex-flux motion. The upper critical fields of Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ and Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ are about 45 T, consistent with previous reports. The temperature dependence of the resistivity of Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ and Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ is presented in Figs. 2(c) and 2(d). The normal-state resistivity of Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ continues to decrease below T_c and is nearly constant between 4 and 12 K. A similar behavior was observed in Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ and FeSe, where the high-field resistivity at $T \leq 1$ K is almost temperature independent.

Figures 3(a) and 3(b) show how the superconducting transitions of Fe$_{1.05}$Te$_{0.89}$Se$_{0.11}$ and Fe$_{1.06}$Te$_{0.86}$Se$_{0.14}$ shift to low field with increasing temperature. Superconductivity is suppressed at all temperatures below zero-field T_c above 40 T, revealing a nonmetallic normal state resistivity with decreasing temperature [Figs. 3(c) and 3(d)]. We note that resistivity as a function of magnetic field near H_c is non-monotonic (Fig. 3), similar to granular Al and La$_2$−xSr$_x$CuO$_{4}$. Within the framework of SIT theory in granular electronic systems, this is due to a competition between gap opening in the density of states and enhancement of conductance due to superconducting fluctuations. In disordered InO, ultrathin TiN or granular Al-Ge films the negative MR in high magnetic fields was explained by the destruction of fluctuation-related quasilocalized superconducting pairs. In an array of superconducting grains in an insulating matrix magnetic field suppress superconductivity in individual grains. Above H_{c2}, virtual Cooper pairs can persist; they reduce density of states (DOS) and cannot travel...
between grains, thus suppressing resistivity. This is the correction to Drude resistivity due to DOS reduction. There are also Aslamazov-Larkin (transport channel via fluctuating Cooper pairs) and Maki-Thompson (coherent scattering of electrons forming Cooper pairs on impurities) corrections to Drude resistivity. However, at low temperatures and in high magnetic fields $H > H_{c2}$ the DOS reduction is dominant. This leads to a negative MR especially at fields above H_{c2} of individual grains as seen experimentally in granular Al-Ge films.

In contrast to K$_2$Fe$_2-y$Se$_2$ which features phase separation where metallic grains (I4/mmm space group) are embedded in the insulating/magnetic matrix (I4/m space group), Fe$_{1+y}$Te$_{1-x}$(Se,S)$_2$ crystalize in a single space group without crystallographic phase separation, albeit with the presence of random excess interstitial Fe, inhomogeneous Fe-(Te,Se) bond lengths [i.e., Fe(Te,Se)$_4$ tetrahedra] due to deviations of the local structure from the average and possible defects on Te site. On lowering the temperature magnetism appears before superconductivity appears in Fe$_{1+y}$Te$_{1-x}$(Se,S)$_2$; however magnetism coexists with the superconductivity only in the superconducting state below T_c and H_{c2}. In the normal state the two-phase electronic conduction is absent.

In addition to the electrical-transport measurements, we have performed μSR measurements on Fe$_{1.12}$Te$_{0.83}S_{0.11}$ in order to probe the volume fraction of superconducting and magnetic phases. The Fe$_{1.12}$Te$_{0.83}S_{0.11}$ has a similar onset T_c as Fe$_{1.06}$Te$_{0.88}S_{0.14}$ [8.6(1) K vs 8.7(1)], but lower zero-resistance T_c [3.5(1) vs 7.0(1) K] and only a small diamagnetic signal in the magnetic susceptibility indicating percolative superconductivity. Fig. 4(a) shows the temperature dependence of the amplitude of the muon spin precession asymmetry in a weak transverse field. This measurement allows us to determine the magnetic volume fraction of the sample. In a nonmagnetic environment the local field sensed by the muons is determined by the applied field and a weakly damped muon spin precession is observed. If a fraction of the sample becomes magnetic muons stopping in that environment quickly depolarize since the local field is much larger than the applied field and this fraction does not contribute to the precessing amplitude. The observed asymmetry is therefore a measure of the non-magnetic volume fraction of the sample. The drop in asymmetry [Fig. 4(a)] and the fast relaxation at early times in the zero-field polarization spectra [Fig. 4(b)] indicate a bulk magnetic transition at higher temperatures than superconducting T_c. From Fig. 4(a) we determine the transition temperature T_m (defined by the 50% drop in amplitude) to be 37 K with an onset at 50 K. The volume fraction below the transition of the magnetic phase is nearly 100%. The fact that above 50 K the asymmetry reaches only 0.22 and not 0.26 as it should be in this experimental setup means that there are some magnetic impurities (probably clusters) producing a signal loss at all measured temperatures up to room temperature. A similar effect has been observed in many Fe-based superconductors. Below \sim 15 K, the μSR signal increases reflecting a \sim 10% non-magnetic fraction below the temperature of T_c onset. This shows that superconductivity while only filamentary or localized competes with magnetism for the sample

![FIG. 4. (a) Amplitude of the precessing asymmetry signal in weak transverse field (5 mT) for Fe$_{1.12}$Te$_{0.83}S_{0.11}$. The drop of the signal indicates bulk magnetism (\~{}100% volume fraction) below 37 K. (b) Corresponding zero-field data showing the onset of magnetism below \~{}50 K. Lines are fit to the time evolution of the polarization. See text for details.](image-url)
volume. We found by μSR studies a similar filamentary superconductivity but with higher T_m (50 K for 50% drop and 70 K onset temperature) and smaller bulk magnetic fraction in Fe$_{1.12(3)}$Te$_{0.97(1)}$S$_{0.03(2)}$. Overall the results indicate that, at least in this part of the phase diagram, Fe$_{1+y}$Te$_{1-x}$S$_x$ features similar electronic granularity (phase separation) as the Se-substituted compounds below zero-field T_c.22

In the superconducting region near the SIT when $H < H_{c2}$, the resistivity of a granular superconductors behaves as $R = R_0 \exp(T/T_0)$ ("inverse Arrhenius law") due to the destruction of quasi-localized Cooper pairs by superconducting fluctuations.12 The resistivity between 10 T up to about H_{c2} (of 20–40 T) for all investigated crystals is in agreement [solid lines in Figs. 2(b), 2(d), 3(b), and 3(d)] with the bosonic SIT scenario prediction, even in Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ and Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ where resistivity saturates above 50 T below about 10 K [Fig. 2(b) and 2(d)].

![Figure 5](image_url)

FIG. 5. Values of characteristic temperature T_0 from the $R = R_0 \exp(T/T_0)$ fits for Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$, Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$, Fe$_{1.05}$Te$_{0.89}$Se$_{0.11}$, and Fe$_{1.06}$Te$_{0.86}$S$_{0.14}$ when resistivity is dominated by superconductivity in the context of SIT.

Fig. 5 shows the values of T_0 from the $R = R_0 \exp(T/T_0)$ fits for Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ [Fig. 2(c)], Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$ [Fig. 2(d)], Fe$_{1.05}$Te$_{0.89}$Se$_{0.11}$ [Fig. 3(c)], and Fe$_{1.06}$Te$_{0.86}$S$_{0.14}$ [Fig. 3(d)]. Within the scope of SIT theory the energy scale T_0 is related to the localization length ξ as $T_0 \sim \hbar^2/a\kappa \xi$ where κ is effective dielectric constant and a is the average grain size.13 As magnetic field is increased between 10 T and 30 T, the value of T_0 increases in all investigated materials. This would correspond to an decrease in localization length, perhaps from coupled clusters of grains to a single grain.13

The values of T_0 and its increase in magnetic field is higher for Fe$_{1.05}$Te$_{0.89}$Se$_{0.11}$ where superconducting volume fraction is minute (about 1%) when compared to other investigated crystals (10–20%).

Whereas magnetic domains are separate in space and coexist with superconductivity at the nano- to mesoscale in K$_x$Fe$_{2−x}$Se$_2$ and some copper oxides,17,19,63 there is evidence for the two order parameter coexistence on the atomic scale in Fe$_{1+y}$Te$_{1−x}$(Se,S)$_x$ below zero-field T_c.22 Moreover, electronic transport in the normal state above zero-field T_c in Fe$_{1+y}$Te$_{1−x}$(S) is dominated by the incoherent magnetic Kondo-type scattering that arises due to local moments entanglement with itinerant electrons.39,40,64,65 The local moments in Fe$_{1+y}$Te$_{1−x}$(Se,S)$_x$ stem from the localized iron d orbitals in Fe$^{4+}$ tetrahedra as well as from the interstitial excess Fe$^{2+}$. However, it is plausible that pulsed magnetic fields of 60 T would suppress Kondo scattering given that estimated value of Kondo temperature from scattering is about 24 K in Fe$_{1+y}$Te$_{0.9}S_0.09$ or about 60 K in Fe$_{1+y}$Te$_{0.9}Se_0.1$.39,67

The chalcogen puckering in Fe$^{4+}$ tetrahedra promotes itinerancy at the expense of localization.58,69 A high-field nonmetallic normal state below T_c has been observed in Fe$_{1.06}$Te$_{0.86}$S$_{0.14}$ (Fig. 3) which has less interstitial iron (y) (outside of Fe$^{4+}$) when compared to Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ [Fig. 2(c)] that is metallic below T_c. In the absence of Kondo-type scattering, this could suggest less localized Fe-d orbitals in Fe$^{4+}$ tetrahedra as Fe$_{1+y}$(Te,Se) than Fe$_{1+y}$(Te,S). This is consistent with smaller anion height (i.e., smaller Fe$^{2+}$ tetrahedra as well as from the interstitial excess Fe$^{2+}$).

In summary, we have investigated the normal-state resistivity of Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$, Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$, Fe$_{1.05}$Te$_{0.89}$Se$_{0.11}$, and Fe$_{1.06}$Te$_{0.86}$S$_{0.14}$ below T_c in pulsed magnetic fields. The μSR measurements confirm electronic phase separation in Fe$_{1.06}$Te$_{0.86}$S$_{0.14}$, similar to Fe$_{1+y}$Te$_{1−x}$Se$_2$. In contrast to Fe$_{1.14}$Te$_{0.7}$Se$_{0.3}$ and Fe$_{1.02}$Te$_{0.61}$Se$_{0.39}$, the normal-state resistivity in Fe$_{1.05}$Te$_{0.89}$Se$_{0.11}$ and Fe$_{1.06}$Te$_{0.86}$S$_{0.14}$ shows clear SIT behavior below zero-field T_c in high magnetic fields above H_{c2} and is also nonmonotonic near H_{c2} as expected for SIT in granular electronic systems.13

V. ACKNOWLEDGEMENTS

We thank I. Zaliznyak for useful discussions. Work at Brookhaven is supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office for Basic Energy Science (HL and CP). We acknowledge the support of HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL). CP acknowledges support by the Alexander von Humboldt Foundation.

* Present address: Department of Physics, University of Maryland, College Park, MD 20742-4111, USA.
48 P. L. Bach, S. R. Saha, K. Kirshenbaum, J. Paglione and