Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Bacterioneuston control of air-water methane exchange determined with a laboratory gas exchange tank

Tools
- Tools
+ Tools

UNSPECIFIED (2003) Bacterioneuston control of air-water methane exchange determined with a laboratory gas exchange tank. GLOBAL BIOGEOCHEMICAL CYCLES, 17 (4). -. doi:10.1029/2003GB002043 ISSN 0886-6236.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1029/2003GB002043

Request Changes to record.

Abstract

The apparent transfer velocities (k(w)) of CH4, N2O, and SF6 were determined for gas invasion and evasion in a closed laboratory exchange tank. Tank water (pure Milli-RO(R) water or artificial seawater prepared in Milli-RO(R)) and/or tank air gas compositions were adjusted, with monitoring of subsequent gas transfer by gas chromatography. Derived k(w) was converted to "apparent k(600),'' the value for CO2 in freshwater at 20degreesC. For CH4, analytical constraints precluded estimating apparent k(600) based on tank air measurements. In some experiments we added strains of live methanotrophs. In others we added chemically deactivated methanotrophs, non-CH4 oxidizers (Vibrio), or bacterially associated surfactants, as controls. For all individual controls, apparent k(600) estimated from CH4, N2O, or SF6 was indistinguishable. However, invasive estimates always exceeded evasive estimates, implying some control of gas invasion by bubbles. Estimates of apparent k(600) differed significantly between methanotroph strains, possibly reflecting species-specific surfactant release. For individual strains during gas invasion, apparent k(600) estimated from CH4, N2O, or SF6 was indistinguishable, whereas during gas evasion, k(600)-CH4 was significantly higher than either k(600)-N2O or k(600)-SF6, which were identical. Hence evasive k(600)-CH4/k(600)-SF6 was always significantly above unity, whereas invasive k(600)-CH4/k(600)-SF6 was not significantly different from unity. Similarly, k(600)-CH4/k(600)-SF6 for the controls and k(600)-N2O/k(600)-SF6 for all experiments did not differ significantly from unity. Our results are consistent with active metabolic control of CH4 exchange by added methanotrophs in the tank microlayer, giving enhancements of similar to12+/-10% for k(600)-CH4. Hence reactive trace gas fluxes determined by conventional tracer methods at sea may be in error, prompting a need for detailed study of the role of the sea surface microlayer in gas exchange.

Item Type: Journal Article
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Q Science > QE Geology
Q Science > QC Physics
Journal or Publication Title: GLOBAL BIOGEOCHEMICAL CYCLES
Publisher: AMER GEOPHYSICAL UNION
ISSN: 0886-6236
Official Date: 4 December 2003
Dates:
DateEvent
4 December 2003UNSPECIFIED
Volume: 17
Number: 4
Number of Pages: 15
Page Range: -
DOI: 10.1029/2003GB002043
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us