Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/90561

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
The copyright to this Article is held by the Econometric Society. It may be downloaded, printed and reproduced only for educational or research purposes, including use in course packs. No downloading or copying may be done for any commercial purpose without the explicit permission of the Econometric Society. For such commercial purposes contact the Office of the Econometric Society (contact information may be found at the website http://www.econometricsociety.org or in the back cover of Econometrica). This statement must be included on all copies of this Article that are made available electronically or in any other format.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
THE IDENTIFICATION OF BELIEFS FROM ASSET DEMAND

FELIX KÜBLER
IBF, University of Zurich and Swiss Finance Institute

HERAKLES POLEMARCHAKIS
Department of Economics, University of Warwick
THE IDENTIFICATION OF BELIEFS FROM ASSET DEMAND

FELIX KÜBLER
IBF, University of Zurich and Swiss Finance Institute

HERAKLES POLEMARCHAKIS
Department of Economics, University of Warwick

The demand for assets as prices and initial wealth vary identifies beliefs and attitudes towards risk. We derive conditions that guarantee identification with no knowledge either of the cardinal utility index (attitudes towards risk) or of the distribution of future endowments or payoffs of assets; the argument applies even if the asset market is incomplete and demand is observed only locally.

KEYWORDS: Identification, beliefs, attitudes towards risk, asset prices.

1. INTRODUCTION

We consider an individual who trades in financial assets to maximize his stationary and time-separable (subjective) expected utility over two dates; and we assume that we observe how his initial date demand for consumption and assets varies with prices and wealth, while the investor’s beliefs over stochastic asset payoffs and endowments, that are unobservable, remain fixed. We investigate conditions under which one can identify the investor’s beliefs and attitudes towards risk, the cardinal utility index, from his demand for assets.

It is clear that beliefs cannot always be identified even when the support of risky endowments and asset payoffs is known. For example, if the investor has quadratic utility and no endowments in the second period, his demand for assets only depends on the first and the second moment of asset payoffs—higher moments are irrelevant, and, as a consequence, beliefs about higher moments of the distribution cannot possibly be identified.

More interestingly, if the investor has log-utility, the entire distribution matters for his utility; however, if the investor does not have (labor) endowments beyond the initial date, and if there is a single, risky asset available for trade, the demand for this asset only depends on the wealth of the investor and his discount factor; beliefs over the payoffs of the asset do not matter and cannot be identified. When the support of stochastic endowments is not known, the identification of beliefs may not be possible even if financial markets are complete. Since the observation of the demand for assets is equivalent to the observation of excess demand (but not necessarily consumption), the identification of beliefs turns out to be impossible if the cardinal utility exhibits constant absolute risk aversion.

We derive conditions on fundamentals that ensure that beliefs can be identified. Cardinal utility can always be identified (locally) from demand for date 0 consumption. Our main result is that identification is possible if the indirect marginal utilities for assets, across realizations of uncertainty, are linearly independent. We show that this condition is satisfied in a wide variety of situations. Without any assumptions on the risky assets, in the presence of a risk-free asset, beliefs over endowments and payoffs of assets can be identified if, for any \(K > 1 \) and any distinct \(\{ e_k \}_{k=1}^K \), the functions \(\{ u'(e_k + x) \}_{k=1}^K \) are linearly independent. We characterize classes of utility functions with this property, and
we provide an argument for generic identification. If the payoffs of risky assets separate uncertainty in the sense that, for any two states, some portfolio of assets has different payoffs across the two states, beliefs can be identified if the individual’s endowments are known (e.g., because they are 0 across all states) or if no derivative of cardinal utility is the product of the exponential function and some periodic function.

Moreover, we show that, if cardinal utility is analytic, in the presence of a risky asset that separates uncertainty, one can drop the assumption that utility is stationary: identification is possible even when first- and second-period cardinal utilities can be different.

While the main part of the paper focuses on a two-period model, an extension of the argument tackles models with more than two dates. In particular, identification obtains in a stationary economy when time-invariant policy functions are observable.

In conclusion, we argue that the analysis extends to the case in which only aggregate demand or the equilibrium correspondence is observable.

The identification of fundamentals is of intrinsic theoretical interest; also, it serves to formulate policy: here, imperfections, like market incompleteness, are of interest, since these imperfections render interventions desirable. And, it is essential in order to understand better paradoxes that arise in classical consumption based asset pricing. In financial markets, prices are thought to be determined by the joint probability distribution of payoffs and idiosyncratic shocks to investors, as well as their risk-preferences. Deviations of the prices of assets from these “fundamentals” are often attributed to the beliefs of investors. Perhaps most famously in Shiller (2015), unusual run-ups in asset prices are described as “irrational exuberance.” In order to investigate the extent to which asset prices are determined by fundamentals or the beliefs of investors, it is necessary to identify these beliefs from market data. It is an open question to what extent this is possible in general. We investigate this question under the strong assumption that demand is observable, but we make few assumptions on the beliefs of the investor over asset payoffs and his endowments or the structure of the asset market.

One might wonder under which conditions the assumption of observable demand is justified in practice. Our methods can potentially be applied to data obtained from laboratory experiments, as, for example, in Choi, Fishman, Gale and Kariv (2007) or Asparouhova, Bossaerts, Eguia and Zame (2015); or with modifications to market data obtained from auctions, as in Hortaçsu and Kastl (2012). In all of these cases, one obtains a finite number of observations on prices, incomes, and individual demands. With a finite set of observations, Varian (1983) provided conditions necessary and sufficient for portfolio choices to be generated by expected utility maximization with a known distribution of payoffs; which extends the characterization of Afriat (1967). For the case of complete financial markets, Kübler, Selden, and Wei (2014) refined the argument to eliminate quantifiers and obtain an operational characterization. In the same vein, Echenique and Saito (2015) extended the argument to the case of subjective expected utility where beliefs are unknown. As an extension to our main results, we show in the Supplemental Material (Kübler and Polemarchakis (2017)) that identification guarantees the convergence of preferences and beliefs constructed in Varian (1983) or Echenique and Saito (2015) to a unique profile as the number of observations becomes dense. The convergence argument implies that the error involved in recovering beliefs from finite data sets vanishes as the sample size increases.

The identification of fundamentals from observable data can be addressed, most simply, in the context of certainty; there Mas-Colell (1977) showed that the demand function identifies the preferences of the consumer, while Chiappori, Ekeland, Kübler and Polemarchakis (2004) extended the argument to show that aggregate demand or the equilibrium correspondence, as endowments vary, also allows for identification. Importantly, the
argument for identification is local: if prices, in the case of demand, or endowments, in the case of equilibrium, are restricted to an open neighborhood, they identify fundamentals in an associated neighborhood. Evidently, the arguments extend to economies under uncertainty, but with a complete system of markets in elementary securities.

Identification becomes problematic, and more interesting, when the set of observations is restricted. Under uncertainty, this arises when the asset market is incomplete and the payoffs to investors are restricted to a subspace of possible payoffs. Nevertheless, Green, Lau, and Polemarchakis (1979), Dybvig and Polemarchakis (1981), and Geanakoplos and Polemarchakis (1990) demonstrated that identification is possible as long as the utility function has an expected utility representation with a state-independent cardinal utility index, and the distribution of asset payoffs is known. Polemarchakis (1983) extended the argument to the joint identification of tastes and beliefs; but, the argument relied crucially on the presence of a risk-free asset and, more importantly, did not allow uncertainty due to future endowments.

It is interesting to note that the identification of preferences from the excess demand for commodities, which corresponds to the demand for elementary securities in a complete asset market, is, in general, not possible, as shown in Chiappori and Ekeland (2004) and Polemarchakis (1979). Here, restrictions on preferences, additive separability, and stationarity or state-independence, allow for identification even in an asset market that is incomplete.

A strand of literature in finance, most recently Ross (2015) and earlier work by He and Leland (1993), Wang (1993), Dybvig and Rogers (1997), Cuoco and Zapatero (2000), and Carr and Yu (2012), focuses on supporting prices and observations for a single realization of the path of endowments or, equivalently, on equilibrium, in an economy with a representative investor. In particular, Ross (2015) provided a simple framework where beliefs can be identified from asset prices. However, to obtain the result, he needed to assume that there is a single (representative) agent, markets are complete, and, importantly, the economy is stationary in levels as Borovicka, Hansen, and Scheinkman (2016) pointed out. In models with heterogeneous agents and incomplete financial markets or heterogeneous beliefs across agents, an individual’s consumption will never be Markovian, and, therefore, this approach cannot be extended to make any statements about individuals’ beliefs. Our approach, on the other hand, allows for identification even if consumption is not Markovian.

2. IDENTIFICATION

Dates are $t = 0, 1$, and, at each date-event, there is a single perishable good. At date 0, assets, $a = 1, \ldots, A$, are traded and they pay off at $t = 1$.

An individual has subjective beliefs over the joint distribution of asset-payoffs and his endowments at $t = 1$ that, we assume, has finite support, $\{1, \ldots, S\}$.

Consumption is x_0 at date 0, and it is x_s at state of the world $s = 1, \ldots, S$ at date 1. The individual maximizes time-separable expected utility

$$U(x_0, \ldots, x_s, \ldots) = u(x_0) + \beta \sum_{s=1}^{S} \pi_s u(x_s),$$

with the cardinal utility index, $u : (0, \infty) \to \mathbb{R}$, continuously differentiable, strictly concave, and strictly monotonically increasing, $\beta \in (0, \infty)$, and π a probability measure. Payoffs of an asset are $r_a = (r_{a,1}, \ldots, r_{a,s}, \ldots, r_{a,S})^\top$, and payoffs of assets at a state
of the world are \(R_s = (r_{1,s}, \ldots, r_{A,s}, \ldots, r_{A,s}) \). Holdings of assets, portfolios, are \(y = (\ldots, y_a, \ldots)^T \). At date 0, the endowment of the individual is \(e_0 \), consumption is numéraire, and prices of assets are \(q = (\ldots, q_a, \ldots) \); at state of the world \(s = 1, \ldots, S \), at date 1, consumption is, again, numéraire, and the endowment is \(e_s \); across states of the world, \(e = (e_1, \ldots, e_S) \).

The optimization problem of the individual is

\[
\max_{x \geq 0} u(x_0) + \beta \sum_{s=1}^{S} \pi_s u(x_s)
\]

s.t. \(x_0 + qy \leq e_0 \),
\(x_s - R_s y \leq e_s \), \(s = 1, \ldots, S \).

The demand function for consumption and assets is \((x_0, y)(q, e_0)\); it defines the inverse demand function \((q, e_0)(x_0, y)\). For a given \((\tilde{q}, \tilde{e}_0)\), we suppose that \((x_0, y)(q, e_0)\) is observable and solves the individual’s maximization problem, with \((x_0, \ldots, x_s, \ldots) \geq 0\) on an open neighborhood of \((\tilde{q}, \tilde{e}_0)\). We assume that asset demand is continuous and invertible for the observed prices and date 0 incomes. This implicitly imposes the restriction that the individual believes that the observed prices are arbitrage-free. We will make this assumption throughout the paper without stating it again. With this assumption, the observed prices and incomes are associated with an open set of observed asset holdings and date 0 consumption. We denote by \(Y \subset \mathbb{R}^A \) the projection of this set on asset holdings and by \(X_0 \) the projection on date 0 consumptions. Unobservable characteristics of an individual are the cardinal utility index, \(u: (0, \infty) \to \mathbb{R} \), the discount factor, \(\beta > 0 \), and beliefs over the distribution of future endowments and payoffs of assets, \(\pi \in \mathbb{N}, (\pi, R, e) \in \mathbb{R}_+^S \times \mathbb{R}^{AS} \times \mathbb{R}_+^S \), with \(\pi = (\ldots, \pi_s, \ldots) \) a probability measure. Does the demand function identify the unobservable characteristics of the individual? This is the question we address in this paper.

The following result establishes that the cardinal utility index can be identified over the range of observable date 0 consumption.

Lemma 1: The demand function for consumption and assets identifies the cardinal utility index \(u: X_0 \to \mathbb{R} \) up to an affine transformation.

Proof: The demand for consumption and assets is defined by the first-order conditions

\[
\beta \sum_{s=1}^{S} \pi_s u'(e_s + R_s y) = u'(x_0)q_a(x_0, y).
\]

Normalizing \(u'(\tilde{x}_0) = 1 \), at some \(\tilde{x}_0 \in X_0 \), we obtain that

\[
u'(x_0)q_a(x_0, y) = q_a(\tilde{x}_0, y) = 0,
\]

for any \(a = 1, \ldots, A \), and for all \(x_0 \in X_0 \), which identifies \(u'(x_0) \), for \(q_a(x_0, y) \neq 0 \), since inverse demand is observable.

\(\text{Q.E.D.} \)

1We assume, throughout, that, at observed prices and incomes, consumption is strictly positive. This simplifies the analysis and can, of course, be ensured by assuming an Inada condition on \(u(\cdot) \). Many of our results extend to the case of consumption on the boundary.
Remark 1: Note that if \(u(\cdot) \) is assumed to be analytic on \((0, \infty)\), the observation of demand on any open \(\mathcal{X}_0 \subset (0, \infty) \) identifies the cardinal utility on all of \((0, \infty)\); for this case, we take \(\mathcal{X}_0 \) to be equal to \((0, \infty)\) in the results that follow.

With \(u(\cdot) \) given, the unknown characteristics are \(\xi = (S, \beta, \pi, R, e) \), and the question of identification is whether, given some \(\xi \) that generates the observed demand function, there is a distinct \(\tilde{\xi} \) that would generate the same demand for assets on the specified neighborhood of prices and wealth. While we do not provide a complete answer to this question, we give conditions on admissible characteristics that ensure identification. First, note that we must obviously assume that there is a portfolio of assets that has a positive payoff in all subsequent nodes. Probabilities of nodes at which no asset pays off cannot possibly be identified. Without loss of generality, we therefore assume that \(r_{i s} > 0 \), \(s = 1, \ldots, S \). Moreover, two states for which endowments and asset payoffs are identical are taken to be the same state; that is, we assume that there are no \(s, s' \) with \((e_s, R_s) = (e_{s'}, R_{s'})\). It is clear that beliefs just depend on the distribution of endowments and asset payoffs and not on the state in which the assets pay off. To avoid the ambiguity that this introduces, we assume that \(s < s' \) if \((e_s, R_s) < (e_{s'}, R_{s'})\) in the lexicographic order.

Identification is possible if any two distinct admissible characteristics generate different demand functions. Formally, we say that the observed demand for date 0 consumption and for assets (on an open set of incomes and prices) identifies beliefs (in a set of admissible characteristics \(\Xi \)) if there are no distinct \(\xi^1, \xi^2 \in \Xi \) that, for the cardinal utility \(u(\cdot) \) recovered in Lemma 1, generate the same demand function on the observed set of prices and incomes. Our main result states that \(\xi^1 \) and \(\xi^2 \) must generate different demand functions if \([u(e_s + R_y)] \) are linearly independent for all \(s \) for which \((e_s, R_s)\) are distinct.

To state the theorem formally, define the \((n-1)\)-dimensional unit sphere, \(S^{n-1} = \{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 = 1 \} \). Recall that functions, \(\{f_i\}_{i=1}^n \), with \(f_i : \mathcal{A} \subset \mathbb{R}^m \rightarrow \mathbb{R}, i = 1, \ldots, n \), are linearly independent on \(\mathcal{A} \) if there is no \(\alpha = (\alpha_1, \ldots, \alpha_n) \in S^{n-1}, \) such that \(\sum_{i=1}^n \alpha_i f_i(x) = 0 \), for all \(x \in \mathcal{A} \).

If functions \(f_1, \ldots, f_n \) are linearly independent on some set \(\mathcal{A} \), there must exist finitely many points \(x_1, \ldots, x_N \in \mathcal{A} \) such that there is no \(\alpha \in S^{n-1} \) for which \(\sum_{i=1}^n \alpha_i f_j(x_i) = 0 \) for all \(j = 1, \ldots, N \). To see this, note that independence implies that, for any \(\bar{\alpha} \in S^{n-1} \), there is some \(\bar{x} \in \mathcal{A} \) such that \(\sum_{i=1}^n \bar{\alpha}_i f(\bar{x}) \neq 0 \). Since the function \(\sum_{i=1}^n \alpha_i f(\bar{x}) \) is continuous in \(\alpha \), there must be some open neighborhood around \(\bar{\alpha} \) such that \(\sum_{i=1}^n \alpha_i f(\bar{x}) \neq 0 \) for all \(\alpha \) in that neighborhood. Compactness of \(S^{n-1} \) then implies the result.

Defining a differential operator
\[
\Delta_k = \left(\frac{\partial}{\partial x_1} \right)^{j_1} \cdots \left(\frac{\partial}{\partial x_m} \right)^{j_m}, \quad j_1 + \cdots + j_m \leq k,
\]
we say that \(f_1, \ldots, f_n \) are differentiably linearly independent (on \(\mathcal{A} \)) if there is some \(k \geq n - 1 \) and some \(\bar{x} \in \mathcal{A} \), such that each \(f_i \) is at least \(C^k \) at \(\bar{x} \) and such that there are differential operators \(\Delta_{k_1}, \ldots, \Delta_{k_n} \), with \(k_i \leq k \), for all \(i = 1, \ldots, n \), such that the matrix
\[
\tilde{W} = \begin{pmatrix}
\Delta_{k_1}(f_1) & \Delta_{k_1}(f_i) & \cdots & \Delta_{k_1}(f_n) \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{k_1}(f_1) & \Delta_{k_1}(f_i) & \cdots & \Delta_{k_1}(f_n) \\
\Delta_{k_n}(f_1) & \Delta_{k_n}(f_i) & \cdots & \Delta_{k_n}(f_n)
\end{pmatrix}
\]
is nonsingular.
It is easy to see that, if \(f_1, \ldots, f_n \) are differentiably linearly independent on \(A \), they are linearly independent since differentiable linear independence implies that there cannot be an open neighborhood of \(\bar{x} \) and some \(\alpha \in \mathbb{R}^{n-1} \) such that \(\sum_{i=1}^{n} \alpha_i f(x_i) = 0 \) for all \(x \) in the neighborhood.

The converse is generally not true. But Bostan and Dumas (2010) showed that if the functions \(f_1, \ldots, f_n \) are analytic, then they are linearly independent if and only if they are differentiably linearly independent. In fact, in this case, one can take \(\Delta_{ki} = \Delta_{i-1} \) for all \(i = 1, \ldots, n \) and obtain the so-called Wronskian matrix of \(f_1, \ldots, f_n \). In the analytic case, this matrix is nonsingular if and only if the functions are independent.

Given characteristics \(\xi^1 = (S^1, \beta^1, \pi^1, R^1, e^1) \), \(\xi^2 = (S^2, \beta^2, \pi^2, R^2, e^2) \) \(\in \Xi \), we define the joint support \((S, \bar{e}, \bar{R}) = \Sigma(\xi^1, \xi^2) \) as \(\bar{e}_s = e^1_s, \bar{R}_s = R^1_s \) for \(s \leq S^1 \) and \(\bar{e}_s = e^2_{s-S^1}, \bar{R}_s = R^2_{s-S^1} \) for \(s > S^1 \) as well as \(S = \{1, \ldots, S^1\} \cup \{s \in \{S^1 + 1, \ldots, S^1 + S^2\} : (\bar{e}_s, \bar{R}_s) \notin \{(e_1, R_1), \ldots, (e_{S^1}, R_{S^1})\} \}. \) We also define the open set \(\mathcal{Y}_{\bar{e}, \bar{R}} = \{y \in \mathcal{Y} : (\bar{e}_s + y\bar{R}_s) \in \mathcal{X}_0, \text{ for all } s \in S \} \) of portfolios that ensure that consumption at any state of the world, \(\bar{s} \), at date 1 lies in \(\mathcal{X}_0 \).

It is now possible to give general necessary and sufficient conditions for identification.

Theorem 1—Identification: The demand function identifies the unobservable characteristics, \(u(\cdot) \), up to an affine transformation, and \(\xi \in \Xi \) if, for any \(\xi^1, \xi^2 \in \Xi \), the joint support \((S, \bar{e}, \bar{R}) = \Sigma(\xi^1, \xi^2) \) is such that the set \(\mathcal{Y}_{\bar{e}, \bar{R}} \) is nonempty, and the functions \(\{u'(\bar{e}_s + \bar{R}_s y)\}_{s \in S} \) are linearly independent on this set.

Conversely, if there are characteristics \(\xi = (S, \beta, \pi, R, e) \in \Xi \) for which \(\{u(e_s + R_s y)\}_{s=1}^{S} \) are not linearly independent on \(\mathcal{Y} \), then identification is impossible.

Proof: To prove sufficiency, first note that Lemma 1 shows identification of the cardinal utility index, \(u(\cdot) \). To show that \(\xi \in \Xi \) is identified, suppose both characteristics \(\xi^1 \) and \(\xi^2 \) rationalize observed asset demand and consider asset demand in a fictitious problem of an investor who faces states \(S \) (as defined in the theorem) in the second date. Define \(f_s(y) = u(\bar{e}_s + \bar{R}_s y) \). The first-order condition with respect to the demand for asset \(a = 1 \) (that has positive payoffs in all states) can be written as

\[
\sum_{s \in S} \beta \pi_s \bar{r}_{1s} f_s(y) = u'(x_0) q_1.
\]

We first show that the fact that this first-order condition holds on an open neighborhood uniquely determines \(\beta, \{\pi_s\}_{s \in S} \). We then argue that this implies that the demand function identifies beliefs.

As pointed out above, if the \(f_s \) are linearly independent, we can find a positive integer \(N \) and points \(y_1, \ldots, y_N \in \mathcal{Y}_{\bar{e}, \bar{R}} \) such that the system of equations

\[
\sum_{s \in S} \alpha_s \bar{r}_{1s} f_s(y_i) = 0, \quad i = 1, \ldots, N
\]

has no solution with \(\alpha \neq 0 \). Since the first-order conditions hold on the open set \(\mathcal{Y}_{\bar{e}, \bar{R}} \), we can find \(\{(x_0, q_{1i})\}_{i=1}^{N} \) such that

\[
\sum_{s \in S} \beta \pi_s \bar{r}_{1s} f_s(y_i) = u'(x_0) q_{1i}, \quad i = 1, \ldots, N.
\]

This is a linear system in \(\{\beta \pi_s\}_{s \in S} \), and it must have a unique solution. By the construction of the set of distinguishable states \(S \), if \(\xi^1 \) rationalizes the observed demand, this solution
must satisfy $\beta \pi_s = 0$ for all $s > S^1$. But then, if ξ^2 also rationalizes the observed demand, we must have $S^1 = S^2$ and $(e^1_s, R^1_s) = (e^2_s, R^2_s)$, for all $s = 1, \ldots, S^1$. Hence characteristics are uniquely identified.

To prove necessity, note that linear dependence of $\{u(e_s + R_s y)\}$ implies that there exist $\alpha_1, \ldots, \alpha_S$ such that $\sum_{s=1}^S \alpha_s u_s'(e_s + R_s y) = 0$, for all assets, $a = 1, \ldots, A$. If asset demand is rationalized for some probabilities $(\pi_1, \ldots, \pi_S) \gg 0$, then, for any ϵ, the first-order conditions can be written as follows:

$$-q_s u'(x_0) + \sum_{s=1}^S (\pi_s + \epsilon \alpha_s) r_s a u'(e_s + R_s y) = 0, \quad \text{for all } a = 1, \ldots, A.$$

For sufficiently small $\epsilon > 0$, we have that $\pi_s + \epsilon \alpha_s > 0$ for all s, and we can define alternative probabilities $\tilde{\pi}_s = (\pi_s + \epsilon \alpha_s)/(1 + \epsilon \sum_k \alpha_k)$ and appropriately adjusted $\tilde{\beta} = \beta(1 + \epsilon \sum_k \alpha_k)$ that would rationalize the same demand function. Q.E.D.

REMARK 2: Note that, in the statement of the theorem, the crucial sufficient condition requires independence of $u'(\cdot)$ across realizations of endowments. Following the proof of Lemma 1, we can fix a \tilde{x} and \tilde{y} and write

$$u'(e_s + R_s y) = \frac{q_s(\tilde{x}_0, \tilde{y})}{q_s(e_s + R_s y, \tilde{y})}, \quad s \in S.$$

This allows us to state the sufficient condition as a condition for identification on observed (inverse) demand.

The identification theorem obviously raises the question whether there are assumptions on fundamentals, either assumptions on utility or restrictions on (e_s, R_s) that guarantee independence as required.

3. ASSUMPTIONS ON FUNDAMENTALS

In this section, we use the abstract conditions in the Identification Theorem to find conditions on fundamentals that ensure identification. First, examples show that, even when the support of beliefs, (S, R, e), as well as cardinal utility, u, and the discount factor, β, are known, identification may not be possible. Note that we are concerned with the seemingly much more demanding case, where nothing is known about the beliefs of the individual; nevertheless, it shall turn out that understanding these simple examples provides the key to our general identification results.

Example 1. Suppose there is a single risky asset, second date endowments are 0, $e = 0$, cardinal utility is logarithmic: $u(x) = \ln(x)$, and $\beta = 1$. A simple computation shows that $qy = e_0/2$—the individual invests a fixed fraction of his wealth in the risky asset, and the demand for the asset is identical for all π; beliefs are not identified.

Example 2. Suppose there is a single, risk-free asset, there is uncertainty about second date endowments, $e \neq 0$, and utility exhibits constant absolute risk aversion, it is CARA, with coefficient of absolute risk aversion equal to 1, that is, $u(x) = -\exp(-x)$, and $\beta = 1$. Direct computation shows that the demand for the risk-free asset is

$$y = \frac{1}{1 + q} \left(e_0 - \ln(q) + \ln\left(\sum_{s=1}^S \pi_s \exp(-e_s) \right) \right);$$

beliefs are not identified.
There are two obvious ways to solve the problem. One can make assumptions on utility that rule out these cases; or, one can assume that there are several assets available for trade. We shall consider both in detail.

It is useful to note that, with two risky assets and with log-utility, identification might still be impossible.

Example 3. Suppose there are two risky assets, there are no endowments, \(e = 0 \), and \(u(x) = \ln(x) \) and \(\beta = 1 \). Recall that \(r_{as} \) is the payoff of asset \(a \) in state \(s \). If, for states \(s = 1, 2, \)

\[
\frac{r_{11}}{r_{12}} = \frac{r_{21}}{r_{22}},
\]

then \(r_{21}/r_{11} = r_{22}/r_{12} \), and the first-order conditions that characterize asset demand can be written as

\[
\frac{q_1}{\beta} u'(x_0) = (\pi_1 + \pi_2) \frac{1}{\theta_1 + \theta_2 \frac{r_{21}}{r_{11}}} + \sum_{s=3}^{S} \pi_s r_{1s} u'(x_s),
\]

\[
\frac{q_2}{\beta} u'(x_0) = (\pi_1 + \pi_2) \frac{1}{\theta_1 + \theta_2 \frac{r_{11}}{r_{21}}} + \sum_{s=3}^{S} \pi_s r_{2s} u'(x_s);
\]

for \(s = 1, 2 \), beliefs, \(\pi_s \), cannot be identified separately.

Motivated by this example, and to simplify the exposition, we will from now on focus on the case where a risk-free asset is available for trade. Unfortunately, the following example shows that identification might still be impossible, even if there is a risky and a risk-less asset.

Example 4. Suppose there is a risk-free asset (asset 1) and a risky asset (asset 2). Suppose \(e \neq 0 \), \(u(x) = -\exp(-x) \), and

\[
r_{21} = r_{22}, \quad e_1 \neq e_2.
\]

The first-order conditions that characterize asset demand can be written as

\[
q_1 u'(x_0) = \beta \sum_{s=1}^{S} \exp\left(-\left(\theta_1 + \theta_2 r_{2s}\right)\right) \pi_s \exp(-e_s),
\]

\[
q_2 u'(x_0) = \beta \sum_{s=1}^{S} \exp\left(-\left(\theta_1 + \theta_2 r_{2s}\right)\right) r_{2s} \pi_s \exp(-e_s);
\]

for \(s = 1, 2 \), beliefs, \(e_s, \pi_s \), cannot be identified separately.

In fact, in this example, identification is impossible even if markets are complete. As we mentioned earlier, existing results on the identification of preferences from demand do not apply when only excess demand is observable, which is the case here: since endowments are unknown, consumption is not observable.

Building on these examples, we now consider two cases. First we assume that there is only a risk-free asset, and we give conditions on cardinal utility that ensure that beliefs can be identified. We then consider the case where there is both a risky and a risk-free asset available for trade and we give conditions on admissible beliefs and cardinal utility which ensure identification.
3.1. Restrictions on Cardinal Utility

In this section, we give conditions on cardinal utility that guarantee the independence of marginal utilities as in the Identification Theorem and allow identification of beliefs only from the observation of demand for the risk-free asset. Note that, in addition to the risk-free asset, there could be risky assets available for trade. Just considering the first-order condition for the risk-free asset identifies $e_s + R_y$ for all s, and varying y then identifies R_s independently of e_s. To simplify the notation, we assume in this subsection that there is only a risk-free asset available for trade.

Analogously to the analysis above, given X_0 and Y, define for each $\xi^1, \xi^2 (S, \bar{e}) = \Sigma(\xi^1, \xi^2)$ and

$$Y_\bar{e} = \{y \in Y : \bar{e}_s + y \in X_0 \text{ for all } s \in S\}.$$

Clearly, the Identification Theorem immediately implies that, if we restrict characteristics to ensure that for all $\xi^1, \xi^2 \in \Xi$, $Y_\bar{e}$ is nonempty, beliefs can be identified if the functions $(u'(\bar{e}_s + y))_{s \in S}$ are linearly independent over $Y_\bar{e}$. In this section, we address the question whether one can find assumptions on cardinal utility that ensure this.

In order to understand why it is difficult to find general necessary and sufficient conditions, it is useful to recall that a continuous complex-valued function on \mathbb{R} is called mean periodic if it solves the integral equation

$$\int f(x + e)\, d\mu(e) = 0$$

for some (nonzero) measure with compact support, μ (see Schwartz (1947)). Restricting ourselves to measures with finitely many points in their support, it is easy to see that

$$\sum_{i=1}^{K} \alpha_k f(x + e_k) = 0$$

if $f(x) = \exp(\lambda x)$ and λ is a (complex) root of $\sum_{i=1}^{K} \alpha_k \exp(\lambda e_k) = 0$. Denoting all complex roots by $\lambda_1, \ldots, \lambda_n$ and denoting by m_j the multiplicity of λ_j, it follows that $f(x) = \sum_{j=1}^{n} p_j(x) \exp(\lambda_j x)$ solves (2) whenever each $p_j(\cdot)$ is a polynomial of degree less than m_j. Therefore, the real-valued solutions to (2) can be both the sum of products of polynomials and the exponential function as well as trigonometric functions, and a general characterization is difficult; Remark (iii) in Laczkovich (1986) gives a concrete example.

The following proposition identifies classes of utility functions that allow for identification together with restrictions on beliefs.

PROPOSITION 1: Beliefs can be identified under any of the following conditions on characteristics:

1. For all $\xi^1, \xi^2 \in \Xi$, $Y_\bar{e}$ is nonempty, and there exists an analytic function, $f : (a, b) \rightarrow \mathbb{R}$, with $X_0 \subset (a, b)$, that coincides with $u'(\cdot)$ on X_0 and is unbounded in the sense that $\|f(x)\| \rightarrow \infty$, as $x \rightarrow a$ or as $x \rightarrow b$.

2. Cardinal utility is C^m, $m > 1$, at all but finitely many ‘critical points’ in X_0, and, for each $\xi^1, \xi^2 \in \Xi$, one of the following two conditions holds:
 a) There is a largest ‘critical point’, $\tilde{x} \in X_0$, at which $u(\cdot)$ is not C^m, and we have $\tilde{x} - \bar{e}_s \in Y_\bar{e}$, for all $s \in S$.
(b) There are (at least) K critical \tilde{x}_i at which $u(\cdot)$ is not C^m with
\[\tilde{x}_i - \bar{e}_s \in \mathcal{Y}_s, \quad \text{for all } s \in S, \; i = 1, 2, \]
all critical points $\tilde{x}_j \in \mathcal{X}_0$ satisfy
\[|\tilde{x}_i - \tilde{x}_j| \neq |\tilde{x}_k - \tilde{x}_l| \quad \text{for all } i \neq j, \{i, j\} \neq \{k, l\}, \]
and, for all $\xi \in \Xi$, $2S \leq K$.

(3) Cardinal utility is a polynomial of degree n, and for all $\xi \in \Xi$, $S < (1/2)(n + 1)$.

PROOF: To prove (1), recall that, for analytic functions, linear independence on any open set and linear independence on the entire domain are equivalent. Suppose $\|f(x)\| \to \infty$ as $x \to a$ (the argument is analogous for $x \to b$). We show that $f(e_1 + x), \ldots, f(e_K + x)$ must be linearly independent for all distinct e_1, \ldots, e_K. If they were dependent, there would exist $e_1 < e_2 < \cdots < e_K$ and $\alpha \in \mathbb{S}^{K-1}$ such that $\sum_k \alpha_k f(e_k + x) = 0$ for all $x > -e_1 + a$. But, as $x \to -e_1 + a$, $f(e_1 + x) \to \infty$, while all other $f(e_k + x)$, $k > 1$, remain bounded above. There cannot be a linear combination that stays equal to 0 and puts positive weight on $f(e_1 + x)$—the same argument applies for any e_s.

To prove (2), suppose without loss of generality that $e_1 < \cdots < e_S$. For (2.a), let \tilde{x} denote the largest critical point in \mathcal{X}_0 and define $\bar{y}_i \in \mathcal{Y}_i$ as $\bar{y}_i = \tilde{x} - e_i$. If marginal utilities $u'(e_s + y)$ were linearly dependent, without loss of generality we would have
\[u'(e_s + y) = \sum_{i \in S \setminus \{s\}} \alpha_i u'(e_s + y), \]
which is impossible since the left-hand side is not C^m at \bar{y}_s, while the right-hand side is.

For (2.b), suppose that
\[u'(\tilde{e}_s + y) = \sum_{i \in S \setminus \{1\}} \alpha_i u'(\tilde{e}_s + y). \]

Since there are at least K critical points with $\tilde{x}_i - e_1 = \tilde{y}_i \in \mathcal{Y}_i$, $i = 1, \ldots, K$, we must have that there is some state s where \tilde{y}_i and \tilde{y}_k are also critical points for some $l, k = 1, \ldots, K$, implying that there are critical $e_s + \tilde{y}_i$ and $e_s + \tilde{y}_k$ which have the same distance as \tilde{x}_i and \tilde{x}_k, contradicting the condition in the proposition.

To prove (3), recall that the Wronskian matrix of a function $f : \mathbb{R} \to \mathbb{R}^n$ is defined as
\[W = \begin{pmatrix} f_1 & \cdots & f_i & \cdots & f_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_1^{(k)} & \cdots & f_i^{(k)} & \cdots & f_n^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & \cdots & f_i^{(n-1)} & \cdots & f_n^{(n-1)} \end{pmatrix}. \]

If the utility function is polynomial,
\[u(x) = a_0 + a_1 x + \cdots + a_l x^l + \cdots + a^n x^n, \]
then
\[u^{(l)}(x) = a_l l! + \cdots + a_k \frac{k!}{(k-l)!} x^{k-l} + \cdots + a_n \frac{n!}{(n-l)!} x^{n-l}, \quad l = 0, \ldots, n, \]
and, in particular,

\[u^n(x) = a_n n! \]

To prove that \(W \) is nonsingular, consider the matrix

\[
A_n = \begin{pmatrix}
 a_1 & \cdots & (1+k)a_{k+1} & \cdots & \cdots & \cdots & na_n \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 a_1! & \cdots & a_{l+k} \frac{(l+k)!}{k!} & \cdots & a_n \frac{n!}{(n-l)!}x^{n-l} & 0 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
 a_n! & \cdots & 0 & \cdots & 0 & 0 & \cdots & 0
\end{pmatrix},
\]

the submatrix

\[
A_{S,n} = \begin{pmatrix}
 a_{n-S+1}(n-S+1)! & \cdots & a_n \frac{n!}{(S-1)!}x^{(S-1)} & 0 & \cdots \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\n a_n! & \cdots & 0 & \cdots & 0
\end{pmatrix},
\]

and the matrix

\[
B^S_n = \begin{pmatrix}
 \cdots & 1 & \cdots \\
 \vdots & \vdots & \vdots \\
 \cdots & (e_s + x)^k & \cdots \\
 \vdots & \vdots & \vdots \\
 \cdots & (e_s + x)^{(S-1)} & \cdots \\
 \vdots & \vdots & \vdots \\
 \cdots & (e_s + x)^{n-1} & \cdots
\end{pmatrix},
\]

The Wronskian of the family of functions \(\{u^{(n-S+1)}(e_s + x)\} \), that is, of the derivatives of order \((n-S+1)\) of the functions \(\{u(e_s + x)\} \), is

\[
W_{(n-S+1)} = A_{S,n}B^S_n = \begin{pmatrix}
 a_{n-S+1}(n-S+1)! & \cdots & a_n \frac{n!}{(S-1)!}x^{(S-1)} \\
 \vdots & \vdots & \vdots \\
 a_n! & \cdots & 0
\end{pmatrix} \times \begin{pmatrix}
 \cdots & 1 & \cdots \\
 \vdots & \vdots & \vdots \\
 \cdots & (e_s + x)^k & \cdots \\
 \vdots & \vdots & \vdots \\
 \cdots & (e_s + x)^{(S-1)} & \cdots \\
 \vdots & \vdots & \vdots \\
 \cdots & (e_s + x)^{n-1} & \cdots
\end{pmatrix},
\]

a square matrix of dimension \(S \times S \), that is invertible: it is the product of two square matrices, of which the first term is upper-diagonal, with non-vanishing terms on the diagonal,
\(a_n n! = u^{(n)}(x) \neq 0\), while the second is the Vandermonde matrix of the random variables \(\{e_s + x\}\). Since the Wronskian has full rank, beliefs can be identified. \(Q.E.D.\)

The result provides a large class of cardinal utility functions that ensure that beliefs can be identified. The class of analytic functions that satisfy an Inada condition is perhaps most relevant for many applications since it subsumes all utility functions that exhibit constant relative risk aversion. If cardinal utility is piecewise polynomial, the proposition shows that beliefs can be identified if demand is observed globally or if there are sufficiently many distinct pieces in the observed range of date 0 consumption. If cardinal utility is polynomial, beliefs can be identified if the degree of the polynomial is sufficiently high relative to the maximal number of possible states.

The possibility of identification for polynomial cardinal utility raises the question of what happens if we pass to the limit. That is, why can beliefs not be identified for the function \(u(x) = \exp(-x)\) although this function can be expressed as a power series? We give a (partial) answer to this question in the Supplemental Material.

Generic Identification

Since identification fails only for mean-periodic functions, it should be possible to guarantee identification generically, at least for a finite state space and given endowments. Let \(A\) be a finite-dimensional family of cardinal utility functions sufficiently rich in perturbations: if \(u(\cdot) \in A\), then \(\tilde{u}(x) = u(x) + \sum_{k=0}^{n} a_k x^k \in A\), for \(a_k \in (-\varepsilon, \varepsilon)\), for some \(\varepsilon > 0\), and any finite \(n\).

For simplicity of exposition, let \(S = 2\) and consider the function \(F : \mathbb{S}^{S-1} \times (-\varepsilon, \varepsilon)^n \rightarrow \mathbb{R}^2\), for some \(n \geq 3\), defined by

\[
F(\theta_1, \theta_2, \ldots, a_k, \ldots) = (\theta_1, \theta_2)W = (\theta_1, \theta_2)AB,
\]

where

\[
A = \begin{pmatrix} a_1 & 2a_2 & 3a_3 & 4a_4 & \ldots \end{pmatrix},
\]

and

\[
B = \begin{pmatrix} 1 & 1 \\ (e_1 + x) & (e_2 + x) \\ (e_1 + x)^2 & (e_2 + x)^2 \\ \vdots & \vdots \end{pmatrix}.
\]

By a direct computation,

\[
D_{a_1, a_2, a_3} F = \begin{pmatrix} \theta_1 & 2\theta_2 + 2\theta_1(e_1 + x) & 6\theta_2(e_1 + x) + 3\theta_1(e_1 + x)^2 \\ \theta_1 & 2\theta_2 + 2\theta_1(e_2 + x) & 6\theta_2(e_2 + x) + 3\theta_1(e_2 + x)^2 \end{pmatrix}.
\]

Since \((\theta_1, \theta_2) \in \mathbb{S}^1\), while \(e_1 \neq e_2\), the matrix \(D_{a_1, a_2, a_3} F\) has full row rank, which extends to the matrix \(DF\). It follows that \(F \cap 0\), and, by the transversal density theorem, \(F_u : \mathbb{S}^1 \cap 0\), for \(u\) in a subset of \(A\) of full Lebesgue measure. Then, since \(\dim \mathbb{S}^1 < 2\), there is no \((\theta_1, \theta_2)\) such that \(F(\theta_1, \theta_2, \ldots, a_k, \ldots) = (\theta_1, \theta_2)AB = 0\). It follows that \(AB\), the Wronskian, is of full rank, which allows for identification.

The argument takes the endowment of the individual as given and known. It extends to the case in which endowments lie in a finite set.
3.2. A Risky Asset Separates All Uncertainty

In this subsection, we assume that there are two assets available for trade, a risk-free asset \((a = 1)\) and a risky asset \((a = 2)\). It is without loss of generality to focus on the case of a single risky asset.

It is useful to first consider the situation where the risky asset defines all uncertainty: that is, all admissible beliefs can be described as beliefs over asset payoffs, and there is a function from asset payoffs to individual endowments. The case of individual endowments being 0 at all states \(s = 1, \ldots, S\) is obviously a special case. Another special case is the case of neoclassical production, where shocks to total factor productivity determine both wages (endowments) and returns to capital (payoff of a risky asset).

When the risky asset defines all uncertainty, the beliefs over the asset payoffs can be identified if cardinal utility is smooth with non-vanishing derivatives. We then relax this assumption, and merely require that the payoff of the risky asset separates uncertainty: for all possible beliefs,
\[
R_s \neq R_s', \quad \text{if} \quad s \neq s'.
\]
This assumption is strictly weaker since it could be the case that different fundamentals have the same asset payoffs, but different endowments. Example 3 above implies that if the individual has CARA utility, identification is no longer possible. It turns out that the condition needed for identification is somewhat intricate. Only ruling out CARA utility does not suffice to ensure that the result is restored.

Proposition 2: Suppose there exists a risk-free asset, \(r_1(s) = 1\), for all \(s\), and asset 2 separates all uncertainty; that is, for all possible beliefs,
\[
r_2(s) \neq r_2(s'), \quad \text{for all} \quad s \neq s'.
\]
Suppose that for all characteristics \(\xi^1, \xi^2 \in \Xi, S^1, S^2 \leq \tilde{S}\), for some \(\tilde{S} \leq \infty\), and that the joint support \((S, \tilde{R}, \tilde{\varepsilon}) = \Sigma(\xi^1, \xi^2)\) is such that there exists a \(\tilde{y} \in \mathcal{Y}_{\tilde{\varepsilon}, \tilde{R}}\), with \(u(e_s + R_s y)\) having 2\(\tilde{S}\) non-vanishing derivatives on a neighborhood around \(\tilde{y}\). Then, the demand function for consumption and assets identifies the unobservable characteristics \((u, \xi)\) if one of the two following assumptions holds:

1. There is some function \(f: \mathbb{R} \rightarrow \mathbb{R}_+\) such that, for any possible individual characteristics \((S, \beta, \pi, R, e) \in \Xi, e(s) = f(r_2(s))\), \(s = 1, \ldots, S\).

2. There is no \(1 \leq k \leq 2\tilde{S}\) such that the \(k\)th derivative of cardinal utility can be written as
\[
u^{(k)}(x) = p(x) \exp(\alpha x),
\]
for some periodic function \(p(\cdot)\) and some \(\alpha \in \mathbb{R}\).

Proof: As in the proof of the Identification Theorem, suppose that characteristics \(\xi^1\) and \(\xi^2\) rationalize observed asset demand and let \((S, \tilde{R}, \tilde{\varepsilon}) = \Sigma(\xi^1, \xi^2)\). Without loss of generality let \(S = \{1, \ldots, K-1, K\}\) for some \(K > S^1\). It suffices to prove that the functions \(\{u'(\tilde{\varepsilon}_s + y_1 + y_2 \tilde{R}_s)\}_{s \in S}\) are differentiably linearly independent. For this, take the differential operators that define \(\hat{W}\) in (1) to be
\[
\Delta_{ij} = \left(\frac{\partial}{\partial y_1}\right)^{K-j} \left(\frac{\partial}{\partial y_2}\right)^{j-1}.
\]
We obtain
\[
\tilde{W} = \begin{pmatrix}
 u^{(K)}(\tilde{e}_1 + y_1 + y_2\tilde{r}_{21}) & \ldots & u^{(K)}(\tilde{e}_K + y_1 + y_2\tilde{r}_{2K}) \\
 \vdots & \ddots & \vdots \\
 u^{(K)}(\tilde{e}_1 + y_1 + y_2\tilde{r}_{K21}) & \ldots & u^{(K)}(\tilde{e}_K + y_1 + y_2\tilde{r}_{K2K})
\end{pmatrix}.
\]

Since the Vandermonde matrix
\[
\begin{pmatrix}
 1 & \ldots & 1 \\
 \bar{r}_{21} & \ldots & \bar{r}_{2K} \\
 \vdots & \ddots & \vdots \\
 \bar{r}_{K-1,21} & \ldots & \bar{r}_{K-1,2K}
\end{pmatrix}
\]
has full rank, the matrix \(\tilde{W}\) has full rank and the Identification Theorem implies that beliefs can be identified under (1).

Under (2), suppose linear independence fails and there is an \(\alpha \in \mathbb{S}^{K-1}\) such that
\[
\sum_{s=1}^{K} \alpha_s u^{(K)}(\tilde{e}_s + y_1 + y_2\tilde{r}_{2s}) = 0
\]
on a neighborhood around \(\tilde{y}\). Since in both characteristics \(\xi^1\) and \(\xi^2\) the payoff of asset 2 separates uncertainty, each \(\tilde{r}_{2s}\) can be identified across at most two states. Theorem 1 in Laczkovich (1986) implies that if, for some \(u\), defining the Vandermonde matrix
\[
\begin{pmatrix}
 1 & \ldots & 1 \\
 \bar{r}_{21} & \ldots & \bar{r}_{2K} \\
 \vdots & \ddots & \vdots \\
 \bar{r}_{K-1,21} & \ldots & \bar{r}_{K-1,2K}
\end{pmatrix}
\]
has full rank, the matrix \(\tilde{W}\) has full rank and the Identification Theorem implies that beliefs can be identified under (1).

One might wonder why we assume that all derivatives of \(u'()\) are not of the form (3) and why it is not enough to assume this only for \(u'()\) itself. A simple example illustrates the problem. Suppose \(u'(x) = \exp(-x) + 1\). Clearly, this function is not of the form (3) and, in fact, one can easily verify that \(u'(x)\) and \(u'(a + x)\) are linearly independent for all \(a \neq 0\). However, beliefs cannot be identified with this utility function. The necessary and sufficient first-order conditions that define the asset demand function can be written as
\[
q_1u'(x_0) = \beta \left(1 + \sum_{s=1}^{S} \exp\left(- (\theta_1 + \theta_2 r_{2s}) \right) \pi_s \exp(-e_s) \right),
\]
\[
q_2u'(x_0) = \beta \left(\sum_{s=1}^{S} \pi_s r_{2s} + \sum_{s=1}^{S} \exp\left(- (\theta_1 + \theta_2 r_{2s}) \right) r_{2s} \pi_s \exp(-e_s) \right).
\]

Suppose, for two characteristics \(\xi^1, \xi^2\), we have \(S^1 = S^2 = 3\), \(R^1 = R^2\), and \(e^1 \neq e^2\). As long as \(\beta^1 = \beta^2\) and \(\pi^1, \pi^2\) satisfy
\[
\sum_{s=1}^{3} \pi^1_s r_{2s} = \sum_{s=1}^{3} \pi^2_s r_{2s} \quad \text{and} \quad \pi^1_s e^1_s = \pi^2_s e^2_s \quad \text{for all } s = 1, \ldots, S,
\]
the two characteristics generate identical asset demand.
4. EXTENSIONS

We show that part of the analysis remains valid if utility is not stationary, and cardinal utility at date 1 may differ from utility at date 0. And we consider a multi-period model, where cardinal utility is stationary but only demand at date 0 is observable.

4.1. Non-stationary Utility

Stationarity and state-independence play an important role in the preceding argument. Note, however, that these assumptions are only used to ensure that the cardinal utility at date 1 is known: if this function, possibly state-dependent, happens to be known, the Identification Theorem and Propositions 2(1) go through with minor modifications. If utility at date 1 is not known, identification may, nevertheless, still be possible.

We now assume that the utility function need not be stationary, and cardinal utility at date 1 can be distinct from the utility at date 0, and it need not be known, but is, nevertheless, state-independent; that is,

$$U(x_0, \ldots, x_s, \ldots) = u(x_0) + \sum_{s=1}^{S} \pi_s v(x_s).$$

While Lemma 1 still holds and one can recover $u(\cdot)$, this does not provide us with any information about the function $v(\cdot)$. Nevertheless, it is straightforward to extend the Identification Theorem to cover this case. A characteristics, now, include the date 1 cardinal utility $v(\cdot)$. Given two such (extended) characteristics $\xi^1 = (v^1(\cdot), S^1, \pi^1, R^1, e^1)$ and $\xi^2 = (v^2(\cdot), S^2, \pi^2, R^2, e^2)$ with $v^1(\cdot) \neq v^2(\cdot)$ on some subset of the range of possible consumption, identification is possible if the functions $\{v^1(e^1_s + R^1 s y)\}_{s=1}^{S}$ and $\{v^2(e^2_s + R^2 s y)\}_{s=1}^{S}$ are linearly independent. If this is the case, the argument from the proof of the Identification Theorem can be applied analogously and beliefs can be identified.

However, with unknown labor endowments, the functions will generally be linearly dependent. Suppose, as an example, that $S^1 = 1$ and $S^2 = 2$, and there is only one, risk-free asset. It is then clear that if $v^1(x) = \pi^1_1 v^2(x + e^2_1 - e^1_1) + \pi^1_2 v^2(x + e^2_2 - e^1_1)$, the two characteristics will generate identical demand. As in Example 3 above, it is clear that the presence of a risky asset will not help as long as the risky asset does not define uncertainty as in Proposition 2(1).

Moreover, if $v(\cdot)$ is not analytic, it is difficult to rule out the case of linear dependence simply because, given $v^1(\cdot)$, one can always define another cardinal utility, $v^2(\cdot)$, by

$$v^i(e_s + yR_s) = \gamma_s v^i(e_s + yR_s), \quad s = 1, \ldots, S,$$

for some $(\gamma_s)_{s=1}^{S}$ that ensure that $\sum_s \gamma_s \pi^2_s = 1$. If one only observes asset demand locally, as in the Identification Theorem, it is not possible to identify beliefs separately from $\gamma_1, \ldots, \gamma_S$.

When utility is assumed to be analytic and the risky asset defines the uncertainty, beliefs can be identified.

PROPOSITION 3: Suppose $v(\cdot)$ is analytic and has non-vanishing derivatives of all orders. Suppose there exists a risk-free asset, $r_{1s} = 1$, for all s, and asset 2 separates all uncertainty; that is, for all possible beliefs,

$$r_{2s} \neq r_{2s'}, \text{ for all } s \neq s',$$
and there is some function $f : \mathbb{R} \to \mathbb{R}_+$ such that, for any possible individual characteristics $\xi = (v(\cdot), S, \pi, e, R) \in \Xi$,

$$e_s = f(r_s), \quad s = 1, \ldots, S.$$

Then the demand function for consumption and assets identifies the unobservable characteristics.

PROOF: Analogously to the proof of the Identification Theorem, suppose that characteristics $\xi^1 = (v^1(\cdot), S^1, \pi^1, R^1, e^1)$ and $\xi^2 = (v^2(\cdot), S^2, \pi^2, R^2, e^2)$ rationalize observed asset demand. As above, define $\tilde{e}_s = e^1_s$, $\tilde{R}_s = R^1_s$, $\tilde{v}_s(\cdot) = v^1(\cdot)$ for $s = 1, \ldots, S^1$ and $\tilde{e}_{s+s^1} = e^2_s, \tilde{R}_{s+s^1} = R^2_s$, $\tilde{v}_{s+s^1}(\cdot) = v^2(\cdot)$ for $s = 1, \ldots, S^2$. Let $K = S^1 + S^2$. First assume that the Kth derivatives of v^1 and v^2 are independent, that is, there is no γ such that $v^{i(K)}(c) = \gamma v^{2(K)}(c)$ for all c in an open neighborhood. To show identification, it suffices to show that there is no $\alpha \in \mathbb{S}^{K-1}$ with $\sum_{s=1}^K \alpha_s \tilde{v}_s^2(\tilde{e}_s + y\tilde{R}_s) = 0$. As in the proof of Proposition 2, define the differential operators in the matrix \tilde{W} in (1) to be $\Delta_{i,j} = (\frac{\partial}{\partial y^i})^{K-j}(\frac{\partial}{\partial y^j})^j$. As in the proof of Proposition 2(2), combine the derivatives of $\tilde{v}_s(\tilde{e}_s + y\tilde{R}_s)$ and $\tilde{v}_{s'}(\tilde{e}_{s'} + y\tilde{R}_{s'})$ into a single element of the matrix whenever $\tilde{R}_s = \tilde{R}_{s'}$. The nonsingularity of the Vandermonde matrix implies that whenever $\tilde{\alpha}_s \tilde{v}^{i(K)}_s(\tilde{e}_s + y\tilde{R}_s) \neq \tilde{\alpha}_{s'} \tilde{v}^{i(K)}_{s'}(\tilde{e}_{s'} + y\tilde{R}_{s'})$, we must have $\sum_{s=1}^K \alpha_s \tilde{v}_s(\tilde{e}_s + y\tilde{R}_s) = 0$ and hence identification is possible.

If there is a γ such that $v^{i(K)}(\cdot) = \gamma v^{2(K)}(\cdot)$, the derivative of order $(K - 1)$ of the first-order condition with respect to the demand for the risk-free asset for a fictitious investor who faces states $s = 1, \ldots, K$ and has state-dependent utility $\tilde{u}_s(\cdot)$ defined as

$$\tilde{u}_s(x) = \begin{cases} v^1(x) & \text{if } s \leq S^1 \text{ and } R_s \notin \{S^2_1, \ldots, S^2_2\}, \\ v^1(x) + v^2(x) & \text{if } s \leq S^1 \text{ and } R_s \in \{S^2_1, \ldots, S^2_2\}, \\ v^2(x) & \text{otherwise}, \end{cases}$$

is given by

$$\beta \sum_{s \in S} \pi_s \tilde{v}^{i(K)}_s(\tilde{e}_s + y\tilde{R}_s) = \frac{\partial^{(K-1)}[qu'(x_0)]}{\partial y_1^{(K-1)}},$$

where S is defined as in Proposition 2. By the same argument as in the proof of Proposition 2, beliefs for this fictitious investor are uniquely identified. But since $v^{i(i)}(x) = \gamma v^{2(i)}(x)$ for all $i \geq K$, only one of the characteristics ξ^1, ξ^2 is consistent with these beliefs. Hence only one of these characteristics can generate the observed demand function. Q.E.D.

4.2. Multiple Periods

Another question is whether our results extend to a multi-period setting. Suppose the individual maximizes a time-separable subjective expected utility over $T + 1 \leq \infty$ periods,

$$U(x) = u(x(0)) + \sum_{t=1}^T \beta^t \sum_{s' \in [1, \ldots, S]^t} \pi(s') u(x(s')), \quad x \geq 0,$$

where $s' = (s_1, \ldots, s_t)$ is a sequence of realizations of shocks, $s_t \in \{1, \ldots, S\}$ up to date t. Assets, $a = 1, \ldots, A$, of one-period maturity are traded in dates $t = 0, \ldots, (T - 1)$.
Payoffs of an asset traded at $s' - 1$ are $r_s(s')$, and payoffs across assets are $R(s') = (r_1(s'), \ldots, r_n(s'), \ldots, r_A(s'))$. Holdings of assets are $y(s') = (y_1(s'), \ldots, y_n(s'), \ldots)^T$ and prices are $q(s') = (q_1(s'), \ldots, q_n(s'), \ldots)$.

The individual’s utility maximization problem is

$$\max_{(x(s'), y(s'))_{t \geq t}} U(x)$$
$$\text{s.t. } x(s') = e(s') + R(s') y(s' - 1) - q(s') y(s') \geq 0,$$
$$y(s^T) = y(s - 1) = 0.$$

For $T = \infty$, a standard implicit debt constraint or a transversality needs to be added to ensure the existence of a solution.

While in a two-date setting it is natural to assume that only asset demand in the first date is observable, in this multiple-date setting one can consider various different cases. For finite T, the simplest case is the one where it is assumed that the demand function is observed at all date-events s'. In this case, the problem can be solved by backward induction, and for $t \leq T - 1$, the cardinal utility is simply replaced by the known value function (which was identified previously). As mentioned above, Propositions 1 and 2 can be extended to this case. It is obviously more interesting to assume that one only observes how the demand for assets at date 0 changes as prices and incomes change at date 0. Of course, in an equilibrium setting, price changes in one period most likely lead an agent to revise his expectations on prices in subsequent periods. However, as we pointed out in the Introduction, we focus on a “partial equilibrium” situation where prices and incomes change today and this has no effect on an agent’s beliefs over future outcomes. As in the rest of the paper, we assume that the demand function at date 0 is observed in an open neighborhood of prices and endowments. Again, the problem can be reduced to a two-period setting using value functions for all states at $t = 1$ instead of cardinal utility. The crucial difference is obviously that now these value functions are unknown. Unfortunately, without any stationarity assumption, they are unlikely to be linearly independent. As for example in Ross (2015), it is useful to make the assumption that fundamentals follow a Markov process. Unlike in Ross (2015), in our setting, this does not imply that individual consumption is Markovian.

4.2.1. Stationary Economies

We now assume that $T = \infty$, and that the exogenous shock follows a Markov process with transition probabilities $\pi(s_{t+1} | s_t)$, and fundamentals only depend on the shock:

$$e(s') = \tilde{e}(s_t), \quad R(s') = \tilde{R}(s_t), \quad q(s') = \tilde{q}(s_t),$$

for some functions $\tilde{e}(\cdot)$, $\tilde{R}(\cdot)$, $\tilde{q}(\cdot)$. Under standard assumptions, the Bellman equation has a solution; that is, for each $s = 1, \ldots, S$, there is a function $V_s(\cdot)$ such that, for each $s = 1, \ldots, S$,

$$V_s(\tau) = \max_{x \geq 0, y} u(x) + \beta \sum_{s' = 1}^S \pi(s' | s) V_{s'}(\tilde{e}(s') + \tilde{R}(s') y)$$
$$\text{s.t. } x = \tau - \tilde{q}(s) y.$$
The demand function in state s is then defined as
\[(x_s, y_s)(q, \tau) = \arg \max_{x \geq 0, y} u(x) + \beta \sum_{s' = 1}^{S} \pi(s'|s) V_{x'}(\bar{e}(s') + \bar{R}(s') y)\]
\[\text{s.t. } x = \tau - qy.\]

As above, we assume that for each $s = 1, \ldots, S$, this demand function is observable on an open neighborhood of $(\bar{q}(s), \bar{\tau})$ for some $\bar{\tau} > 0$. We also assume that $\bar{q}(s)$ is observable for all $s = 1, \ldots, S$.

In order to apply the Identification Theorem to this setting, note that, by the envelope theorem, the first-order conditions can be written as
\[qu'(\tau - qy) = \beta \sum_{s' = 1}^{S} \pi(s'|s) \bar{R}(s') u'(\bar{e}(s') + \bar{R}(s') y) - \bar{q}(s') y_s'(\bar{q}(s'), \bar{e}(s') + \bar{R}(s') y).\]

Defining $v'(y) = u'(\bar{e}(s) + \bar{R}(s) y - \bar{q}(s) y_s(\bar{q}(s), \bar{e}(s) + \bar{R}(s) y))$, we are now in the same setting as above, and identification is possible if $v'(\cdot), \ldots, v_S'(\cdot)$ are linearly independent functions as in the Identification Theorem. Variations of Proposition 2 can be used to establish conditions on fundamentals. Indeed, with a risk-free asset and a risky asset that defines uncertainty, what matters is that the state-dependent functions $v'(y)$ have non-vanishing derivatives of order S on an open neighborhood.

The observability of demand at all $s = 1, \ldots, S$ is obviously a strong assumption. This assumption can be relaxed if it is assumed that shocks are i.i.d.; that is, $\pi(s'|s)$ is independent of s, for all s, s'. In this case, the demand function does not depend on the shock s, and it is sufficient to observe demand at $t = 0$. Here, variations of Propositions 1 and 2 can be used to establish conditions on fundamentals.

In a yet more restrictive setting, which, nevertheless, is extensively used in applied work\(^2\), with no aggregate risk, prices of a single, risk-free asset available for trade are constant. It then follows directly from Proposition 2 that beliefs over idiosyncratic shocks can be identified if cardinal utility satisfies an Inada condition.

5. CONCLUDING REMARKS

Here, identification proceeds from an observable demand function. Though common practice, this is problematic. It is an obvious question whether our approach has any implications on equilibrium prices. While it is beyond the scope of this paper to provide a detailed answer to this, it is useful to point out that the arguments in Chiappori et al. (2004) can be applied here and it can be shown that, under appropriate conditions on cardinal utilities, the map from profiles of individual endowments in assets and period 0 commodity to equilibrium asset prices identifies beliefs. In this formulation, assets are productive (trees), and the $r_{a,s}$ are output, wealth, or consumption; and, individuals are endowed with assets, f_0. Equilibrium prices, then, satisfy $\sum_i (x^i_0(q, e^i_0, f_0), y^i(q, e^i_0, f_0)) = \sum_i (e^i_0, f_0)$, and the set equilibria of equilibria as endowments vary is $\mathcal{W} = \{ (q, (e^i_0, f_0)) : \}

\(^2\)See, for example, Ljungqvist and Sargent (2012), Part IV.
\[
 \sum_i (x_i'(q, e_i', f_i')) = \sum_i (e_{i0}'(q, f_{i0}')) \]

Under smoothness assumptions, the equilibrium set has a differentiable manifold structure, and it identifies aggregate demand locally. The argument in Chiappori et al. (2004), in an abstract context that applies here, is that the aggregate demand identifies individual demand as long as the latter satisfies a rank condition on wealth effects following Lewbel (1991).

REFERENCES

Co-editor Itzhak Gilboa handled this manuscript.

Manuscript received 14 October, 2015; final version accepted 19 March, 2017; available online 27 March, 2017.