Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Medical image segmentation using edge-based active contours.

Tools
- Tools
+ Tools

Khadidos, Alaa (2016) Medical image segmentation using edge-based active contours. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Khadidos_2016.pdf - Submitted Version - Requires a PDF viewer.

Download (9Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3073428~S15

Request Changes to record.

Abstract

The main purpose of image segmentation using active contours is to extract the object of interest in images based on textural or boundary information. Active contour methods have been widely used in image segmentation applications due to their good boundary detection accuracy. In the context of medical image segmentation, weak edges and inhomogeneities remain important issues that may limit the accuracy of any segmentation method formulated using active contour models. This thesis develops new methods for segmentation of medical images based on the active contour models. Three different approaches are pursued:

The first chapter proposes a novel external force that integrates gradient vector flow (GVF) field forces and balloon forces based on a weighting factor computed according to local image features. The proposed external force reduces noise sensitivity, improves performance over weak edges and allows initialization with a single manually selected point.

The next chapter proposes a level set method that is based on the minimization of an objective energy functional whose energy terms are weighted according to their relative importance in detecting boundaries. This relative importance is computed based on local edge features collected from the adjacent region inside and outside of the evolving contour. The local edge features employed are the edge intensity and the degree of alignment between the images gradient vector flow field and the evolving contours normal.

Finally, chapter 5 presents a framework that is capable of segmenting the cytoplasm of each individual cell and can address the problem of segmenting overlapping cervical cells using edge-based active contours. The main goal of our methodology is to provide significantly fully segmented cells with high accuracy segmentation results.

All of the proposed methods are then evaluated for segmentation of various regions in real MRI and CT slices, X-ray images and cervical cell images. Evaluation results show that the proposed method leads to more accurate boundary detection results than other edge-based active contour methods (snake and level-set), particularly around weak edges.

Item Type: Thesis or Dissertation (PhD)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Library of Congress Subject Headings (LCSH): Image segmentation, Diagnostic imaging -- Digital techniques, Computer vision in medicine
Official Date: August 2016
Dates:
DateEvent
August 2016Submitted
Institution: University of Warwick
Theses Department: Department of Computer Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Li, Chang-Tsun ; Sanchez Silva, Victor
Format of File: pdf
Extent: xx, 149 leaves : illustrations
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us