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Abstract 

The share of income held by the top 1 percent in many countries around the world 

has been rising persistently over the last 30 years. But we continue to know little 

about the relationship between the rising top income shares and human wellbeing. 

Using data from 24 countries and years ranging from 2005 to 2013 in the Gallup 

World Poll and the World Income Database, this study examines the relationship 

between top income share and different dimensions of subjective wellbeing. The 

results are mixed, with the negative relationship between top income shares and 

average life ladder being driven largely by the European sub-sample. For the 

European countries, we also document evidence that top income is statistically 

significantly associated with lower average enjoyment and being well-rested 

yesterday, and higher average stress and sadness yesterday. Overall, our findings 

suggest that, at least for individuals in Europe, an economic policy that increases 

national incomes may have significant crowding-out effect on aggregate evaluative 

wellbeing if it only increases the share of income at the very top of income 

distribution. More generally, our results highlight the complex relationships 

between income inequality and subjective wellbeing across different countries.   

JEL: D63; I3  

Keywords: top income; life evaluation; wellbeing; income inequality; World 

Income Database; Gallup World Poll 
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1. Introduction 

There is a growing concern within the social science community over the economic 

and social implications of the persistent rise in top income shares in the United States 

and in most other rich countries around the world over the last three decades. 

Although much of the recent economic research on the topic of income inequality has 

focused on the identification of the “Top 1 percent”1 and their dynamics over a long 

period of time (Atkinson, Piketty, & Saez, 2011; Burkhauser et al., 2012; Piketty & 

Saez 2014), we continue to know very little about the possible links between the 

rising share of national income accruing to the top 1 percent and aggregate subjective 

wellbeing (SWB). Does income inequality at the very top matter to the average life 

evaluation? What about the average emotional quality of everyday experience, that is, 

the frequency and intensity of experiences of joy, sadness, anger, and affection that 

make one’s life pleasant or unpleasant? In other words, are different dimensions of 

SWB correlated with the rising income shares of the richest individuals in their 

country? Although these are difficult questions, they are important to our 

understanding of the welfare implications of rising top income shares around the 

world. 

Our paper is the first of its kind to empirically link top income shares data to 

aggregate SWB across countries and time periods. Using data from the Gallup World 

Poll and the World Income Database, we first present econometric evidence showing 

that last year’s top income shares have a negative though statistically insignificant 

correlation with aggregate life evaluation this year, holding personal characteristics 

and other lagged macroeconomic variables constant. However, a closer examination 

shows that the partial correlation between top income shares and aggregate life 

evaluation is negative, sizeable, and statistically significant only for respondents in 

the European sub-sample. We also show that, at least for individuals residing in 

Europe, top income shares correlate positively and statistically significantly with 

stress yesterday, sadness yesterday, and happiness yesterday, and are negatively and 

                                                             
1 The top income literature is based on income tax records. Hence it focuses on the share of taxable 

income held by the top 1 percent of tax unit where a tax unit can be an individual or a family. The 

survey literature primarily focuses on households. See Burkhauser et al. (2012) for a discussion of this 

distinction in the context of the top income literature. 
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statistically significantly correlated with enjoyment yesterday, being well-rested 

yesterday, and worry yesterday. Overall, our results highlight the complex 

relationships between top incomes and different measures of SWB across countries in 

different continents.   

 

2. Income inequality and SWB 

2.1. Background literature 

There are several channels through which top income shares may affect aggregate 

wellbeing in a population. One theory is that an increase in income inequality – which 

is associated with a rise in top income shares – affects aggregate evaluative wellbeing 

through economic growth. Provided that the marginal propensity to save is higher for 

the rich than for the poor, a rise in top income shares should lead to an increase in 

national savings. Higher savings should, in turn, reduce the price of capital and raise 

investment, which lead to more growth (e.g., Kaldor, 1957) and an increase in income 

– and aggregate wellbeing – for a large fraction of people from those countries with 

large redistributive programs (Adelmann & Robinson, 1989).  

  By contrast, endogenous growth models have indicated that a rising income 

inequality may instead cause socio-political instability that pressures government to 

produce policies that allow private individuals to appropriate less of the returns to the 

promotion of growth activities such as accumulation of human capital and productive 

knowledge that are most beneficial for people at the bottom of the income distribution 

(e.g., Alesina & Rodrik, 1993, 1994; Persson & Tabellini, 1994; Saint Paul & Verdier 

1996). In addition to this, recent evidence in political science has shown that 

government tends to prefer policies that maintain the status quo more than 

redistributive and social transfer policies when the top income share is high (Gilens, 

2005; Enns et al., 2014). What this implies is that the net wellbeing losers from 

countries where the top income share is high are unlikely to be the rich, but the 

individuals who would have benefited the most from a government’s redistributive 

schemes.   

  There is also evidence that income inequality changes the nature of the 

political institutions and the policies that politicians pursue to balance the relative 
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wellbeing of the rich and the poor. Araujo et al. (2008) and Deaton (2013) suggest 

that income inequality is associated with the allocation of public goods related to 

health, such as immunizations and the provision of subsidized medical care. This line 

of reasoning implies that children, particularly those in households with few 

resources, will receive fewer health inputs if they grow up during periods of greater 

income inequality or grow up in countries where income inequality is persistently 

high (see, e.g., Lillard et al., 2015).   

  Given that income inequality is often associated with high poverty rates 

(Ravallion, 2001), it is also possible that observation or perception of income 

inequality heightens the fear of rising crime rates and the sense of fairness for the 

rich. Hence, the positive effect of rising top income shares on the wellbeing of the 

rich may be somewhat “crowded out” by negative externalities that are typically 

associated with rising income inequality.   

  Other theories are also possible. For example, Hirschman’s (1973) “tunnel 

effect” hypothesis, which assumes that individuals use information on other people’s 

income progression as a positive signal that their turn will come soon (similar to how 

individuals who stuck in traffic inside a tunnel interpret movements in the other lane 

of cars while their lane is still immobile), suggests that an increase in the share of 

income held by the top 1 percent could potentially have a positive effect on the 

wellbeing of the other 99 percent. Hence, the tunnel effect hypothesis predicts that the 

association between income inequality and aggregate wellbeing should be positive (or 

less negative) in countries where income mobility is high.  

  There is, however, little indication from the existing theories regarding which 

dimensions of SWB between evaluative and affective wellbeing should be affected by 

the rising income inequality. According to the study by Kahneman and Deaton 

(2010), life evaluation – which is an evaluative dimension of SWB that relates more 

to one’s life goals – has been found to be sensitive to an individual’s socio-economic 

status such as income and employment status, whereas measures of emotional 

wellbeing – which is an affective dimension of SWB that relates to more one’s 

immediate conditions and experiences – have been found to be sensitive to 

circumstances that evoke emotional responses, such as time spent commuting and 

caring for others. To the extent that income inequality correlates more with one’s 
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opportunities in life and long-term life goals via its effects on income, education, and 

health, it is likely that a rise in top income shares will be observed with a significant 

fall in the aggregate life evaluative score. On the other hand, provided that a rise in 

top income shares does not have an immediate impact on one’s immediate conditions 

and experiences, we do not expect to observe a strong correlation between top income 

shares and different emotional experiences. 

  Turning our attention to the existing empirical findings, there appears to be 

virtually zero evidence on the relationships between income inequality and measures 

of daily emotional experiences. On the other hand, there is an accumulation of studies 

suggesting that aggregate life satisfaction – which is an evaluative measure of SWB – 

tends to be low when income inequality is high (e.g., Blanchflower & Oswald, 2003; 

Alesina et al., 2004; Schwarze & Harper, 2007; Verme, 2011; Oishi & Kesebir, 2015; 

Schröder, 2016) 2 . Yet, a more careful look into the literature suggests that the 

relationship between income inequality and evaluative wellbeing may be more 

complex than what it might appear to be on the surface.  

  For example, a study by Alesina et al. (2004) shows that although European 

respondents’ life satisfaction are substantially lower in countries where income 

inequality is high, such correlation is not found across states for the American sample 

in general. Context seems to matter, however, and a closer look at the data reveals 

that the rich (top half of the income distribution) in America are inequality averse 

whereas the poor are indifferent to income inequality. The opposite is true for 

European citizens. The authors argue that these differences are expected because most 

Americans believe that they live in a highly mobile society where effort is the main 

determinant of income, which implies that most people who are not at the top of the 

income distribution can perceive any income inequality as fair. Nevertheless, their 

finding that most Americans do not dislike income inequality appears to be in contrast 

with the results obtained by Blanchflower and Oswald (2003) who use the U.S. 

General Social Survey to show that income inequality, measured by the ratio of the 

mean of the fifth earnings quintile to the mean of the first, has a negative but small 

                                                             
2
 For a recent comprehensive review of the literature, see Ferrer-i-Carbonell and Ramos (2014).  
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relationship with how happy you are these days, which is also more of an evaluative 

measure than affective measure of SWB.3 

  A study by Senik (2004) finds that the Gini coefficient is positive albeit 

statistically insignificantly different from zero in life satisfaction regressions for 

Russia. Jiang et al. (2012) find a positive and statistically significant association 

between life satisfaction of rural migrants and the Gini coefficient measured at the 

city-level in urban China. Using Latin American data, Graham and Felton (2006) 

show that happiness is highest for individuals living in medium inequality countries 

rather than in low or high inequality countries. In short, it appears that in some 

countries income inequality might in fact be good for evaluative wellbeing. 

  There is little empirical attempt in the literature to check the robustness of the 

results to different ways of measuring income inequality. With very few exceptions, 

the majority of studies in the literature use Gini as the measure of income inequality 

in the estimation of life satisfaction regression equations. Although the Gini 

coefficient is widely accepted as a measure of income inequality, it also has its own 

fair share of limitations. Since the Gini coefficients are normally derived using survey 

data, it does a very good job at capturing the income distribution for the bottom 99 

percent of the population, but a poor job (relative to tax record data) at measuring the 

top 1 percent. Additionally, the Gini coefficient gives equal weight to inequality at the 

top, middle, and bottom of the income distribution, thus making it less sensitive to 

changes at the tails compared to alternative measures of income inequality that give 

more weights to the tails of the distribution, e.g., the Theil 0 and 2 measures of 

income inequality. This would not necessarily pose a problem for researchers who are 

not concerned about changes in the income distribution at the very top. However, it 

does pose a problem when changes in the income distribution come mainly from an 

increase in the share of income held by people at the top 1 percent of the income 

distribution.  

  Another drawback of the Gini index is that their measurements obtained from 

different databases – namely, the World Income Inequality Database (WIID), the 

United Nations University and the World Institute for Development Economics 

                                                             
3 The exact survey question in the US General Social Surveys used in Blanchflower and Oswald (2003) 

is “Taken all together, how would you say things are these days? Would you say that you are very 

happy, pretty happy, or not too happy?” 
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Research (UN-WIDER), and the Luxembourg Income Study (LIS) – are often not 

comparable with one another (for a review, see Atkinson and Brandolini, 2001). 

While Atkinson and Brandolini (2001) have recommended the LIS as the best source 

for the Gini coefficients, as it employs a consistent methodology across countries for 

measuring income and calculating income inequality, its main limitation is that it 

contains very infrequent observations of income inequality across countries and time. 

For example, the LIS only contains three observations of the Gini coefficients 

between 2001-2010 for Australia, the United Kingdom, and the United States, which 

inevitably limits the scope for careful econometric analysis that allows for country-

specific dummy in the regression (Leigh, 2007). 

  The current study contributes to the literature by introducing the latest data 

from the World Incomes Database (WID) on the share of incomes held by the top 1 

percent as an alternative measure of income inequality. There are pros and cons to 

using top incomes shares data as a measure of income inequality in a subjective well-

being regression equation. First, the tax record data are imperfect. The share of 

taxable income held by a given percentile varies according to who is taxed, and the 

data are not adjusted for tax evasion and tax avoidance. Further, because the data 

measure national income inequality, the data vary only temporally and may reflect 

trends in other factors that also temporally vary, such as changes in medical 

technology.  

  These shortcomings are, however, more than counterbalanced by four 

attractive features of tax record data. First, the administrative data measure income for 

samples that over time are more consistent in whom they include than other data 

sets—because the data include all taxes paid and all tax-paying units. Second, the data 

cover information about the top part of the income distribution, which is difficult to 

capture fully in survey data. Third, the measure correlates well with a country’s Gini 

coefficient (Leigh, 2007). And fourth, the top income shares data are observed much 

more frequently than the Gini coefficient.  

  One of the key challenges in the identification and estimation of the 

coefficient of income inequality is that income inequality is a macroeconomic 

variable that rarely changes over time (and fixed across country-year units). Since 

fixed-effects model soaks up most of the explanatory power of slow-moving 
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variables, using it to estimate the effect of income inequality on SWB will likely 

result in point estimates that are highly unreliable and sensitive to changes in the 

specification (e.g., Beck, 2001; Plümper & Troeger, 2007). As a result, previous 

studies have relied almost exclusively on the between variance when carrying out 

inference on the effects of income inequality on SWB. However, these cross-section 

or random effects models, which assume a zero correlation between the income 

inequality variable and the unobserved unit effects, are likely to produce point 

estimates that are biased upward. The current study deals with the inefficiency issue 

of the fixed-effects estimator by introducing the fixed-effects filtered (FEF) estimator 

(Pesaran & Zhou, 2016) as a way to correct for the unobserved heterogeneity bias in 

the estimation of the coefficient of top income shares.  

 

2.2. Hypotheses 

Based on background literature, we set out to test the following three main 

hypotheses. 

1. Holding other things constant, aggregate life evaluation scores are, on average, 

lower in countries where the richest 1 percent holds a higher proportion of 

national income; 

2. The estimated conditional correlation between top income shares and 

aggregate life evaluation is more negative and precisely estimated in countries 

where individuals believe that they live in less mobile societies, e.g., European 

countries. 

However, we do not have a clear set of predictions for the relationships between top 

incomes and measures of affective wellbeing. Our general prediction is that the share 

of top incomes is unlikely to have a significant relationship with daily emotional 

experiences if it does not have a direct impact on how individuals spend their time on 

a daily basis.  

 

3. Data 
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Our primary data come from the Gallup World Poll (GWP). Established in 2005 by 

the Gallup Organization, the GWP continually surveys citizens in more than 150 

countries around the world and interviews approximately 1,000 residents per country. 

Respondents in the GWP are randomly selected adults 15 years of age and older and 

are nationally representative. Gallup asks each respondent the survey questions in the 

respondent’s language. The mode of the interview is telephone survey in countries 

where telephone coverage represents at least 80% of the population. Where telephone 

penetration is less than 80%, Gallup uses face-to-face interviewing.  

The GWP contains a wide range of questions about the respondent’s 

wellbeing. Life evaluation, which is a measure of a person’s thoughts about his or her 

life, is elicited using the Cantril life ladder question. The exact wording of the Cantril 

life ladder is “Please imagine a ladder/mountain with steps numbered from zero at the 

bottom to ten at the top. Suppose we say that the top of the ladder/mountain 

represents the best possible life for you and the bottom of the ladder/mountain 

represents the worst possible life for you. If the top step is 10 and the bottom step is 0, 

on which step of the ladder/mountain do you feel you personally stand at the present 

time?” The corresponding response categories range from 0 (Worst possible life) to 

10 (Best possible life). 

The GWP also asks a battery of questions on individual’s emotional 

experiences. Questions on respondents’ real-time positive experiences include, for 

example: “Did you experience the following feelings during a lot of the day 

yesterday? How about enjoyment?”, “Did you smile or laugh a lot yesterday?”, “How 

about happiness?”, “Did you feel well-rested yesterday?”  Questions on respondents’ 

real-time positive experiences include, for example: “Did you experience the 

following feelings during a lot of the day yesterday? “How about worry?”; ““How 

about stress?”; “How about anger?”; “How about sadness?” Each item is recoded so 

that positive answers are scored as a “1” and “0” if the answer is no.4 As per advised 

by Stone and MacKie (2014) and pointed to us by one of the referees, we treat each 

measure of positive and negative emotional experience separately instead of 

combining them to form one unified construct.  

                                                             
4 The small number of “don’t know” and “refused” responses are coded as missing. 
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To provide household income measurements that are comparable across 

countries, Gallup asks respondents two questions. The first asks respondents about 

their monthly income in local currency before taxes. Respondents are instructed to 

include all income from wages and salaries, remittances from family members living 

elsewhere, and all other sources. If respondents hesitate to answer or have difficulty 

answering the first question, they are then presented with a set of income ranges in 

their local currency and asked which group they fall into. Their estimates are then 

taken as the midpoint of the range. The income variable in the GWP is expressed in 

international dollars, creating using the World Bank’s individual consumption PPP 

conversion factor, which makes income estimates comparable across all countries. In 

order to get household income per capita, we divide the income variable by the 

household headcount variable in the GWP data set. 

Historical time-series data on the share of taxable national income (excluding 

capital gains) held by the top 1 percent at the country level come from the WID 

(www.wid.world). To control for movements in other country-year level variables, 

historical time-series data on standard macroeconomic control variables in SWB 

equations (Di Tella et al., 2003), i.e., GDP per capita, unemployment rates, and 

inflation rates) are obtained from the World Bank Database (www.data.worldbank.org).   

We use ten waves of the GWP (2005–2014) and restrict the sample from 150 

available countries to only those countries featured in the WID. This gives us 25 

countries – 135 country-year data points – ready for analysis at the first instance (with 

some years of data missing – see Appendix 1A), including Australia, Canada, China, 

Colombia, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Malaysia, 

Mauritius, Netherlands, New Zealand, Norway, Singapore, South Africa, South 

Korea, Spain, Sweden, Switzerland, Great Britain, the U.S.A, and Uruguay. We then 

further restrict the sample to consisting only individuals that we have data on personal 

characteristics and other macroeconomic controls, which leaves us with 97 country-

year data points (or 147,940 individual observations) in the GWP data. The average 

income share held by the top 1 percent across the entire sample is 11.92% with a 

between-country standard deviation of 3.29. However, note that the within-country 

variation is small (within-country standard deviation = 0.64) because our GWP time 

series is short. Our final sample restriction consists of observations with non-missing 

values on lagged top incomes and other macroeconomic variables. This gives us the 

http://wid.world/
http://www.data.worldbank.org/
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final sample that consists of 145,060 individual observations from 94 country-year 

data points; see Appendix 2A for the overall descriptive statistics of our sample. 

 

4. Empirical strategy 

Consider the following wellbeing regression equation: 

𝑊𝑖,𝑐𝑡 = 𝛼 + 𝑋𝑖,𝑐𝑡
′ 𝛾 + 𝑍𝑐𝑡

′ 𝛽 + 𝜋𝑐𝑡 + 𝑢𝑖,𝑐𝑡,      (1) 

where n = 1, 2, …, N; c = 1, 2, …, C; t = 1, 2, …, T; 𝑊𝑐𝑡 is aggregate self-rated 

wellbeing score (e.g., life ladder) of all individuals from country c in year t, 𝑋𝑐𝑡 is a 

vector of individual characteristics that vary by country and year; 𝑍𝑐𝑡 is a vector of 

country variables that only vary over the cross-section, ct; 𝜋𝑐𝑡 is country-year fixed 

effects. It is clear from equation (1) that, without further restrictions on 𝜋𝑐𝑡, 𝛽 cannot 

be identified even if 𝛾 is known.  

 To estimate 𝛽, we apply the FEF estimator to equation (1)5, which can be 

computed using the following two-step procedure:   

 Step 1: Using equation (1), compute the country-year fixed-effects estimator 

of 𝛾, denoted by 𝛾, and the associated residuals �̂�𝑖,𝑐𝑡, which is defined by 

�̂�𝑖,𝑐𝑡 = 𝑊𝑖,𝑐𝑡 − 𝛾𝑋𝑖,𝑐𝑡,        (2) 

Step 2: Compute the country-year averages of these residuals, �̅̂�𝑐𝑡 =

𝑁−1 ∑ �̅̂�𝑐𝑡
𝑁
𝑖=1 . Regress �̅̂�𝑐𝑡 on 𝑍𝑐𝑡 with an intercept to obtain �̂�𝐹𝐸𝐹, where 

�̂�𝐹𝐸𝐹 = [∑ ∑(𝑍𝑐𝑡 − �̅�)(𝑍𝑐𝑡 − �̅�)′

𝑇

𝑡=1

𝐶

𝑐=1

]

−1

∑ ∑(𝑍𝑐𝑡 − �̅�)(�̅̂�𝑐𝑡 − �̅̂�)
′

𝑇

𝑡=1

𝐶

𝑐=1

 

           (3) 

                                                             
5 Alternative models to FEF estimator include Fixed Effects Vector Decomposition (FEVD) (Plumper 

& Troeger, 2007) and, in the case where one or more of the time-invariant regressors are endogenous 

and there are valid instrumental variables (IVs), the Hausman-Taylor random coefficient panel data 

model (Hausman & Taylor, 1981). Given that we do not have valid IVs for our time-invariant variables 

and that the variance estimator proposed for FEVD estimator is inconsistent (Green, 2011; Breusch et 

al., 2011), our preference is to use FEF model, which has been shown to be consistent under fairly 

general conditions. In addition to this, the FEF model has been shown to produce estimates with 

extremely small bias even with N=100 (Note that N=94 in most cases in our paper). 
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and 

�̂�𝐹𝐸𝐹 = �̅̂� − �̂�𝐹𝐸𝐹
′ �̅�,        (4) 

where �̅̂� = ∑ ∑ �̅̂�𝑐𝑡
𝑇
𝑡=1

𝐶
𝑐=1 . Since 𝜋𝑐𝑡 is removed from the equation in Step 1, �̂�𝐹𝐸𝐹  is 

free from the usual unobserved heterogeneity bias. 

Pooled OLS can then be used to estimate �̂�𝐹𝐸𝐹. However, the current study 

uses the STATA code “xtfef”, which was created by Qiankun Zhou, to run our 

country-year level model.6 Finally, following a referee’s suggestion, the country-year 

variables used in the second-stage of FEF regression will be lagged by one year in 

order to avoid (or minimise) the problem of reversed causality. In addition to this, for 

ease of interpretation, all of our dependent variables are standardised to have zero 

mean and a standard deviation of 1. 

 

5. Results 

Figure 1 presents a first pass to the research question by plotting unconditional 

weighted country-year averages between the share of national income held by the top 

1 percent in year t-1 and the average standardised life evaluation in year t. It shows 

that there is a small but pronounced negative correlation between country-year 

averages of life evaluation in year t and taxable income share held by people in the 

top 1 percent in year t-1. Fitting the best line of fit produces a coefficient on the top 

income shares of −0.024 (𝑝 < 0.001) . This indicates that a 1-percentage point 

increase in the top 1 percent is associated with an average drop of 0.024 standard 

deviation in the life evaluation scale. 

 To explore the issue more carefully, we estimate life evaluation regression 

equations that adjust for possible confounding influences that also include controlling 

for (or rather, filtering out) country-year fixed effects. We do this by estimating the 

FEF model with country-year fixed effects, and report the second-stage estimation 

results in Table 1.7 In the first-stage of the FEF model, we control for a set of standard 

variables that include gender, age, age-squared, age-cubed, log of real household 

                                                             
6  The user-generated STATA code xtfef can be downloaded from Qiankun Zhou’s website at: 

http://qiankunzhou.weebly.com/research.html  
7 First-stage FEF estimates on individual characteristics can be found in Table 3A in the Appendix. 

http://qiankunzhou.weebly.com/research.html
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income per capita, employment status, education level, marital status, number of 

children, and physical health index. In the second-stage of the FEF model, we include, 

as country-year specific variables, one-year lags of the share of national income held 

by the top 1%, log of real GDP per capita, unemployment rate, and inflation rate. See 

Appendix 3A for the first-stage life evaluation estimates.    

 We begin in Column 1 of Table 1 with only the lagged top 1 percent as the 

only independent variable. Here, we can see that an increase in the share of taxable 

income held by the top 1 percent in year t-1 is negatively and statistically significantly 

associated with aggregate life evaluation in year t; a 1 percent increase in the top 

income shares is associated with a decrease in the life evaluation score of around 0.02 

standard deviation.  

However, adding other lagged macroeconomic variables seems to have 

reduced this estimated coefficient by almost a half; see Column 2. What this implies 

is that much of the conditional correlation in Column 1 between top incomes at t-1 

and aggregate life evaluation at t is confounded by the omitted lagged real GDP per 

capita variable, which has a high partial correlation with aggregate life evaluation.   

 Column 3 goes on to control for different continent dummies in the second-

stage of the FEF model. One rationale behind this is that there may be important 

clustering effects by continents, which may have confounded the estimates of 

macroeconomic effect on aggregate wellbeing. However, including continent 

dummies does very little to change the size and the statistical insignificance of the 

lagged top income shares coefficient, although it reduces the size of the lagged real 

GDP per capita coefficient and significantly increases the size of the negative 

coefficient of lagged unemployment rate. It is also worth noting that aggregate life 

evaluation is lowest in Asia, and highest in North America.  

 Our FEF estimates have so far indicated that an increase in the size of the 

income pie for the top 1 percent that came not as an expense to the respondent’s own 

income has a negative, albeit statistically insignificant, relationship with aggregate 

life evaluation. This is inconsistent with our first hypothesis, which states that 

aggregate evaluative wellbeing is likely to be sensitive to an increase in the share of 

top incomes.   
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 The second hypothesis states that the estimated conditional correlation 

between top income shares and aggregate life evaluation is more negative and 

precisely estimated in countries where individuals believe that they live in less mobile 

societies, e.g., European countries. To test this, we introduce in Column 4 a set of 

interaction terms between lagged top income shares variable and continent dummy 

variables in the second-stage of the FEF regression.  

 Looking at Column 4, we can see that the main effect of the lagged top 1 

percent is now negative and statistically significant; a 1 percent increase in the top 

income shares is associated with a decrease in the life evaluation score of around 

0.034 standard deviation. All three interaction terms are positive, two of which (Asia 

and Others) are statistically significantly different from zero at conventional levels. In 

particular, the positive interaction coefficient between lagged top incomes and 

“Others” dummy – which includes respondents in South Africa, Australia, New 

Zealand, Colombia, Mauritius, and Uruguay – is relatively sizeable when compared to 

the negative coefficient of the lagged top income shares. Hence, what these estimated 

coefficients are implying is that, while a rise in top income shares in year t-1 is 

associated with a significant drop in the aggregate life evaluation for individuals 

residing in Europe, the same cannot be said for residents in other countries in our 

data, especially those living in Asia and Latin America. This is consistent with the 

findings by Alesina et al. (2004), who find aggregate life satisfaction to be 

significantly correlated with lower aggregate life satisfaction for the Europeans but 

not for the Americans. 

 For the Europeans, the differences in average life evaluation across different 

degrees of income inequality are not small. The estimated coefficient of -0.034 is 

roughly twice the size of the estimated unemployment effect on average life 

evaluation faced by the Europeans, which is estimated to be -0.017 (not shown in the 

table).   

 What is the association between the top income shares and daily emotional 

experience? Table 2 reports the second-stage FEF estimates for different measures of 

emotional experiences – namely enjoyment, happiness, being well-rested, smile, 

worry, stress, anger, and sadness. Only the estimates obtained from the full interaction 

model, i.e., the specification used in Column 4 of Table 1, are reported. Note also 
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that, like the life evaluation variable, the dependent indicator (0,1) variables are 

standardised to have zero mean and a standard deviation of 1.  

 Looking across Table 2’s columns, we can see that the estimated main effects 

of the top income shares are statistically significant in three (out of four) positive 

emotional wellbeing regressions and three (out of four) negative emotional wellbeing 

regressions. This suggests that, for the European sample in our data, an increase in top 

income shares in year t-1 is associated with a significant decrease in enjoyment 

yesterday and being well-rested yesterday. An increase in top income shares in year t-

1 is also associated with a significant increase in stress and sadness yesterday. 

Perhaps harder to interpret, we find lagged top income shares to be associated with 

higher levels of happiness yesterday, as well as lower levels of worry yesterday, 

among the Europeans. More generally, we can conclude that rising top income shares 

have a strong partial correlation with how people in Europe report their daily 

emotional wellbeing, both positive and negative. One the other hand, given that the 

majority of the interaction terms between lagged top incomes and continent dummies 

have opposite signs to the estimated lagged top income coefficients, rising top income 

shares seem to explain very little variation in the measures of emotional wellbeing for 

countries outside Europe.  

 As a robustness check, Appendix 4A tests whether the estimated relationship 

between top income shares and life evaluation are different between males and 

females, young and old, people with high education and those with low education, 

and between the top 40% and the bottom 40% income people within each country. 

First, although it can be seen that the coefficient of top income shares is more 

negative for men than for women, for the older cohorts than the younger cohorts, for 

the low educated than for the high educated, and for the relatively poor than the 

relatively rich in the country, we cannot reject the null hypothesis that the paired 

coefficients are statistically significantly different from each other across all 

subgroups.  

 

5. Conclusions 

 

The share of income held by the top 1 percent in many countries around the world has 

been rising persistently over the last 30 years. However, little is known about how the 
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rise in top income shares may affect different dimensions of human subjective 

wellbeing. In this paper, we make one of the first empirical attempts to establish this 

link.  

 Using the latest combined data from the WID and the GWP, we explored the 

relationship between the share of taxable income held by the top 1 percent and 

aggregate evaluative and affective wellbeing. By implementing Pesaran and Zhou’s 

(2016) FEF model on the slow-moving top income shares variable, we initially show 

top income shares in year t-1 to have a negative but statistically insignificant 

conditional correlation with aggregate life evaluation in year t. We later document 

evidence that only people in Europe are significantly less tolerable of rising top 

income shares than those from other countries, which is consistent with the findings 

by Alesina et al. (2004). In addition to this, we find some statistical evidence to 

suggest that rising top income shares may have had a negative impact on how people 

in Europe spend their days, although we must admit that the results on emotional 

wellbeing are much harder to explain than those conditional correlations between top 

income shares and aggregate life evaluation. 

We believe our findings have several important implications. First, evidence 

on the relationship between top income shares and aggregate life evaluation appears 

to corroborate well with previous studies that found a negative relationship between 

Gini index and life satisfaction (e.g., Blanchflower & Oswald, 2003; Alesina et al., 

2004; Oishi & Kesebir, 2015). This implies that top income shares can potentially 

offer a good substitute for other measures of income inequality in cases where 

alternative income inequality measures are of low quality or missing, which is 

consistent with Leigh (2007).  

Second, our estimates provide a rough idea of how big the negative net effect 

of rising top income shares on the aggregate evaluative wellbeing of a society might 

be in Europe. Our ability to quantify the possible effect of top income shares on 

aggregate SWB of a population helps fuel further debate on whether income 

inequality is good or bad for society in general; as some of our estimates suggest, not 

all countries are averse to rising top income shares, e.g., countries in Asia and Latin 

America. For example, provided that we can take our estimates at their face value, 

one policy implication – at least for the government in the European countries – is 

that economic policies that raise national income may also face a significant 
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crowding-out effect on aggregate wellbeing if it only raises incomes for the very rich 

in the society. 

And finally, our successful implementation of the FEF model to the top 

income shares data means that future researchers wanting to estimate the effects of 

other slow-moving macroeconomic variables on SWB can also apply the same 

estimation method provided in the outline of this paper, as well as those provided in 

Pesaran and Zhou (2016).   

 However, our study is not without some notable limitations. First, our aim was 

primarily to document correlations in the data rather than to identify the cause and 

effect of rising top income shares on SWB. This is mainly because it is unclear what 

type of variables could serve as a valid instrumental variable for lagged top income 

shares in a SWB equation. Secondly, because the WTID and the GWP are still 

relatively new ventures, we are inevitably limited by the number of countries that 

could be matched and studied in our analysis. Third, since top income shares rarely 

change over time in our relatively short time-series, we were unable to estimate a 

model that identify whether adaptation to rising income inequality is possible (and if 

so, whether adaptation was partial or complete across countries). As both data sets 

continue to expand and include more variables and events, future research may need 

to return to these issues.      
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Figure 1: Top Income Shares and Standardised Life Evaluation 

 

Note: Each circle represents (unconditional) raw country-year averages. Data represent 94 country-

year local averages. The size of the circles reflects the number of observations used in calculating the 

average.  Subjective well-being measures are standardized to have zero mean and a standard deviation 

of 1.   
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Table 1: Estimates from the Fixed Effects Filtered Life Evaluation Model: The 

Gallup World Poll, 2005-2014 

Dependent variable:  

  

 

 Standardized mean residual life ladder in year t (1) (2) (3) (4) 

Share of taxable income held by the top 1 percent in year t-1 -.018*** -.010 -.008 -.034*** 

 
[.007] [.007] [.007] [.007] 

Ln (real GDP per capita in t-1) 
 

.345*** .145*** .201*** 

 
 

[.067] [.044] [.039] 

Unemployment rate (% of total labor force) in t-1 
 

.008 -.021*** -.025*** 

 
 

[.005] [.004] [.005] 

Inflation - consumer prices (annual %) in t-1 
 

.021 .001 -.005 

 
 

[.017] [.008] [.007] 

North America dummy 
  

.130* .205* 

 
  

[.065] [.121] 

Asia dummy 
  

-.569*** -.959*** 

 
  

[.055] [.267] 

Others dummy 
  

.087** -.432*** 

 
  

[.036] [.085] 

Top incomes in t-1 × North America dummy 
  

 .006 

 
  

 [.009] 

Top incomes in t-1 × Asia dummy 
  

 .039* 

   

 [.022] 

Top incomes in t-1 × Others dummy 
  

 .050*** 

 
  

 [.009] 

Number of groups 94 94 94 94 

Individual observations 145,060 145,060 145,060 145,060 

 

Note: ***<1%, **<5%, *<10%. The first-stage regression is reported in Table 3A in the Appendix. 
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Table 2: Estimates from the Fixed Effects Filtered Positive and Negative Emotional Experience Model: The Gallup World Poll, 2005-2014 

          Positive Emotional Experience Negative Emotional Experience 

Dependent variable:  

Standardized mean residual life ladder in year t Enjoyment Happiness 

Well-

rested 

 

Smile 

 

Worry Stress 

 

Anger 

 

Sadness 

Share of taxable income held by the top 1 percent in year t-1 -.024*** .050*** -.009** -.005 -.014** .033*** .006 .012*** 

 
[.008] [.010] [.004] [.006] [.005] [.006] [.006] [.003] 

Ln (real GDP per capita in t-1) -.237*** -.078* -.005 -.073 -.017 -.099*** -.032 .026 

 
[.060] [.043] [.032] [.043] [.029] [.030] [.027] [.016] 

Unemployment rate (% of total labor force) in t-1 -.023*** .002 .004 .001 .001 -.002 .005 .001 

 
[.003] [.004] [.003] [.002] [.005] [.002] [.003] [.002] 

Inflation - consumer prices (annual %) in t-1 -.002 -.006 .001 -.004 .002 -.010 -.019*** -.003 

 
[.009] [.008] [.005] [.006] [.006] [.007] [.006] [.004] 

North America dummy -.082 .744*** -.182 .070 .013 .113 -.204 .040 

 
[.115] [.155] [.140] [.119] [.084] [.080] [.127] [.052] 

Asia dummy .314 1.715*** .237 .744*** -.249 -.029 -.216 -.197 

 
[.370] [.277] [.176] [.273] [.174] [.284] [.187] [.141] 

Others dummy -.160 .923*** -.221*** -.045 -.180** .522*** .018 .068 

 
[.090] [.155] [.060] [.071] [.073] [.082] [.096] [.043] 

Top incomes in t-1 × North America dummy .027** -.049*** .020** .004 .008 -.006 .007 -.008** 

 
[.009] [.012] [.008] [.008] [.006] [.007] [.008] [.003] 

Top incomes in t-1 × Asia dummy -.058* -.179*** -.005 -.080*** .025 -.008 .019 .012 

 
[.035] [.023] [.016] [.024] [.014] [.022] [.015] [.012] 

Top incomes in t-1 × Others dummy .017* -.079*** .025*** .004 .017** -.050*** -.007 -.005 

 
[.010] [.014] [.005] [.007] [.007] [.008] [.008] [.004] 

Number of groups 94 80 94 94 94 90 94 94 

Individual observations 144,492 124,130 145,323 143,825 145,363 140,978 145,410 145,278 
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Note: ***<1%, **<5%, *<10%.     
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Appendix 

Table 1A: Average Top Income Shares and Subjective Well-Being by Country 

Countries 

Top 

percentile’s 

income 

share 

Life 

evaluation 

Years used in the 

analysis with a 

full set of controls 

United States 19.11 7.29 2009-2013 

 

(1.54) (1.99) 

 United Kingdom 12.89 6.91 2009-2012 

 

(0.58) (1.85) 

 France 8.53 6.69 2008-2013 

 

(0.39) (1.77) 

 Germany 13.21 6.64 2007-2011 

 

(0.45) (1.82) 

 Netherlands 6.47 7.54 2008-2012 

 

(0.18) (1.26) 

 Spain 9.00 6.58 2008-2012 

 

(0.45) (1.93) 

 Italy 9.52 6.71 2008-2009 

 

(0.14) (1.92) 

 Sweden 8.80 7.43 2008-2013 

 

(0.22) (1.61) 

 Denmark 6.01 7.81 2007-2010 

 

(0.35) (1.53) 

 China 11.69 5.07 2009-2014 

 (0.31) 1.99  

Singapore 14.15 6.56 2008-2011 

 

(0.73) (1.54) 

 Japan 10.82 6.07 2007-2010 

 

(0.34) (1.94) 

 South Africa 18.74 5.11 2009-2012 

 

(0.39) (2.09) 

 Canada 14.07 7.52 2005-2010 

 

(0.58) (1.61) 

 Australia 8.39 7.39 2008, 2010 

 

(0.35) (1.74) 

 New Zealand 8.11 7.29 2008-2013 

 

(0.49) (1.70) 

 South Korea 11.77 5.96 2007-2012 

 

(0.42) (2.14) 

 Colombia 20.26 6.21 2006-2010 

 

(0.20) (2.46) 
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Finland 8.50 7.67 2008 

 

(0.00) (1.41) 

 Ireland 10.48 7.42 2008-2009 

 

(0.09) (1.64) 

 Malaysia 9.22 5.72 2009-2012 

 

(0.20) (1.53) 

 Norway 7.78 7.61 2008 

 

(0.00) (1.53) 

 Switzerland 10.54 7.49 2009 

  (0.00) (1.67)   

Uruguay  14.33 6.34 2010-2012 

 (0.25) (2.25)  

 

Note: Standard deviations are reported in parentheses. 

Source: Estimated by authors using country-based data on top incomes from the World Top Income 

Database and individual-based data life satisfaction from the Gallup World Poll. 
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Table 2A: Descriptive Statistics, the Gallup World Poll 2006-2012 

Variables M SD Range Description 

Life evaluation 6.41 2.07 0-10 

“Please imagine a ladder/mountain with steps numbered from zero 

at the bottom to ten at the top. Suppose we say that the top of the 

ladder/mountain represents the best possible life for you and the 

bottom of the ladder/mountain represents the worst possible life for 

you. If the top step is 10 and the bottom step is 0, on which step of 

the ladder/mountain do you feel you personally stand at the present 

time?” The corresponding response categories range from 0 (Worst 

possible life) to 10 (Best possible life). 

Enjoy .79 .40 0-1 Did you experience enjoyment yesterday? 

Happiness .79 .40 0-1 Did you experience happiness yesterday? 

Well-rested .73 .44 0-1 Did you feel well-rested yesterday? 

Smile .78 .41 0-1 Did you smile or laugh a lot yesterday? 

Worry .28 .45 0-1 Did you experience a lot of worry yesterday? 

Stress .30 .46 0-1 Did you experience a lot of stress yesterday? 

Anger .14 .35 0-1 Did you experience a lot of anger yesterday? 

Sadness .15 .36 0-1 Did you experience a lot of sadness yesterday? 

Share of taxable income held by the top 1 percent 11.92 3.29 
5.44-

21.83 

Share of taxable income held by the top 1 percent at the country-

year level (in %) 

Log of household income per capita - 2010 PPP 9.00 1.32 
1.75-

14.98 Log of household income per capita, PPP-corrected at 2010 price 

Age 47.47 17.65 15-99 Age 

Male .44 .49 0-1 Male  

Employed full time for self .09 .29 0-1 Employed full time for self 

Employed PT but do not want FT job .06 .24 0-1 Employed part time but do not want full time job 

Unemployed .03 .18 0-1 Unemployed 

Employed part time but want full time job .04 .20 0-1 Employed part time but want full time job 
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Out of workforce .30 .45 0-1 Out of workforce 

Completed secondary - 3 year Tertiary School .53 .49 0-1 Completed secondary - 3 years Tertiary School 

Completed high school/college degree .23 .42 0-1 Completed high school/college degree 

Married .56 .49 0-1 Married 

Separated .01 .13 0-1 Separated 

Divorced .05 .22 0-1 Divorced 

Widowed .07 .26 0-1 Widowed 

Domestic partner .001 .03 0-1 Domestic partner 

Number of children under aged 15 .58 1.00 0-32 Number of children under aged 15 

Physical health index 76.91 25.46 0-100 Perception of one’s own health 

Country-year variables     

Country GDP per capita - current international 

price/$10,000 
3.11 1.45 .83-7.49 

Country’s sum of gross value added by all resident producers in the 

economy plus any product taxes and minus any subsidies not 

included in the value of products divided by midyear population 

divided by 10,000  

Unemployment rate (% of total labor force) 7.20 4.87 2.5-24.8 
Share of the total labor force that is without work but available for 

and seeking employment 

Inflation - consumer prices (annual %) 2.67 1.82 
-4.47-

8.09 

Annual percentage change in the cost to the average consumer of 

acquiring a basket of goods and services  
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Table 3A: First-stage FEF estimates 

Dependent variable:  

Standardized life ladder in year t 𝜷 

Male -.136*** 

 [.012] 

Age  -.093*** 

 

[.008] 

Age-squared .001*** 

 

[.000] 

Age-cubed -.000*** 

 

[.000] 

Log(real household income per capita) .117*** 

 

[.013] 

Employed full time for self -.005 

 

[.025] 

Employed PT but do not want FT job .067*** 

 

[.017] 

Unemployed -.311*** 

 

[.034] 

Employed PT but want FT job -.077*** 

 

[.032] 

Out of workforce -.063*** 

 

[.015] 

Completed secondary - tertiary School .135*** 

 

[.014] 

Completed high school/college degree .286*** 

 

[.021] 

Married .165*** 

 

[.015] 

Separated -.086*** 

 

[.031] 

Divorced -.053** 

 

[.024] 

Widowed -.021 

 

[.019] 

Domestic partner .082 

 

[.122] 

Number of children under aged 15 .035*** 

 

[.004] 

Physical health index .010*** 

 

[.000] 

Country × Year fixed effects Yes 

Number of groups 94 

Individual observations 145,060 
 

Note: ***<1%, **<5%, *<10%.  The employment status variable is standardized in the GWP since 

2010. A missing dummy variable for the missing values of this variable is included for all respondents 

prior to 2010.
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Table 4A: Estimates from the Fixed Effects Filtered Life Evaluation Model by Subsamples 

 

Dependent variable:  

Standardized mean residual life ladder in year t Male Female Age<40  Age>=40 

High 

education  

Low 

education 

Top 

40% 

income 

share in 

the 

country 

Bottom 

40% 

income 

share in 

the 

country 

Share of taxable income held by the top 1 percent in 

year t-1 -.036*** -.033*** -.027*** -.037*** -.030*** -.036*** -.026*** -.043*** 

 

[.007] [.008] [.006] [.008] [.006] [.008] [.006] [.011] 

Ln (real GDP per capita in t-1) .169*** .226*** .196*** .195*** .189*** .198*** .212*** .285*** 

 

[.046] [.037] [.045] [.039] [.031] [.040] [.050] [.036] 

Unemployment rate (% of total labor force) in t-1 -.021*** -.028*** -.023*** -.025*** -.019*** -.026*** -.027*** -.024*** 

 

[.004] [.005] [.006] [.004] [.006] [.005] [.006] [.004] 

Inflation - consumer prices (annual %) in t-1 -.006 -.005 -.009 -.002 .005 -.005 -.008 -.004 

 [.008] [.007] [.008] [.007] [.006] [.008] [.008] [.008] 

North America dummy .027 .334*** .028 .288** .211** .216 .305*** .172 

 

[.147] [.128] [.153] [.116] [.100] [.154] [.114] [.215] 

Asia dummy -1.180*** -.767*** -.938*** -.888*** -.958*** -.996*** -.735*** -.992*** 

 

[.377] [.225] [.263] [.321] [.248] [.290] [.262] [.312] 

Others dummy -.420*** -.447*** -.493*** -.377*** -.510*** -.407*** -.449*** -.358*** 

 [.088] [.093] [.082] [.090] [.073] [.089] [.092] [.116] 

Top incomes in t-1 × North America dummy .016 -.000 .010 .004 .004 .007 -.005 .015 

 

[.010] [.010] [.009] [.009] [.007] [.011] [.007] [.015] 

Top incomes in t-1 × Asia dummy .056 .023 .036 .034 .043** .040* .019 .040 

 

[.030] [.019] [.020] [.027] [.021] [.024] [.022] [.025] 

Top incomes in t-1 × Others dummy .048*** .053*** .048*** .049*** .056*** .049*** .048*** .048*** 
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[.009] [.009] [.008] [.009] [.007] [.009] [.009] [.012] 

Number of groups 94 94 94 94 94 94 93 93 

Individual observations 64,412 80,648 53,512 91,548 33,839 110,007 59,054 51,420 

 

Note: ***<1%, **<5%, *<10%. See Table 1’s notes. 

 


