Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Utra-low power single crystal silicon SOI-CMOS micro-hotplate with novel temperature-modulation principle for chemical sensing.

Tools
- Tools
+ Tools

Iwaki, Takao (2007) Utra-low power single crystal silicon SOI-CMOS micro-hotplate with novel temperature-modulation principle for chemical sensing. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Iwaki_2016.pdf - Submitted Version - Requires a PDF viewer.

Download (18Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3067440~S15

Request Changes to record.

Abstract

There is great need for the widespread use of indoor gas monitors as modern hermetically-sealed domestic buildings increasingly suffer from indoor air pollution. However, neither modern technologies of gas sensors nor analytical instruments are ideally suited to this purpose. The problems of gas sensors are poor selectivity and the fact that normally they can detect only one gas, and analytical instruments suffer from their large size and high price. Therefore, the aim of the project is "to develop a novel gas sensor with low cost, low power consumption, high reliability, which can detect multiple gases with excellent selectivity" for indoor gas monitoring.

In the first part of the project, an SOI-CMOS micro-hotplate with a single crystal silicon (SCS) resistive heater was proposed, fabricated and characterised. The design obviates issues of traditional heater materials i.e. platinum is not CMOS compatible and polysilicon is not thermally stable due to its polycrystalline structure. The SCS micro-hotplate was found to have an ultra low power consumption of 11.6 mW to operate at 500°C, and an excellent reliability with less than 1% drift after 500 hour operation at 500°C.

In the second part, a novel temperature modulation technique for a carbon black/polymer composite sensor was theoretically derived based upon linear solvation and Fickian diffusion. The processing technique comprises only two steps; summing the off and on transient conductance signals from a temperature-stepped sensor, and subtracting the steady-state signal. The technique was demonstrated by applying to a carbon black/polyvinylpyrrolidone composite sensor employing the novel micro-hotplate. Identification of water. methanol and ethanol vapours was successfully demonstrated using the peak time of the resultant curve. Furthermore, quantification of those vapours was found to be possible using the height of the peaks, which was linearly proportional to the concentration.

In conclusion, a novel low-cost gas sensor has been realised that is capable of detecting more than one gas with a single sensing element and thermal modulation. This has the potential for commercial exploitation in the area of indoor air pollution monitoring.

Item Type: Thesis or Dissertation (PhD)
Subjects: T Technology > TP Chemical technology
Library of Congress Subject Headings (LCSH): Gas detectors -- Design and construction, Indoor air pollution, Volatile organic compounds -- Health aspects, Finite element method
Official Date: December 2007
Dates:
DateEvent
December 2007Submitted
Institution: University of Warwick
Theses Department: School of Engineering
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Gardner, J. W. (Julian W.), 1958- ; Covington, James A., 1973-
Sponsors: Densō (Firm)
Format of File: pdf
Extent: xiv, 147 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us