A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/91070

Copyright and reuse:
This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
GENETICS AND MOLECULAR MECHANISM OF TRIMETHYLAMINE N-OXIDE DEMETHYLASE OF METHYLOCELLA SILVESTRIS BL2

Yijun Zhu

A thesis submitted to the School of Life Sciences in fulfilment of the requirements for the degree of Doctor of Philosophy

September 2016
University of Warwick Coventry, UK
Contents

Contents .. II

Acknowledgments ... V

Declaration .. VI

Abstract ... VII

Abbreviations .. VIII

List of Figures .. X

List of Tables .. XIV

List of appendices .. XV

Chapter 1 Introduction .. 1

1.1 *Methylated amines* ... 2

 1.1.1 Environmental and health significance .. 2

 1.1.2 Methylated amine metabolism by microorganisms ... 4

 1.1.3 The indirect MA metabolism pathway may play an important role in global C and N cycling 8

1.2 *TMAO's biological and physiological role* .. 10

 1.2.1 Osmolyte and osmoprotectant ... 10

 1.2.2 TMAO is associated with cardiovascular disease in humans ... 13

1.3 *TMAO in the environment* ... 15

 1.3.1 TMAO in marine surface water ... 15

 1.3.2 TMAO in soil .. 15

1.4 *Microbiology of TMAO production from quaternary amines via TMA* ... 16

1.5 *Microbial TMAO degradation* .. 17

 1.5.1 Bacterial TMAO transporter .. 17

 1.5.2 TMAO demethylase (Tdm) ... 20

1.6 *Metal dependency of Tdm* ... 22

1.7 *DUF domains* .. 26

1.8 *Methylocella silvestris* BL2 ... 27

1.9 *N*-demethylation catalysed by iron-containing enzymes .. 28

1.10 *Project aims* .. 29

Chapter 2 General methods .. 30

2.1 *Materials* ... 31

2.2 *Growth media and conditions* ... 31

 2.2.1 DNMS .. 31

 2.2.2 Luria Broth and Super Optimal Broth with Catabolite repression (SOC) medium 33

 2.2.3 M9 minimal media .. 33

2.3 *Nucleic acid manipulation techniques* ... 33

 2.3.1 Quantification of DNA ... 33

 2.3.2 Polymerase chain reaction (PCR) ... 33

 2.3.3 Site-directed mutagenesis ... 34

 2.3.4 Cloning .. 34

 2.3.5 Transformation ... 35

 2.3.6 Induction and overexpression of recombinant protein in *E. coli* .. 38

 2.3.7 Protein purification ... 38

 2.3.8 Size-exclusion chromatography (Gel filtration) .. 39

 2.3.9 Protein quantification ... 40
Chapter 3 Identification and characterization of TMAO demethylase and TMAO permease in Methylocella silvestris BL2 ... 46

3.1 Introduction ... 47

3.2 Materials and methods ... 50

3.2.1 Growth of Methylocella silvestris and mutant strains 50

3.2.2 Construction of marker-exchange mutants in Methylocella silvestris 50

3.2.3 Cloning and heterologous expression of tdm in Escherichia coli 51

3.2.4 Protein purification and enzymatic assays 51

3.2.5 Bioinformatics .. 53

3.2.6 Analytical ultracentrifugation .. 53

3.2.7 Native polyacrylamide gel electrophoresis 54

3.3 Results ... 54

3.3.1 Genes of Msil_3603 to Msil_3609 are involved in methylated amine metabolism in Methylocella silvestris .. 54

3.3.2 Msil_3603 and Msil_3606 are required for Methylocella silvestris to grow on TMAO ... 62

3.3.3 Msil_3603 encodes a bacterial TMAO demethylase 64

3.3.4 Initial characterization of Tdm of M. silvestris from recombinant E. coli 65

3.3.5 Discussion ... 69

Chapter 4 O₂-independent demethylation of trimethylamine N-oxide by a TMAO demethylase of Methylocella silvestris BL2 ... 90

4.1 Introduction ... 91

4.2 Materials and methods ... 93

4.2.1 Cloning, expression and purification of Tdm and mutants of M. silvestris 93

4.2.2 Enzyme activity assay .. 94

4.2.3 Fe²⁺ reactivation ... 95

4.2.4 Fe²⁺ titration ... 95

4.2.5 Inductively coupled plasma-mass spectrometry and optical emission spectrometry (ICP-MS/OES) ... 96

4.2.6 Homology modelling .. 96

4.2.7 Secondary and quaternary structure determination 96

4.2.8 Gas chromatography–mass spectrometry (GC-MS) determination of secondary amines ... 97

4.2.9 Isotope labelling studies with TMAO¹⁸O 97

4.2.10 DMPO spin trapping ... 99

4.2.11 Multiple sequence alignments ... 99

4.2.12 Statistical analyses ... 99

4.3 Results ... 100

4.3.1 Tdm is a novel zinc-iron dependent protein 100

4.3.2 Three cysteine residues (C263, C279, C343) contribute to Zn²⁺ coordination in Tdm .. 106
Chapter 5 Crystallisation and biochemical characterization of Tdm homologue from a marine bacterium *Ruegeria pomeroyi* DSS-3

5.1 Introduction .. 135
5.2 Materials and methods ... 136
 5.2.1 Cloning and heterologous expression of *tdm* wild type, mutants and C-terminal truncated Tdm in *Escherichia coli* .. 139
 5.2.2 Protein purification and enzymatic assays ... 140
 5.2.3 Size-exclusive chromatography .. 140
 5.2.4 Inductively coupled plasma - mass spectrometer and optical emission spectrometer (ICP-MS/OES).. 140
 5.2.5 Crystallisation screening ... 140
 5.2.6 Expansion of successful hits in a 24-well format .. 141
 5.2.7 Seeding ... 141
 5.2.8 Additive screen .. 141

5.3 Results ... 142
 5.3.1 Tdm homologue from *R. pomeroyi* DSS-3 is a trimer................................. 142
 5.3.2 The activity of Tdm_DSS3 is comparable to Tdm_BL2 144
 5.3.3 Tdm_DSS3 does not use DMSO as a substrate .. 145
 5.3.4 Tdm from DSS-3 is more susceptible to EDTA ... 147
 5.3.5 No other metals other than Zn and Fe was detected in Tdm from *R. pomeroyi* .. 147
 5.3.6 96-well crystallisation screening trials ... 148
 5.3.7 24-well refinement of suitable crystallisation conditions for Tdm_DSS3 152
 5.3.8 Refinement of Tdm_DSS3 crystal morphology and diffraction by seeding and additive screen .. 153

5.4 Discussion ... 154
 5.4.1 Tdm_DSS3 shows comparable activity to Tdm_BL2 but has different quaternary structure... 154
 5.4.2 Tdm_DSS3 is an Fe-dependent enzyme .. 154
 5.4.3 Crystal obtained from Tdm_DSS3 grew as small plates 155

Chapter 6 Conclusions and future perspective ... 156

References .. 163
Acknowledgments

I would like to thank my supervisors Dr. Yin Chen and Dr. Hendrik Schäfer for all of their guidance, unrelenting support and encouragement throughout this process. I would like to pay tribute to my PhD committee Prof. Eric Holub and Dr. Kevin Purdy for their advice and helpful discussions.

A special mention for Dr. Claudia Blindauer and Prof. Tim Bugg, for our insightful and detailed discussions. Many Thanks to Prof. Alexander Cameron, for his expert guidance in crystallisation and structure analysis.

I would also like to thank all past and current members of D14, especially Julie and Ellie for all their technical support and encouragement. Thanks go to the Ian, Alastair, Tiantian, Eileen and Michi, whose friendships have made this PhD an enjoyable experience.

My family has been encouraging, supportive and shown belief in me and my work. Without their support, this would not be possible. Finally I owe much to my other half Xueming, without whose love and understanding I would not have completed this work.
Declaration

This thesis is submitted to the University of Warwick in support of my application for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried out by the author except in the cases outlined below:

1) Generation of the various *Methylocella silvestris* BL2 knockout mutants presented in Chapter 3 was carried out by Dr. Yin Chen, University of Warwick.

2) The plasmid pET28a-Tdm presented in Chapter 3 and 4 was generated by Dr Yin Chen, University of Warwick.

3) The plasmid pET28a_Tdm_DSS3 and pET28a_Tdm_HIMB59 presented in Chapter 5 were generated by Dr Ian Lidbury, University of Warwick.

4) Metal quantification of Tdm presented in Chapter 4 and 5 using ICP-OES/ MS was performed by Ms Amira Ksibe and Dr Lijiang Song, University of Warwick.

5) Electron paramagnetic resonance analysis presented in Chapter 4 was performed by Dr Christopher Wedge.

Parts of this thesis have been published by the author:

Abstract

Methylocella silvestris, an alphaproteobacterium isolated from a forest soil, can grow on trimethylamine N-oxide (TMAO) as a sole nitrogen source, however, the molecular and biochemical mechanisms underpinning its growth remain unknown. Marker-exchange mutagenesis enabled the identification of several genes involved in TMAO metabolism, including *Msil_3606*, a permease of the amino acids-polyamine (APC) superfamily, and *Msil_3603*, consisting of a N-terminal domain of unknown function (DUF1989) and a C-terminal tetrahydrofolate-binding domain. Null mutants of *Msil_3603* and *Msil_3606* can no longer grow on TMAO. Purified *Msil_3603* from recombinant *Escherichia coli* can convert TMAO to dimethylamine and formaldehyde (1 TMAO → 1 dimethylamine + 1 formaldehyde), confirming that it encodes a bona fide TMAO demethylase (Tdm).

Site-directed mutagenesis, homology modelling and metal analyses by inorganic mass spectrometry have been applied to gain insight into metal stoichiometry and underlying catalytic mechanism of Tdm of *M. silvestris*. Herein, it is demonstrated that active Tdm has 1 molar equivalent of Zn$^{2+}$ and 1 molar equivalent of non-haem Fe$^{2+}$. Further investigation of Zn$^{2+}$ and Fe$^{2+}$-binding sites through homology modelling and site-directed mutagenesis revealed that Zn$^{2+}$ is coordinated by a 3-sulfur-1-O motif. An aspartate residue (D198) likely bridges Fe$^{2+}$ and Zn$^{2+}$ centres. H276, and maybe H256, contribute to Fe$^{2+}$ binding. Site-directed mutagenesis of Tdm also led to the identification of three hydrophobic aromatic residues likely involved in substrate coordination (F259, Y305, W321), potentially through a cation-π interaction. Furthermore, a cross-over experiment using a substrate intermediate analogue gave direct evidence that a trimethylamine-alike intermediate was produced during the Tdm catalytic cycle, suggesting TMAO has a dual role of being both a substrate and an oxygen donor for formaldehyde formation.

In this thesis, I attempted to resolve 3D-structure of Tdm to investigate structure-function relationship. Various Tdm homologues and mutants have been screened for crystallisation. Tdm from *Ruegeria pomeroyi* DSS-3 forms small 2D plates, hence warrants further refinements. Although Tdm of *R. pomeroyi* has comparable activity to that of *M. silvestris*, it is different from the one of *M. silvestris* in that a trimer and more susceptible to EDTA chelator.

Together, this study has contributed to the understanding of the genetic and biochemical mechanisms for TMAO degradation in *M. silvestris*, and provides novel insight into the role of Zn$^{2+}$ and Fe$^{2+}$ in the catalysis of TMAO demethylation by this unique oxygen-independent enzyme.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH</td>
<td>Alcohol dehydrogenase</td>
</tr>
<tr>
<td>Asc</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>HCHO</td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BS-DMA</td>
<td>Benzenesulfonil dimethylamine adduct</td>
</tr>
<tr>
<td>BS-MEA</td>
<td>Benzenesulfonil methylethylamine adduct</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BSC</td>
<td>Benzenesulfonil chloride</td>
</tr>
<tr>
<td>CDA</td>
<td>Cytidine deaminase</td>
</tr>
<tr>
<td>CntA/B</td>
<td>Carnitine oxygense</td>
</tr>
<tr>
<td>CutC</td>
<td>Choline Trimethylamine-Lyase</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DMA</td>
<td>Dimethylamine</td>
</tr>
<tr>
<td>DMADH</td>
<td>Dimethylamine dehydrogenase</td>
</tr>
<tr>
<td>DMEA</td>
<td>dimethylethylamine</td>
</tr>
<tr>
<td>DMPO</td>
<td>5,5-dimethyl-pyrroline-N-oxide</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_i</td>
<td>Inhibition constant</td>
<td>OES</td>
<td>Optical emission spectrometer</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis-Menten constant</td>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to charge ratio</td>
<td>PDB</td>
<td>Protein data bank</td>
</tr>
<tr>
<td>MADH</td>
<td>Methylamine dehydrogenase</td>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>MaoXII</td>
<td>Methylamine oxidase</td>
<td>PIPES</td>
<td>1,4-piperazinediethanesulfonic acid</td>
</tr>
<tr>
<td>MAs</td>
<td>Methylated amines</td>
<td>SBP</td>
<td>Substrate binding protein</td>
</tr>
<tr>
<td>mau</td>
<td>Methylamine utilization genes</td>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>MEA</td>
<td>Methylamines</td>
<td>Tdm</td>
<td>TMAO demethylase</td>
</tr>
<tr>
<td>MES</td>
<td>2-(N-morpholino)ethanesulfonic acid</td>
<td>THF</td>
<td>Tetrahydrofolate</td>
</tr>
<tr>
<td>MMA</td>
<td>monomethylamine</td>
<td>TMA</td>
<td>Trimethylamine</td>
</tr>
<tr>
<td>MRC</td>
<td>Marine roseobacter clade</td>
<td>TMADH</td>
<td>Trimethylamine dehydrogenase</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometer</td>
<td>TMAO</td>
<td>Trimethylamine N-oxide</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide (oxidised form)</td>
<td>Tmm</td>
<td>TMA monoxygenase</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide (reduced form)</td>
<td>TmoP</td>
<td>TMAO permease</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
<td>TmoV</td>
<td>Transmembrane permease protein of TMAO ABC transporter</td>
</tr>
<tr>
<td>NMG</td>
<td>N-methylglutamate</td>
<td>TmoW</td>
<td>ATP-binding domain protein of TMAO ABC transporter</td>
</tr>
<tr>
<td>NMGDH</td>
<td>N-methylglutamate dehydrogenase</td>
<td>TmoX</td>
<td>Substrate binding protein of TMAO ABC transporter</td>
</tr>
<tr>
<td>NMGS</td>
<td>N-methylglutamate synthase</td>
<td>Tris</td>
<td>Tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximal velocity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1 Schematic diagram of the amine cycle in the atmosphere.3

Figure 1-2 The oxidation of methylated amines to formaldehyde.6

Figure 1-3 An unrooted tree showing Tnm homologues retrieved from sequenced bacterial genomes and the Global Ocean Sampling expedition data set.10

Figure 1-4 TMAO counteracts the protein denaturing effects of urea. Small spheres represent water molecules. ...12

Figure 1-5 Muscle osmolyte contents as a function of depth.13

Figure 1-6 A schematic diagram illustrating metaorganismal pathways linking dietary sources of choline, gut microbiota and host hepatic FMOs, resulting in TMAO production, and subsequent development of hyperresponsive platelet phenotype and enhanced thrombotic event risk. ...14

Figure 1-7 TMA production from choline, glycine betaine and carnitine18

Figure 1-9 Phylogenetic analysis of the SBP, TmoX, of the TMAO-specific transporter in relation to other characterized SBPs. ...19

Figure 1-10 Neighbour-joining phylogenetic analysis of Tdm retrieved from the genomes of sequenced marine bacteria ...21

Figure 1-11 Patterns of nutrient limitation ..24

Figure 2-1 Calibration curve for protein molecular weight by gel filtration.39

Figure 2-2 Time course of 10 µg recombinant 6*His-tag Tdm enzymatic reaction in 1 ml of 10 mM Tris-HCl (pH 7.8) ..44

Figure 3-1 Optimal pH of purified recombinant 6*His-tag Tdm and 6*His-tag removed native Tdm in various pH buffers. ...52

Figure 3-2 The genomic neighbourhood of TMA monooxygenase (tmn) in Methylocella silvestris BL2 and their putative functions.56
Figure 3-3 Phylogenetic analyses of the tetrahydrofolate (THF)-binding domain and the DUF1989 domain of the putative TMAO demethylase. ...60

Figure 3-4 Phylogenetic analysis of the putative TMAO permease (TmoP) in the amino acid/polyamine/organocation (APC) superfamily. ...62

Figure 3-5 Growth of Methylocella silvestris of wild type and mutants on TMAO or nitrate as the sole nitrogen source. ...63

Figure 3-6 Stoichiometry of TMAO demethylation by Tdm (A). Ratio of DMA to formaldehyde (B). ...64

Figure 3-7 Estimation of molecular weight of purified Tdm by denaturing (A) and native (B) gel electrophoresis and analytical ultracentrifugation (C). ..66

Figure 3-8 UV-visible absorbance spectrum (220 – 600 nm) of the purified recombinant Tdm of Methylocella silvestris BL2. ...67

Figure 3-9 Steady-state kinetic parameters of Tdm by the Eadie-Hofstee plot67

Figure 3-10 Relative activity of Tdm to selected structure analogues of TMAO.68

Figure 3-11 The effect of ferrous iron and cysteine on the activity of purified Tdm of Methylocella silvestris ..68

Figure 3-12 Putative DMA monooxygenase gene cluster in selected methylated amine utilizers. ..74

Figure 3-13 Proposed model of TMAO transport and metabolism in Methylocella silvestris. ...77

Figure 4-1 Proposed mechanisms in oxidative N-demethylation of tertiary amines catalyzed by (Porp)\(^{+}\)\(^{IV}\)\(=\)O (haem)(haem Fe(IV)-oxo), initiated by either H-Atom Abstraction (HAT) or Single Electron Transfer (ET). ..93

Figure 4-2 The workflow of Tdm sample preparation for biochemical analysis and crystallisation screening. ...94
Figure 4-3 Tdm activity is inhibited by EDTA...100
Figure 4-4 The effect of ascorbic acid on Tdm activity...103
Figure 4-5 Fe²⁺ is a native cofactor for Tdm ..105
Figure 4-6 Determination of Zn²⁺ binding site in Tdm..108
Figure 4-7 H276 is a potential Fe²⁺-binding site..110
Figure 4-8 A unique “bridging” aspartate residue D198 ..113
Figure 4-9 F259, Y305 and W321 are potential substrate pocket residues115
Figure 4-10 Investigation and visualisation of the residues involved in metal coordination and substrate binding ...117
Figure 4-11 Proposed mechanism of Tdm...119
Figure 4-12 Formation of a secondary amine product, MEA by Tdm using a TMA-analogue, DMEA ...121
Figure 4-13 DMEA inhibits Tdm activity...122
Figure 4-14 Determination of O-transfer using TMA¹⁸O..125
Figure 4-15 DMPO spin trap of intermediates during TMAO demethylation126
Figure 4-16 Dual role of D198 by coordinating Zn²⁺ and Fe²⁺ ion simultaneously .133
Figure 5-1 Molecular weight determination of the recombinant Tdm_DSS3 and Tdm_HIMB59..143
Figure 5-2 Optimum pH (A) and steady-state kinetic parameters (B) of recombinant Tdm_DSS3 by the Eadie-Hofstee plot...144
Figure 5-3 Tdm_DSS3 does not degrade DMS nor DMSO145
Figure 5-4 DMSO inhibits Tdm activity...146
Figure 5-5 Inhibition of Tdm activities by EDTA..147
Figure 5-6 Gel filtration purification of wild-type Tdm_BL2 and Tdm_DSS3 (A) and variants Tdm_BL2 C263A and C279A (B) ...149
Figure 5-7 Construction and characterisation of C-terminal truncated Tdm_BL2 mutants ... 151

Figure 5-8 Microcrystal formation of Tdm_DSS3 ... 152

Figure 5-9 Optimisation of crystallisation conditions for Tdm_DSS3 153
List of Tables

Table 1-1 Selected identified genes involved in MAs metabolism............................7
Table 1-2 Comparison of previously characterised Tdm..20
Table 2-1 Composition of Diluted Nitrate Mineral Salts medium..........................32
Table 2-2 Strains and plasmids used in this thesis...36
Table 3-1 Growth of wild type and mutants of *Methylocella silvestris* on methylated
amines ..57
Table 3-2 Representatives of the tetrahydrofolate (THF) binding domain-containing
proteins..79
Table 3-3 Representatives of DUF1989 domain containing proteins.....................81
Table 3-4 Representatives of the amino acid/polyamine/organocation (APC)
superfamily membrane transporters..84
Table 4-1 Steady-state kinetics parameters of Zn and Fe-enriched Tdm..............101
Table 4-2 Activity and metal quantification of wild type Tdm and mutants..........107
Table 4-3 Site-directed mutants of conserved aromatic residues in Tdm.............116
Table 5-1 Metal ion quantification of recombinant Tdm_DSS3 by ICP_OES........148
Table 5-2 Proteins and polypeptides used for crystallisation screening.............148
List of appendices

Appendix 2-1 List of oligos used in this thesis……………………………………172
Chapter 1 Introduction
1.1 Methylated amines

1.1.1 Environmental and health significance

Methylated amines (MAs) namely, trimethylamine (TMA), dimethylamine (DMA) and monomethylamine (MMA), together with other aliphatic amines, have been identified as some of the important components of trace gases in the atmosphere. Because MAs are basic, they can neutralise acidic clusters and may therefore play an important role in the formation of new atmospheric particles which can act as cloud condensation nuclei (Figure 1-1) (Almeida et al 2013, Cape et al 2011, Erupe et al 2011, Ge et al 2011, Murphy et al 2007, Youn et al 2015). Such aerosol particles have great potential to cause a net cooling effect of the climate by scattering sunlight and by leading to the formation of cloud droplets, which can counteract global warming induced by greenhouse gases (Ramanathan et al 2001).

Animal husbandry, biomass burning and oceans are three major sources of MAs of the atmosphere (Figure 1-1)(Ge et al 2011). The annual flux of MAs into the atmosphere is estimated to be in the order of 285 ± 78 Gg globally, of which TMA makes up approximately 170 Gg that are mainly derived from animal husbandry (Ge et al 2011). The composition of MAs varies spatially. In semi-arid (Tucson, Arizona) and marine (central coast of California, north and tropical Atlantic) areas, DMA has been reported as the most abundant methylated amine (Facchini et al 2008, Muller et al 2009, Youn et al 2015), suggesting that the oceans are a DMA source.

Being an important component of organic nitrogen in the atmosphere, the cycling of MAs between land and oceans can also affect global biogeochemical cycles of nitrogen through atmospheric deposition (Figure 1-1) (Cape et al 2011).
Figure 1-1 Schematic diagram of the amine cycle in the atmosphere. Adapted from Ge et al (2011).
The presence of such large quantities of MAst in the atmosphere can significantly affect human well-being. For example, MAst can be precursors for carcinogens such as N-nitrosodimethylamine, causing concerns for public health (Mitch et al 2003).

1.1.2 Methylated amine metabolism by microorganisms

MAst have been recognised as an important carbon and energy source for microbes, primarily due to research interest in methylotrophy (Anthony 1982, Chistoserdova et al 2009). Each methyl group of MAst is oxidised to one molecule of formaldehyde, which can be further oxidised to produce energy and reductants in the form of NADH or NADPH or assimilated into cell biomass (Anthony 1982, Chistoserdova et al 2009). But recently, it has been demonstrated that non-methylotrophic bacteria can utilise MAst as supplementary energy source and/or N source by sequestering N from MAst without assimilating C (Chen et al 2010b, Chen 2012, Lidbury et al 2015, Sun et al 2011, Wischer et al 2015).

Bacterial MA metabolism pathways have been proposed decades ago and some of the key enzymes have been purified and characterised. TMA can be oxidised directly to DMA by a trimethylamine dehydrogenase (TMADH) or indirectly through the formation of TMAO as the key intermediate (Anthony 1982). DMA can be further oxidised to MMA by a DMA monooxygenase (Dmm) or a DMA dehydrogenase (DMADH) (Anthony 1982, Yang et al 1995) (Figure 1-2). MMA oxidation is catalysed either directly by a periplasmic methylamine dehydrogenase (MADH) or a methylamine oxidase to form formaldehyde and ammonium, or indirectly through the formation of N-methylated amino acid intermediates, i.e. N-methylglutamate (NMG) and γ-glutamylmethylamide (GMA) (Figure 1-2) (Anthony 1982, Chen et al 2010c, Chistoserdov et al 1994, Husain and Davidson 1987, Zhang et al 1993). The N-methylglutamate (NMG) pathway, originally described in Aminobacter aminovorans.
(previously known as *Pseudomonas* strain MA and strain MS), is a complex, multistep pathway in which the methyl group from MA is transferred to glutamate by either *N*-methylglutamate synthase (NMGS) or *γ*-glutamylmethylamide synthetase (GMAS) to form two novel amino acid derivatives, NMG and *γ*-glutamylmethylamide (GMA), which are then oxidized by *N*-methylglutamate dehydrogenase (NMGDH) to release formaldehyde (*Figure 1-2*) (Chen et al 2010c, Levitch 1976, Shaw et al 1966).

Although some of the enzymes involved in microbial MMA metabolism were purified and characterised over 3 decades ago, the encoding genes for several enzymes in various methylotrophs and non-methylotrophic heterotrophs have only been identified very recently (*Table 1-1*). The genes encoding Tdm and Dmm were unidentified when this project started.
The oxidation of methylated amines to formaldehyde. The enzymes catalysing these reactions are as follows: (a) trimethylamine dehydrogenase (TMADH); (b) trimethylamine monooxygenase (Tmm); (c) trimethylamine N-oxide demethylase (aldolase) (Tdm); (d) dimethylamine dehydrogenase (DMADH) (anaerobic *Hyphomicrobia*); (e) dimethylamine monooxygenase (Dmm); (f) amine oxidase (Mao) (in *Arthrobacter* and methazotrophic yeasts); (g) methylamine dehydrogenase (Mau); (h) γ-glutamylmethylamide synthase (GMAS); (i) N-methylglutamate synthase (NMGS); (j) N-methylglutamate dehydrogenase (NMGDH). ?: encoding gene unidentified. Modified from (Anthony 1982, Chen et al 2010c, Chistoserdova et al 2009, Latypova et al 2010, Nayak and Marx 2014).
<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus tag</th>
<th>Organism</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmadh</td>
<td>DHTM_METME</td>
<td>Methylophilus methylotrophus</td>
<td>(Boyd et al 1992)</td>
</tr>
<tr>
<td>tmm</td>
<td>Msil_3604, Spo_1551</td>
<td>Methylocella silvestris BL2</td>
<td>(Chen et al 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rugeria pomeroyi</td>
<td>(Chen et al 2011)</td>
</tr>
<tr>
<td>dmadh</td>
<td>DHDM_HYPSX</td>
<td>Hyphomicrobium sp.</td>
<td>(Yang et al 1995)</td>
</tr>
<tr>
<td>maoXII</td>
<td>AMO2_ARTS1</td>
<td>Arthrobacter strain P1</td>
<td>(Chistoserdov et al 1993)</td>
</tr>
<tr>
<td>mau</td>
<td>MexAM1_META1p2769-2779</td>
<td>Methylobacterium extorquens AM1</td>
<td>(Chistoserdov et al 1994)</td>
</tr>
<tr>
<td></td>
<td>Pden_4730-4738</td>
<td>Paracoccus denitrificans PD1222</td>
<td>(Delorme et al 1997)</td>
</tr>
<tr>
<td>gmaS</td>
<td>Msil_2635</td>
<td>Methylocella silvestris BL2</td>
<td>(Chen et al 2010c)</td>
</tr>
<tr>
<td></td>
<td>METUNv1_03599</td>
<td>Methyloversatilis universalis FAM5</td>
<td>(Latypova et al 2010)</td>
</tr>
<tr>
<td></td>
<td>METDI2327</td>
<td>Methylobacterium extorquens DM4</td>
<td>(Gruffaz et al 2014)</td>
</tr>
<tr>
<td></td>
<td>Atu4230</td>
<td>Agrobacterium tumefaciens</td>
<td>(Chen et al 2010b)</td>
</tr>
<tr>
<td>nmgS</td>
<td>METUNv1_03600-03602</td>
<td>Methyloversatilis universalis FAM5</td>
<td>(Latypova et al 2010)</td>
</tr>
<tr>
<td></td>
<td>METDI2324-2326</td>
<td>Methylobacterium extorquens DM4</td>
<td>(Gruffaz et al 2014)</td>
</tr>
<tr>
<td></td>
<td>Msil_2632-2634</td>
<td>Methylocella silvestris BL2</td>
<td>(Chen et al 2010c)</td>
</tr>
<tr>
<td></td>
<td>Atu4227-4229</td>
<td>Agrobacterium tumefaciens</td>
<td>(Chen et al 2010b)</td>
</tr>
<tr>
<td>nmgdh</td>
<td>METUNv1_03595-03598</td>
<td>Methyloversatilis universalis FAM5</td>
<td>(Latypova et al 2010)</td>
</tr>
<tr>
<td></td>
<td>METDI2319-2322</td>
<td>Methylobacterium extorquens DM4</td>
<td>(Gruffaz et al 2014)</td>
</tr>
<tr>
<td></td>
<td>Msil_2636-2639</td>
<td>Methylocella silvestris BL2</td>
<td>(Chen et al 2010c)</td>
</tr>
<tr>
<td></td>
<td>Atu4221_4224</td>
<td>Agrobacterium tumefaciens</td>
<td>(Chen et al 2010b)</td>
</tr>
</tbody>
</table>
1.1.3 The indirect MA metabolism pathway may play an important role in global C and N cycling

TMAO is a key intermediate in the indirect pathways of methylated amines metabolism. TMA is oxidised by TMA monooxygenase (Tmm), a NADPH-dependent flavin monooxygenase (Anthony 1982, Chen et al 2011). TMAO is further degraded by TMAO demethylase (adolase) (Tdm) to form a molecule of formaldehyde and DMA, which is further metabolised to form a molecule of formaldehyde and MMA (Anthony 1982). Recently, the genes encoding key enzymes involved in the indirect MA-utilization pathway, including Tmm (Msil_3604), GmaS, NMG synthase and NMG dehydrogenase have been identified in terrestrial (i.e. M. silvestris (Chen et al 2011), M. universalis FAM5 (Latypova et al 2010), M. extorquens DM4 (Gruffaz et al 2014), A. tumefaciens (Chen et al 2010b)) and marine microbes (Roseobacter clade, i.e. R. pomeroyi (Chen et al 2011)), but the genes encoding Tdm and Dmm remained unknown when the project started.

Recent studies have shown that non-methylotrophic heterotrophs can oxidise MAs to sequester N and generate ATP without assimilating C (Chen et al 2010b, Chen 2012, McClelland et al 2001). Indeed, Tmm homologues occur in many non-methylotrophic Alphaproteobacteria, in particular the Rhodobacteraceae (marine Roseobacter clade, MRC) and the SAR11 clade (Chen et al 2011, Chen 2012), both of which are key players in the oceanic carbon cycle (Rusch et al 2007). Blast analysis with the tmm gene against the Global Ocean Sampling (GOS) dataset revealed that ~20% of the bacteria in the surface ocean contain tmm, implying that the indirect MAs pathway play an important role in global C and N cycles (Chen et al 2011). Phylogenetic analysis
indicated that the Tmm homologues from the GOS database could be placed into three groups (Figure 1-3), the majority of which were closely related to Tmm homologues in the SAR11 clade bacteria (94.1%) and the MRC bacteria (4.7%), respectively (Chen et al 2011). MRC accounts for around 10% of bacterioplankton in the open ocean (Buchan et al 2005, Labbe and Rettmer 1989, Rappé and Giovannoni 2003) and up to 25% in coastal waters (DeLong 2005, Giebel et al 2011, Suzuki et al 2001). SAR11 clade of the Alphaproteobacteria comprises about 25% cells of coastal, estuary and open sea habitats (Malmstrom et al 2004).

The significance of the indirect MA oxidation pathway utilised by marine bacterioplankton is also supported by the presence of comparable abundance of the gmaS and the absence of the tmadh gene in the MRC isolates (Chen 2012). Therefore, one of the key aims of this thesis is to identify the tdm gene encoding TMAO demethylase to gain more insight into the indirect pathway of MA metabolism.
Figure 1-3 An unrooted tree showing Tmm homologues retrieved from sequenced bacterial genomes and the Global Ocean Sampling expedition data set. The neighbour-joining tree was constructed using sequences retrieved from sequenced bacterial genomes (∼450 amino acids). Environmental sequences were added by parsimony. Bootstrap values were calculated based on 100 replicates. Homo sapiens FMO3 was used as the outgroup. Adapted from Chen et al (2011).

1.2 TMAO’s biological and physiological role

1.2.1 Osmolyte and osmoprotectant

TMAO is a ubiquitous organic osmolyte that occurs in a wide variety of marine biota, including algae, zooplankton and fish, to maintain cell turgor in osmotic environment (Yancey 2005). Organic osmolytes are small, highly soluble, organic molecules, which include sugars and polyols (e.g. trehalose, glycerol) and α- and β-amino acids and their derivatives, including methylamines (e.g. TMAO, glycine betaine) and DMSP (Roesser and Müller 2001, Yancey et al 1982, Yancey 2005). These organic osmolytes do not interfere with the central metabolism, even if they are accumulated to high concentrations (Brown 1976).

In addition to TMAO’s role in protecting cells from osmotic pressure, it is also recognised as a potent protein stabiliser to counteract the effect of destabilizers (i.e. temperature, urea, pressure), and can enhance protein folding (Singh et al
In fact, TMAO is the most commonly used protein stabilizing agent in biotechnology (Mello and Barrick 2003). Although the molecular mechanism of how TMAO stabilises protein is unclear, experimental and simulation studies suggest that TMAO is directly excluded preferentially from protein surface (Canichi et al 2012, Rosgen and Jackson-Atogi 2012), meanwhile, it forms H-bond with water, thus weakening water’s H-bonding to protein (Ma et al 2014, Rosgen and Jackson-Atogi 2012) (Figure 1-4A). On the contrary, urea tends to bind to protein backbone and some amino acid side groups to unfold and destabilise protein (Figure 1-4C) (Canichi and García 2013, Hua et al 2008). TMAO is able to counteract the destabilising effect of urea, the major organic osmolyte in elasmobranch fishes and a highly concentrated waste product in mammalian kidneys and urine. For example, intracellular urea concentrations were estimated to reach up to 400 mmol l\(^{-1}\) in shark and mammal renal tissue (Yancey 2005). Urea destabilizes many macromolecular structures and inhibits their functions at such physiological concentrations. Therefore, to offset the perturbing effect of urea, shark and mammal renal tissue are known to accumulate as high as \(~200\) mmol l\(^{-1}\) TMAO, giving an urea:TMAO ratio of 2:1 (Yancey 2005). Such counteracting phenomenon of TMAO has inspired many studies to gain insight into the underlying mechanism. Although the molecular mechanism of TMAO-urea counteraction remains unclear, it is generally believed that TMAO interacts with urea with the mediation of water to prevent urea binding to protein (Figure 1-4B).
TMAO counteracts the protein denaturing effects of urea. Small spheres represent water molecules. TMAO stabilises protein by exclusion from protein surface and weakened water’s hydrogen-bonding to protein (A). TMAO interacts with urea to counteract its denaturing effects (B). Urea binds to protein backbone and side chain, thus cause protein unfolding (C). Modified from (Yancey 2005).

Figure 1-4 TMAO counteracts the protein denaturing effects of urea. Small spheres represent water molecules. TMAO stabilises protein by exclusion from protein surface and weakened water’s hydrogen-bonding to protein (A). TMAO interacts with urea to counteract its denaturing effects (B). Urea binds to protein backbone and side chain, thus cause protein unfolding (C). Modified from (Yancey 2005).

TMAO is also known to counteract pressure effects (Martin et al 2002). It has been reported that TMAO concentrations in tissues of marine fish and other vertebrates increase with depth (Figure 1-5) (Kelly and Yancey 1999, Samerotte et al 2007), with a decrease of urea to maintain osmotic homeostasis. The muscle urea:TMAO ratio in shallow water environment (from sea shore to the beginning of the reef wall) is near a 2:1 ratio, while a species from 2850 m depth yields a “reversed ratio” of nearly 1:2 (Laxson et al 2011). In fact, levels of TMAO in the Kermadec snail fish captured at 7000 m were the highest recorded of ~400 mmol kg⁻¹ (wet mass), supporting the notion that TMAO may biochemically restrain marine fish from inhabiting deepest ocean depth (Figure 1-5) (Yancey et al 2014). Although it is not clear why TMAO increases with depth, several hypotheses have been proposed, including reducing osmotic costs, aiding buoyancy and counteracting pressure, and higher lipid production in deep-sea animals as TMAO may accumulate passively during lipid production (Samerotte et al 2007, Seibel and Walsh 2002, Yancey et al 2001, Yancey and Siebenaller
2015, Bockus and Seibel 2016). As a result of ubiquitous distribution of TMAO in marine fish and other vertebrates, TMAO has been frequently detected in marine waters ((Gibb and Hatton 2004), also see section 1.3), which in turn represents a key source of nutrients for marine microbes as a supplementary energy source as well as a key nitrogen source (Lidbury et al 2014, Lidbury et al 2015, Sun et al 2011).

Figure 1-5 Muscle osmolyte contents as a function of depth. Circles, with standard deviation bars, are published data (Gillett et al 1997, Kelly and Yancey 1999, Samerotte et al 2007, Yancey et al 2004), with a linear fit (black line) from 900–4,850 m. Solid red squares without standard deviation bars are data (n = 1 each) for a snailfish *C. melanurus* (793 m), four eelpout, and two grenadier species from Yancey et al (2014). The solid red square with standard deviation bars is the hadal snailfish *N. kermadecensis* from 7,000 m (n = 5), with a new linear fit (the red line) for all new and old data for 900–7,000 m. *C. armatus* (abyssal grenadier) at four depths (note that the specimen at 4,850 m was from the northeast Atlantic, whereas the others were from the northeastern Pacific). Adapted from Yancey et al (2014).

1.2.2 TMAO is associated with cardiovascular disease in humans

In addition to its role in the marine ecosystem, TMAO also plays a contributory role in the development and progression of coronary atherosclerotic plaque burden and cardiovascular risk through its interaction with macrophages and
lipid metabolism (Figure 1-6) (Arumugam et al 2011, Tang et al 2014, Tang et al 2015, Wang et al 2011, Zhu et al 2016). TMAO is derived from microbial metabolism of dietary quaternary amines, e.g. choline, L-carnitine, glycine betaine (GBT) and phosphatidylcholine, to TMA, which is subsequently oxidized to TMAO by the host hepatic flavin monoxygenases. Two TMA-forming enzymes have been identified recently in gut microorganisms, namely CutC/CutD, CntA/CntB, encoding a choline-TMA lyase and a carnitine monoxygenase respectively (Craciun and Balskus 2012, Zhu et al 2014).

Figure 1-6 A schematic diagram illustrating metaorganismal pathways linking dietary sources of choline (abundant in a western diet), gut microbiota and host hepatic FMOs, resulting in TMAO production, and subsequent development of hyperresponsive platelet phenotype and enhanced thrombotic event risk. The pro-atherosclerotic effects of TMAO and the potential involvement of TMAO in the development of vulnerable plaque are also shown. EC, endothelial cell; FMOs, flavin monoxygenases; MΦ, macrophage; TMA, trimethylamine; TMAO trimethylamine N-oxide. Adapted from Zhu et al (2016).
1.3 TMAO in the environment

1.3.1 TMAO in marine surface water

Although the marine ecosystem has been recognised as one of the three major sources of MAs, the study of MAs concentration of marine surface water has been rare due to technical difficulty in measuring ambient MAs at nanomolar concentrations (Gibb and Hatton 2004). Gibb & Hatton (Gibb and Hatton 2004) used a coupled flow injection-ion chromatographic technique to determine TMAO in natural seawater and found that TMAO ranged from below the analytical detection limit (1.65 nmol•l⁻³) to 76.9 nmol•l⁻³ in the coastal waters off the Antarctic Peninsula.

1.3.2 TMAO in soil

Studies of TMAO in soils are limited. TMAO in soil solution (soil water extraction) has been detected from a sub-alpine grassland (Warren 2013a, Warren 2013b), but was not quantified. Soil water contained a large pool of several quaternary amines (e.g. carnitine, acetyl carnitine, betaine, choline, ergothioneine), which are potential precursors of TMAO. The combined pool size of these quaternary amines is approximately 25% of the size of the common amino acids pool (Warren 2013a, Warren 2013b). Given the large amount of and diverse types of quaternary amines in soil, it is proposed that quaternary amines have a dual role in central metabolism and osmoprotection in plants and associated microbes against several environmental stresses, such as heat and desiccation (Warren 2013a, Warren 2013b).
1.4 Microbiology of TMAO production from quaternary amines via TMA

TMAO is oxidised from TMA derived from degradation of quaternary amines, e.g. choline, glycine betaine, carnitine (Figure 1-7). Genes encoding the respective choline TMA-lyase (CutC), betaine reductase (GrdH), and carnitine oxygenase (CntA/B) have been identified in bacteria (Craciun and Balskus 2012, Meyer et al 1995, Zhu et al 2014).

![Diagram of TMAO production from choline, glycine betaine and carnitine](image)

Figure 1-7 TMA production from choline, glycine betaine and carnitine. CutC, choline TMA-lyase, GrdH, betaine reductase, CntA, carnitine oxygenase. The grey arrows indicate aerobic pathway and the black arrows indicate anaerobic pathway.
1.5 Microbial TMAO degradation

TMAO can be converted to TMA by a periplasmic TMAO reductase (EC 1.6.6.9) (Barrett and Kwan 1985). In the absence of O₂, it is known that many bacteria can use TMAO as a terminal electron acceptor anaerobically (Barrett and Kwan 1985). TMAO can also be converted to DMA by a TMAO demethylase (EC 4.1.2.32) aerobically. TMAO demethylation to DMA via a TMAO demethylase is the focus in this thesis.

1.5.1 Bacterial TMAO transporter

When the project started, the only known microbial TMAO transporter in the literature was an ATP-dependent active transporter of the ABC superfamily found in *Aminobacter aminovorans* (Raymond and Plopper 2002), however, the gene encoding this transporter remained unknown. ABC transporters, which consist of three components, a transmembrane domain that is bound to an inner membrane-bound ATP-binding domain and a periplasmic substrate-binding protein (SBP), which binds a given ligand, are essential for bacteria in that they are responsible for the high affinity uptake of a wide range of nutrients, such as sugars, amino acids, metals, and vitamins, at the expense of ATP (Davidson and Chen 2004). This ABC-type transporter for TMAO has recently been identified in a variety of marine bacteria, and the genes encode the periplasmic SBP (TmoX), the ATP-binding domain protein (TmoW), and the transmembrane permease protein (TmoV) have been uncovered (Figure 1-8) (Lidbury et al 2014).

The TMAO transporter was initially annotated as a putative GBT/proline betaine-type ABC transporter, which are involved in the uptake of structurally-related compounds, such as choline, glycine betaine, proline betaine and
carnitine (Berntsson et al 2010, Thomas 2010). However, phylogenetic analysis of the SBP of GBT/proline betaine-type ABC transporter superfamily members showed that TmoX forms a distinctive group from the other previously characterised SBPs (Figure 1-9) (Lidbury et al 2014).

Figure 1-8 Genetic neighbourhoods of the genes (tmoXWV) that encode the TMAO transporter (red) among representative genome-sequenced marine bacteria. All genes coloured black have no confirmed functional relationship with TMAO metabolism. α, Alphaproteobacteria; δ, Deltaproteobacteria; γ, Gammaproteobacteria; GMA, γ-glutamylmethylamide; NMG, N-methylglutamate. Adapted from Lidbury et al (2014).
Figure 1-9 Phylogenetic analysis of the SBP, TmoX, of the TMAO-specific transporter in relation to other characterized SBPs. Currently known SBPs specific for osmolytes, such as choline, glycine betaine, and carnitine, fall into the cluster F of the ABC superfamily (Berntsson et al 2010). The evolutionary history was inferred using the neighbour-joining method (Saitou and Nei 1987). Bootstrap values (500 replicates) greater than 99% are shown. The scale bar represents the number of amino acid differences per site. The analysis involved 69 SBP sequences. There were a total of 296 amino acids positions in the alignment. Evolutionary analyses were conducted in MEGA5.1 (Tamura et al 2011) δ, Deltaproteobacteria; γ, Gammaproteobacteria; BetX, glycine betaine/proline betaine SBP; CaiX, carnitine SBP; ChoX, choline SBP. Adapted from Lidbury et al (2014).
1.5.2 TMAO demethylase (Tdm)

Tdm was first discovered in *Bacillus* sp. PM6, and later in *Aminobacter aminovorans* (previously known as *Pseudomonas aminovorans*). It catalyses non-oxidative and non-hydrolytic cleavage of TMAO to DMA and HCHO (Large 1971, Myers and Zatman 1971). Tdm has been partially purified from *Bacillus* sp. PM6 and *Aminobacter aminovorans*, characterisation of which revealed contrasting characteristics, such as molecular weight and cofactor (Table 1-2) (Anthony 1982, Large 1971, Myers and Zatman 1971). Tdm from *Bacillus* sp. PM6 displayed a molecular weight of 37-50 kDa whilst that of *Aminobacter aminovorans* showed 240-280 kDa. Ferrous iron (Fe$^{2+}$) was found to stimulate Tdm activity of *Bacillus* sp. PM6, whilst it had no impact on Tdm of *Aminobacter aminovorans*.

Table 1-2 Comparison of previously characterised Tdm

<table>
<thead>
<tr>
<th></th>
<th>Bacillus sp. PM6</th>
<th>Aminobacter aminovorans</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m (mM)</td>
<td>2.85</td>
<td>2</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>7.5</td>
<td>6</td>
</tr>
<tr>
<td>Optimum temperature (°C)</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Molecular Weight (kDa)</td>
<td>37-50</td>
<td>240-280</td>
</tr>
<tr>
<td>Cofactor</td>
<td>Fe$^{2+}$</td>
<td>No impact of Fe$^{2+}$ addition</td>
</tr>
</tbody>
</table>

*: not determined

Tdm activity has also been found in a range of eukaryotic organisms, such as fish and squid (Fu et al 2006, Kimura et al 2000, Parkin and Hultin 1986). Eukaryotic Tdm encoded by aspolin1 and aspolin2 genes, has been identified as an extremely aspartic acid-rich proteins with a molecular weight of 25.8 kDa and 39 kDa, respectively (Takeuchi et al 2003). Searching bacterial genomes did not reveal any homologue of aspolin1 nor aspolin2, suggesting that bacteria employ a different Tdm.
As the project proceeded, Ian Lidbury, another PhD student in the group, has identified Tdm in marine bacteria, the pelagic α-proteobacterium SAR11 strain HIMB59 and the coastal MRC strain *Ruegeria pomeroyi* DSS-3 (Figure 1-10) (Lidbury et al 2014). Similar to the distribution of the ABC-type TMAO transporter (TmoX), Tdm is widely distributed in MRC and SAR11 clade marine bacteria (Lidbury et al 2014). Approximately half of the genome-sequenced MRC isolates contain Tdm. Blast Tdm against the GOS dataset reference revealed that about 21% of bacterial cells in the oceanic surface waters contain Tdm. The abundance of Tdm (21%) in marine bacterioplankton is comparable to that of Tmm (20%) and GmaS (22%), two enzymes involved in the indirect TMA metabolic pathway (Chen et al 2011, Lidbury et al 2014). Similar to the distribution of Tmm in marine bacteria, Tdm is also predominantly found in the SAR11 clade (92%) and the MRC clade (5%) (Lidbury et al 2014).

Figure 1-10 Neighbour-joining phylogenetic analysis of Tdm retrieved from the genomes of sequenced marine bacteria. Bootstrap values (500 replicates) greater
than 60% are shown. The scale bar denotes the number of amino acid differences per site. The analysis involved 49 Tdm sequences. There were a total of 468 amino acid residues in the alignment. Evolutionary analyses were conducted in MEGA5.1 (Tamura et al 2011). Adapted from Lidbury et al (2014).

1.6 Metal dependency of Tdm

It has been suggested that metal ions may play a role in Tdm catalysis (Myers and Zatman 1971). For example, the partially purified Tdm of Bacillus sp. PM6 was strongly activated by ferrous iron (Myers and Zatman 1971). In agreement with the putative role of metals in catalysis, purified Tdm of Methylocella silvestris does not contain either a flavin adenine dinucleotide (FAD) or a nicotinamide adenine dinucleotide (NAD) (detailed information in Chapter 3). Further characterization revealed that Tdm is a Zn$^{2+}$, Fe$^{2+}$-dependent protein (see Chapter 4).

The dependency of Zn$^{2+}$ and Fe$^{2+}$ raises the question whether Zn$^{2+}$ or Fe$^{2+}$ in Tdm could be replaced by other ions, for instance when Zn$^{2+}$ or Fe$^{2+}$ of the ocean is at scarce, e.g. in high nutrient–low chlorophyll (HNLC) regions that take over ~20% of open sea waters including the Southern Ocean, the equatorial Pacific, and parts of the Antarctic Ocean (Carol and Timothy 1997, Moore et al 2013). HNLC regions are replete with light and macronutrients (nitrate, phosphate and silicate), yet the standing stock of phytoplankton biomass remains low (Figure 1-11) (Martin et al 1994). Iron deficiency and grazing by microzooplankton are the two main explanations that have been put forward to explain the low primary production in HNLC regions (Landry et al 1997). HNLC oceans typically have subnanomolar concentrations of dissolved iron (Martin et al 1994, Mawji et al 2015). Such low concentrations of dissolved iron have been identified as limiting nutrient for both primary productivity and bacterial growth (Figure 1-11) (Behrenfeld and Kolber 1999, Church et al 2000, Moore et al 2013, Tagliabue et
al 2014). Thus iron fertilisation triggered massive primary production in HNLC region (Coale et al 1996).
Figure 1-11 Patterns of nutrient limitation. Backgrounds indicate annual average concentrations of nitrate (A) and phosphate (B) in μmol kg⁻¹. Symbols indicate the primary (central circles) and secondary (outer circles) limiting nutrients as inferred from chlorophyll and/or primary productivity increases following artificial amendment of: N (green), P (black), Fe (red), Si (orange), Co (yellow), Zn (cyan) and vitamin B12 (purple). Divided circles indicate potentially co-limiting elements. White outer circles indicate that no secondary limiting nutrient was identified, which in many cases will be because of the lack of a test. Adapted from Moore et al (2013).
Zn, after Fe, is the second most abundant element ion in most organisms, and the only metal ion known to be present in enzymes from six classes established by the International Union of Biochemistry (Sousa et al 2007). Zn plays a key role in the productivity of the ocean in that it is the essential cofactor of the enzymes involved in primary production, such as carbonic anhydrase for carbon fixation and alkaline phosphatase for organic phosphorous acquisition (Auld 2001, Morel and Price 2003). The vertical profile of Zn in the world's oceans resembles those nutrient-like depth profiles of elements that are taken up from surface waters and regenerated at depth as dead organisms sink to the deep ocean and decompose. Dissolved Zn concentrations in the surface waters of the Pacific Ocean, the Atlantic Ocean and the Southern Ocean are in the subnanomolar range (Lohan et al 2002, Zhao et al 2014). ~98% of Zn is bound strongly to uncharacterized organic ligands such that the concentration of bioavailable Zn is in the picomolar range (Andersen et al 2011, Lohan et al 2002). At such concentration, phytoplankton growth can be limited, which was observed in the laboratory, probably due to reduced activities of Zn-containing metalloenzymes (Anderson et al 1978, Brand et al 1983, Morel et al 1994, Shaked et al 2006, Tortell et al 2000). Therefore, Morel (et al 1994) proposed a “Zn-hypothesis”, suggesting that Zn as well as Fe may be limiting phytoplankton growth. However, the “Zn-hypothesis” was proposed based on laboratory experiments, and unlike Fe$^{2+}$, few experiments have been conducted with natural assemblages. In most cases, such field experiments showed minimal stimulation effects of Zn additions on the bulk phytoplankton community (Coale et al 2003, Crawford et al 2003, Ellwood and Hunter 2000, Jakuba et al 2012).
Two possible explanations were proposed for the lack of observed Zn-limitation during field studies. Firstly, Zn limitation in the oceans may be obscured by co-limitation by the more widespread occurrence of Fe limitation. Secondly, Zn$^{2+}$ at active sites of zinc enzymes can be substituted by other metal ions, e.g. cobalt (Co) and cadmium (Cd). Such metal replacement has been observed in carbonic anhydrase of *Thalassiosira weissflogii* (Lane and Morel 2000, Price and Morel 1990) when Zn$^{2+}$ was limited.

1.7 DUF domains

Sequence analysis of Tdm showed the presence of a domain of unknown function (DUF1989) at its N-terminus (more information in Chapter 3). Proteins having DUF domains currently represent more than a quarter of sequence entries in public databases such as Pfam (Figure 1-12) (Punta et al 2012). It has been estimated that the number of DUFs will soon outnumber the families with known function being added to Pfam (Bateman et al 2010). Functional annotation of DUFs remains a great challenge for the scientific community since they not only represent a major knowledge gap between protein structure and functional relationship but also prevent the complete understanding of cellular functions from completed genomes (Galperin and Koonin 2010). By investigating structure and function of Tdm, I aimed to shed some light on the function of DUF1989.
Methylocella species, including Methylocella palustris (Dedysh et al 2000), Methylocella silvestris (Dunfield et al 2003) and Methylocella tundra (Dedysh et al 2004) are authenticated facultative methanotrophs that are able to use methane, methanol and MAs, as well as multi-carbon compounds, such as acetate, pyruvate, succinate, malate and ethanol, as sole carbon and energy sources (Dedysh et al 2005). Methylocella species form a distinct taxonomic cluster of acidophilic, methanotrophic bacteria. Although they belonging to the Alphaproteobacteria (type II methanotrophs), they are more closely related to the nonmethanotrophic heterotroph Beijerinckia indica (Dedysh et al 2005).

Of all the isolated Methylocella species, Methylocella silvestris BL2 grows most robustly, hence it was used to investigate indirect MAs metabolic pathway. Methylocella silvestris BL2 was isolated from a forest soil in Germany and can utilise MAs, including TMA, DMA and MMA as carbon, nitrogen and energy sources (Chen et al 2010a, Chen et al 2010c, Chen et al 2011, Dunfield et al 2003). M. silvestris BL2 employs an indirect pathway involving TMAO as the

Figure 1-12 A graph showing the growth of DUFs as a percentage of all families added to Pfam at the time of release 23.0. Adapted from Bateman (2010).
key intermediate for the degradation of TMA to ammonium and formaldehyde as illustrated in Figure 1-2 (Chen et al 2011).

1.9 N-demethylation catalysed by iron-containing enzymes

It has been suggested that metal ions may play a role in Tdm catalysis (Myers and Zatman 1971). For example, the partially purified Tdm of Bacillus sp. PM6 was strongly activated by ferrous iron (Myers and Zatman 1971). Although a crystal structure for Tdm has yet to be solved, structures of three DUF1989-domain containing proteins (3ORU, 3SIY, 3DI4) available in the PDB database all contain Zn$^{2+}$.

As the project went on, it has been revealed that Tdm is a Zn$^{2+}$, Fe$^{2+}$-dependent enzyme and Fe$^{2+}$ plays a catalytic role (more detailed information in Chapter 4). Iron-containing enzymes have been found to perform a wide variety of reactions, including N-demethylation, such as cytochrome P450 mediated N,N-dimethylaniline demethylation (Roberts and Jones 2010), DNA dealkylase (AlkB) (Mishina and He 2006), histone demethylase (JHDM1, JMJD6) (Chang et al 2007, Tsukada et al 2006) and Rieske-type demethylase (Daughtry et al 2012, Summers et al 2012). O$_2$ is required as oxygen donor for all the aforementioned reactions to form the high Fe(IV)-oxo complex, the common active oxidant for attacking the C-H bond of saturated carbon centres. It is hypothesised that a high-valent oxidant (e.g. Fe(IV)-oxo) is required for TMAO demethylation and a tertiary amine intermediate (i.e. TMA) is formed.
1.10 Project aims

The aims of the project were as follows:

1. To identify tdm in *Methylocella silvestris* BL2 (Chapter 3)

2. To establish the genetic, biochemical and biophysical characteristics of Tdm (Chapters 3, 4)

3. To elucidate the structure and functional mechanism of Tdm (Chapter 4)

4. To investigate the structure and function of DUF1989 domain of Tdm (Chapters 4, 5)

5. To investigate the metal dependency of Tdm homologues in Zn\(^{2+}\) and/or Fe\(^{2+}\)-depleted environment (Chapter 5)
Chapter 2 General methods
The methods presented in this chapter are referred to routinely elsewhere in this thesis. More specific methods are referred to within the relevant chapters to maintain coherence and clarity.

2.1 Materials

Analytical-grade chemicals were obtained from Sigma-Aldrich Corporation (St Louis, MO, USA), or Fisher Scientific UK (Loughborough, UK). General purpose buffers and chemicals were prepared according to Sambrook and Russell (2001). Custom oligonucleotide primers were obtained from Sigma-Aldrich (St Louis, MO, USA).

2.2 Growth media and conditions

2.2.1 DNMS

M. silvestris wild type and mutant strains were grown at 25 °C under natural light conditions in 125-ml serum vials containing 20 ml diluted mineral salt medium (DNMS) (Crombie 2011, Dunfield et al 2003) ([Table 2-1](#)) with an inoculum size of 10% (v/v). Methylated amines (final concentration 1.5 mM), *i.e.* TMA, TMAO, DMA and MMA, were used as the nitrogen source. Either methanol (10 mM) or succinate (5 mM) was used as the carbon source.
Table 2-1 Composition of Diluted Nitrate Mineral Salts medium

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount (per litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluted Nitrate Mineral Salts (DNMS)</td>
<td></td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.1 g</td>
</tr>
<tr>
<td>KNO₃</td>
<td>0.1 g</td>
</tr>
<tr>
<td>CaCl₂·H₂O</td>
<td>0.02 g</td>
</tr>
<tr>
<td>3.8% (w/v) solution Fe-EDTA</td>
<td>0.01 ml</td>
</tr>
<tr>
<td>0.1% (w/v) NaMo·4H₂O</td>
<td>0.05 ml</td>
</tr>
<tr>
<td>Trace element solution (recipe below)</td>
<td>1.0 ml</td>
</tr>
<tr>
<td>Trace element solution (1X)</td>
<td></td>
</tr>
<tr>
<td>Ingredient</td>
<td>Amount (per litre)</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>500 mg</td>
</tr>
<tr>
<td>ZnSO₄·7H₂O</td>
<td>400 mg</td>
</tr>
<tr>
<td>MnCl₂·7H₂O</td>
<td>20 mg</td>
</tr>
<tr>
<td>CoCl₂·6H₂O</td>
<td>50 mg</td>
</tr>
<tr>
<td>NiCl₂·6H₂O</td>
<td>10 mg</td>
</tr>
<tr>
<td>H₃BO₃ (boric acid)</td>
<td>15 mg</td>
</tr>
<tr>
<td>EDTA</td>
<td>250 mg</td>
</tr>
<tr>
<td>Phosphate stock solution (1X) pH 5.8</td>
<td></td>
</tr>
<tr>
<td>Ingredient</td>
<td>Amount (per litre)</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>26 g</td>
</tr>
<tr>
<td>Na₂HPO₄·7(H₂O)</td>
<td>62 g</td>
</tr>
</tbody>
</table>

DNMS and phosphate stock solution was autoclaved separately. 10 ml litre⁻¹ of autoclaved phosphate stock was added to DNMS before use.
2.2.2 Luria Broth and Super Optimal Broth with Catabolite repression (SOC) mediums

Escherichia coli strains were routinely grown in Luria broth (LB) containing 10 g l\(^{-1}\) bacto tryptone, 5 g l\(^{-1}\) yeast extract and 10 g l\(^{-1}\) NaCl. Solid LB media contained 1.5 % (w/v) Bacto agar in addition. Transformed *E. coli* strains were grown in SOC medium containing 20 g l\(^{-1}\) Bacto tryptone, 5 g l\(^{-1}\) yeast extract, 0.5 g l\(^{-1}\) NaCl, 0.186 g l\(^{-1}\) KCl, 0.952 g l\(^{-1}\) MgCl\(_2\).7H2O, 3.603 g l\(^{-1}\) glucose.

2.2.3 M9 minimal media

The defined minimal medium contained NH\(_4\)Cl (1 g l\(^{-1}\)), NaCl (0.5 g l\(^{-1}\)), KH\(_2\)PO\(_4\) (3 g l\(^{-1}\)), Na\(_2\)HPO\(_4\)-7H\(_2\)O (12.8 g l\(^{-1}\)), MgSO\(_4\)-7H\(_2\)O (0.5 g l\(^{-1}\)), CaCl\(_2\)-2H\(_2\)O (0.15 g l\(^{-1}\)), Na\(_2\)MoO\(_4\)-2H\(_2\)O (0.5 mg l\(^{-1}\)), and a mix of the following vitamins or supplements, including biotin (0.4 mg l\(^{-1}\)), folic acid (0.4 mg l\(^{-1}\)), pyridoxine hydrochloride (2 mg l\(^{-1}\)), thiamine hydrochloride (1 mg l\(^{-1}\)), riboflavin (1 mg l\(^{-1}\)), nicotinic acid (1 mg l\(^{-1}\)), pantothenic acid (1 mg l\(^{-1}\)), vitamin B12 (20 mg l\(^{-1}\)), 4-aminobenzoic acid (1 mg l\(^{-1}\)) and lipoic acid (1 mg l\(^{-1}\)).

2.3 Nucleic acid manipulation techniques

2.3.1 Quantification of DNA

DNA purity and size were estimated by agarose gel electrophoresis and comparison with a known quantity of 1 kb DNA ladder (Fermentas). DNA concentration was determined using ND-1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA).

2.3.2 Polymerase chain reaction (PCR)

Polymerase chain reactions (PCR) were performed using a T3000 (Biometra, Goettingen, Germany) or a Tetrad thermal cycler (Bio-Rad, USA). Kapa Taq DNA polymerase (Kapa) was used for routine PCR check purpose. Q5 high fidelity DNA polymerase (NEB)
and Kapa high fidelity DNA polymerase (Kapa) were used for high fidelity applications. 50 µl reaction volumes were used containing 1 × buffer, MgCl₂ (1.5 mM), dNTPs (0.2 mM of each), forward and reverse primer (0.4 µM) and Taq DNA polymerase (2.5 units). For direct amplification from colonies or cultures, DMSO (5%, v/v) and BSA (0.07%, w/v) were included in addition. Cycling conditions were typically: initial denaturation at 95 °C, 3 min; 25 - 35 cycles of denaturation at 95 °C, 30 s; annealing (temperature dependent on primers), 30 s; elongation at 72 °C, 1 min/kb and final elongation at 72 °C, 7 min. For PCR from colonies, the initial denaturation was increased to 10 min. Denaturing temperature and elongation time varied according to manufacturer’s instruction. Reactions without template (no-template controls) were included in all cases.

2.3.3 Site-directed mutagenesis

Site-directed mutations were introduced into tdm by PCR, using either overlap extension-PCR (SOE-PCR) (Choi and Schweizer 2005) (for mutants D198A, C263A, C279A, C343A, D39A) or the Q5 Site-Directed Mutagenesis kit for all other mutants according to manufacturer’s instruction (New England Biolabs, Hertfordshire, UK). The mutagenic oligonucleotides used are shown in Appendix 1. The resulting mutant plasmids were verified by Sanger DNA sequencing. SOE-PCR was performed using Kapa high fidelity DNA Polymerase (Kapa). 10 ng of A and B regions were mixed and used as the template. SOE-PCR was run without primers for 5 cycles and then for 30 cycles after the upstream and downstream primers were added (Tdm_F, Tdm_R) to generate a ~2.3 kb PCR product.

2.3.4 Cloning

Plasmids and strains used for cloning and overexpression in E. coli are listed in Table 2-2.
Genes of interests were amplified by PCR and sub-cloned into the pGEM-T vector (Promega, Madison, USA) and transformed into *E. coli* JM109 competent cells (Promega, Madison, USA) according to manufacturer’s instruction. Primers used to amplify genes and for sequencing are listed in Appendix 1. Where high fidelity DNA polymerase was used for PCR amplification, addition of a terminal 3’ adenosine was accomplished by incubating purified PCR product with Kapa DNA polymerase (5 units), dATP (0.2 mM) and 1 × Taq buffer in a 20 µl final volume at 72 °C for 20 min.

Plasmids were extracted using the GeneJET kit (Fermentas) according to the manufacturer’s instructions. Double restriction digest of DNA was carried out with FastDigest enzymes from Fermentas according to manufacturer’s instruction. Desired fragments were separated by gel electrophoresis and recovered using the NucleoSpin Gel and PCR clean up kit (MACHEREY-NAGEL, Düren, Germany) according to manufacturer’s instruction. Purified DNA fragments were ligated into the expression vector pET28a (Merck Biosciences, Darmstadt, Germany). Ligations were routinely carried out in 10 µl reactions with a vector: insert ratio of ~1:3. T4 DNA ligase from Promega or Fermentas was used according to the manufacturer’s instructions.

2.3.5 Transformation

E. coli host strains JM109 (Promega, Madison, USA) and BLR(DE3) pLysS (Merck Biosciences, Darmstadt, Germany) were used for plasmid production and protein expression, respectively. Routinely, 20 µl competent cells were thawed on ice and DNA (~10 ng of plasmid DNA or ligation mix) added and gently mixed. Cells were subjected to heat shock at 42 °C for 45 s, and cooled on ice for 2 min. SOC medium (0.25 ml) was added and cells were then allowed to recover at 37 °C with shaking for one hour. Aliquots were spread on selective LB plates containing appropriate antibiotics where necessary and incubated at 37 °C for 18 – 24 h.
Table 2-2 Strains and plasmids used in this thesis

<table>
<thead>
<tr>
<th>Strains/plasmids</th>
<th>Relevant features</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLR(DE3)pLysS</td>
<td>Host for heterologous protein overexpression</td>
<td>Novagen</td>
</tr>
<tr>
<td>JM109</td>
<td>General cloning</td>
<td>Promega</td>
</tr>
<tr>
<td>Methylocella silvestris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. silvestris Δtmm::Kan</td>
<td>Wild-type with disrupted tmm</td>
<td>(Chen et al 2011)</td>
</tr>
<tr>
<td>M. silvestris Δtdm::Kan</td>
<td>Wild-type with disrupted tdm</td>
<td>This study</td>
</tr>
<tr>
<td>M. silvestris ΔtmoP::Kan</td>
<td>Wild-type with disrupted tmoP</td>
<td>This study</td>
</tr>
<tr>
<td>M. silvestris Δ3605::Kan</td>
<td>Wild-type with disrupted Msil_3605</td>
<td>This study</td>
</tr>
<tr>
<td>M. silvestris Δ3608::Kan</td>
<td>Wild-type with disrupted Msil_3608</td>
<td>This study</td>
</tr>
<tr>
<td>M. silvestris Δ3609::Kan</td>
<td>Wild-type with disrupted Msil_3609</td>
<td>This study</td>
</tr>
<tr>
<td>Strains/plasmids</td>
<td>Relevant features</td>
<td>References</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pGEM-T</td>
<td>Cloning vector</td>
<td>Promega</td>
</tr>
<tr>
<td>pET28a</td>
<td>Expression vector in E. coli</td>
<td>Novagen</td>
</tr>
<tr>
<td>pCOLADuet-1</td>
<td>Expression vector in E. coli</td>
<td>Novagen</td>
</tr>
<tr>
<td>pET28a-Tdm</td>
<td>Tdm expression, wild type</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm C263A</td>
<td>Tdm mutant C263A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm C279A</td>
<td>Tdm mutant C279A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm C343A</td>
<td>Tdm mutant C343A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm H256A</td>
<td>Tdm mutant C256A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm H276A</td>
<td>Tdm mutant H276A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm D198A</td>
<td>Tdm mutant D198A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm D198E</td>
<td>Tdm mutant D198E expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm D198N</td>
<td>Tdm mutant D198N expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm F259A</td>
<td>Tdm mutant F259A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm Y305A</td>
<td>Tdm mutant Y305A expression</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-Tdm W321A</td>
<td>Tdm mutant W321A expression</td>
<td>This study</td>
</tr>
</tbody>
</table>
2.3.6 Induction and overexpression of recombinant protein in *E. coli*

E. coli cells containing the gene of interest in pET28a were grown in 250 ml LB with 25 µg ml\(^{-1}\) kanamycin at 37 °C with agitation at 250 r\(\cdot\)min\(^{-1}\). When the cell density (OD\(_{600}\)) reached 0.4 - 0.6, isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to a final concentration of 0.2 mM to induce protein expression and the cultures were then shifted to 25 °C for 18 h before cell harvesting by centrifugation (6,000×g, 10 min).

2.3.7 Protein purification

Cells were stored at -20 °C prior to cell lysis by passing three times through a chilled French press (American Instrument Co.) at 110 megapascals. The lysates were centrifuged at 100,000×g for 40 min, and the supernatants were saved as cell extracts for the purification of Tdm. Overexpressed Tdm was purified using a His-tag protein purification kit according to the manufacturer’s instructions (Novagen, Germany) and eluted using an elution buffer, containing 1M imidazole, 0.5 M NaCl and 20 mM Tris-HCl (pH 7.8). Purified protein was desalted against 20 mM Tris-HCl (pH 7.8), 100 mM NaCl using the HiTrap desalting column (GE Healthcare, UK) for further analysis. Depending on the aim of the analysis, purified Tdm and mutant proteins were concentrated by ultrafiltration (Amicon Corporation) and further purified by size-exclusion chromatography.
2.3.8 Size-exclusion chromatography (Gel filtration)

A Superdex 200 10/300 GL gel filtration column (GE Healthcare, UK) was equilibrated with 20 mM Tris-HCl pH 7.8, 100 mM NaCl at 0.7 ml min\(^{-1}\) using an AKTA FPLC system (GE Healthcare, UK). A calibration curve of the partition coefficient (\(K_{av}\)) versus apparent molecular mass was determined by measuring the elution volume \(V_e\) for protein standards, consisting of dextran (2,000 kDa), ferritine (440 kDa), sweet potato \(\beta\)-amylase (200 kDa), aldolase2 (158 kDa), conalbumin (75 kDa), ovalbumin (43 kDa) (GE healthcare, UK), \(K_{av} = (V_e - V_0)/(V_c - V_0)\) was used to calculate \(K_{av}\) for each standard, which was plotted vs. log \(M_r\), where \(M_r\) is the known apparent molecular mass of the standard, \(V_e\) is the elution volume, and \(V_0\) is the void volume which is 8.23 ml for the Superdex 200 10/300 GL column used (Figure 2-1).

\[
\log M_r = -1.726x + 5.8471
\]

\(R^2 = 0.98662\)

Figure 2-1 Calibration curve for protein molecular weight by gel filtration.
2.3.9 Protein quantification

Total protein concentration was determined at 595 nm by the Bradford assay (Bio-Rad, USA) using bovine serum albumin (BSA, 0.25, 0.5, 0.75, 1 mg ml\(^{-1}\)) (Bio-Rad, USA) as the standard according to the manufacturer’s instruction.

2.3.10 Circular dichroism

Purified recombinant protein was buffer-exchanged to 20 mM sodium phosphate (pH 7.0) containing 50 mM NaCl using by ultrafiltration with Vivaspin centrifugal concentrator (cut-off of 10,000 Da) (GE healthcare, UK). Circular dichroism (CD) spectra were recorded in the range of 195–260 nm by a Jasco J-815 spectrometer (Jasco, UK) in a quartz cuvette of 1 mm path length at room temperature (~22 °C). Spectra were collected eight times per sample. Data were expressed as mean residue ellipticity (MRE) in degrees·cm\(^2\)·dmol\(^{-1}\).

Spectra were deconvoluted using the online programme DICHROWEB (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) (Whitmore and Wallace 2004, Whitmore and Wallace 2008) and the CDSSTR algorithm was used to estimate the percentages of each secondary structure using the reference protein set 7 (Sreerama and Woody 2000).
2.3.11 6*His-tag cleavage

Removal of the 6*His-tag at the N-terminus of recombinant Tdm was carried out using thrombin (GE Healthcare, UK) according to the manufacturer’s instruction. One mg purified recombinant Tdm was incubated with 10 units thrombin at 4 °C overnight (16 hrs). The 6*His-tag was efficiently removed as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and its inability to bind to the nickel affinity column.

2.3.12 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis

Polypeptides were separated by SDS-PAGE using Mini-PROTEAN TGX precast polyacrylamide gels (12.5%, w/v) (Bio-rad, Hercules, CA, USA) conducted at 160-200 V during separation, using the running buffer containing glycine (72 g l⁻¹), Tris base (15 g l⁻¹) and SDS (5 g l⁻¹). On occasion, Bis-Tris Novex NuPAGE gels (Invitrogen, Carlsbad, CA, USA) were used with MOPS buffer following the manufacturer’s instructions. Gels were stained with Fast Blue gel staining reagent (Expedeon, UK). Either the Bio-Rad dual colour protein ladder (Bio-Rad, USA) or the ColorBurst Marker (Sigma-Aldrich) was used as molecular mass markers for the estimation of protein molecular weight.
2.3.13 Native polyacrylamide gel electrophoresis

Native (non-denaturing) polyacrylamide gel electrophoresis was performed at a constant voltage of 150 V using an Invitrogen electrophoresis system on a NuPAGE Novex 3–8% Tris-Acetate (w/v) polyacrylamide gel. The gels were stained with the Fast Blue reagent (Expedeon, UK). The NativeMark™ Unstained Protein Standard from ThermoFisher Scientific was used as the standard.

2.3.14 Protein identification by mass-spectrometry

Bands of interest from SDS-PAGE were excised, digested with trypsin, and analysed to confirm their identity using the matrix-assisted laser desorption ionization–mass spectrometry (MALDI-MS) and tandem mass spectrometry at the Mass Spectrometry and Proteomics Facility Laboratory, School of Life Sciences, University of Warwick.

2.3.15 Crystallisation screening

Proteins were concentrated by ultrafiltration with Vivaspin centrifugal concentrator (cut-off of 10,000 Da) (GE healthcare) to ~10 mg mL\(^{-1}\) in 20 mM Tris-HCl pH 7.8, 100 mM NaCl for crystallisation screening unless otherwise stated.

Initial screenings were carried out in 96-well sitting drop crystallisation plates using a Mosquito robotic lipid handing system (TTP Labtech, UK). Each reservoir contains 70 µl of mother liquor. The protein drops constituted 200 nl of protein and
200 nl of crystallisation solution dispensed by the Mosquito robot. Screens used in this setup include JCSG+, PACT and Morpheus from Molecular Dimensions (Newmarket, UK). After setting up, all plates were sealed with a ThermalSeal RT sheet from AlphaLaboratories (AlphaLaboratories, UK) and incubated at either 4 °C or 18 °C with periodic examination for crystal formation. Plates were checked periodically using a SZ-PT Olympus microscope with an attached JVC colour video camera for imaging.

2.4 Analytical method

2.4.1 Ion-exchange liquid chromatography

Concentrations of methylated amines (carnitine, TMA, DMA, MMA etc) were determined by ion-exchange liquid chromatography. The ion chromatography system used consisted of a Metrohm 881 Compact IC Pro (Metrohm, UK) with a Metrosep C4/250 column. The eluent solution contained HNO₃ (1.5 mM), 2, 6-pyridinedicarboxylic acid (0.7 mM) and acetone (5%, v/v). All solutions were prepared using Milli-Q water (Millipore, USA).

2.4.2 Formaldehyde quantification

Enzyme assays for Tdm were carried out at room temperature (~22 °C) in a 96-well microplate (Bio-Rad, USA), containing 2.5 µg of purified Tdm in 50 µl of 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer unless otherwise stated. The
reactions were initiated by adding TMAO into the mixture (final concentration 10 mM) and incubated for 10 min. The time course experiment showed that enzyme activity slowed down after 30 min of incubation as assessed by formaldehyde release (Figure 2-2). Therefore, 10 min incubation time was applied as it was within the linear phase. Measurement of formaldehyde was performed by mixing 10 µl of the sample with 25 µl of 0.2% (w/v) Purpald reagent and 215 µl of Milli-Q water in a 96-well micro-plate (Bio-Rad, USA) (Quesenberry and Lee 1996). The Purpald solution was freshly prepared by dissolving in 1 M NaOH. Absorbance at 540 nm was determined after 20 min incubation at room temperature using a Bio-Rad iMark micro-plate reader. Calibration curves were prepared with 16% (v/v) formaldehyde of analytical grade purity (Thermo Scientific) from 20 µM to 180 µM (final concentration).

![Figure 2-2](image)

Figure 2-2 Time course of 10 µg recombinant 6*His-tag Tdm enzymatic reaction in 1 ml of 10 mM Tris-HCl (pH 7.8). 5 mM TMAO was used as the substrate.
2.5 Bioinformatics

Protein sequences were aligned, end-trimmed and analyzed using the MEGA5 package (Tamura et al 2011). All phylogenetic trees were constructed using the minimum evolution method (default settings) with 1,000 bootstrap replicates using the MEGA5 package. Analysis of conserved domains in proteins was carried out using the Pfam database (release 27.0) (Punta et al 2012).
Chapter 3 Identification and characterization of TMAO demethylase and TMAO permease in *Methylocella silvestris* BL2
3.1 Introduction

In recent years, the cycling of methylated amines (MAs) in the terrestrial environment has attracted great attention (Ge et al 2011). MAs, together with other aliphatic amines, have been identified as one of the important components of trace gases in the atmosphere, contributing to the growth of the so-called secondary organic aerosols and likely leading to the formation of cloud condensation nuclei (Cape et al 2011, Ge et al 2011). Since MAs are basic, they also play a role in neutralizing atmospheric acidity caused by organic and inorganic acids, including sulphuric acid, nitric acid and formic acid (Murphy et al 2007). MAs are produced both biologically and abiotically. Abiotic sources of MAs include biomass burning and emissions from vehicle exhaust (Ge et al 2011). The annual flux of MAs into the atmosphere is estimated to be in the order of 285 ± 78 Gg globally, a large proportion of which originates from animal husbandry and biomass burning although other anthropogenic activities such as agriculture also play a role (Ge et al 2011). The presence of such large quantities of MAs in the atmosphere can significantly affect human well-being. For example, MAs can be precursors for carcinogens such as N-nitrosodimethylamine, causing concerns for public health (Mitch et al 2003). Being an important component of organic nitrogen in the atmosphere, the cycling of MAs between land and oceans can also affect global biogeochemical cycles of
nitrogen through atmospheric deposition (Cape et al 2011). Therefore, understanding the sources and sinks of MAs in the environment will contribute to a better assessment of the MA cycle and subsequent impact on public health and ecosystem function.

Several processes contribute to biological MA production in the terrestrial environment, including degradation of herbicides and pesticides (Bhadbhade et al 2002, Dam et al 2005, Kamanavalli and Ninnekar 2000, Topp et al 1993), protein putrefaction (Kamiya and Ose 1984), anaerobic microbial respiration (Barrett and Kwan 1985), as well as degradation of quaternary amines (King 1987). Quaternary amines such as choline and carnitine are significant components of eukaryotic cells and are released to the environment due to normal cell turnover and programmed cell death. In agricultural and forest soils, MAs co-exist with quaternary amines, which represent a major pool of dissolved organic nitrogen, suggesting that quaternary amines are likely to be important MA precursors in these soils (Warren 2013a, Warren 2013b, Yu et al 2002).

It is known that many soil bacteria can sequester MAs from their environment as their carbon and nitrogen source (Anthony 1982). *Methylocella silvestris* BL2, a facultative one-carbon utilizing alphaproteobacterium isolated from a forest soil in Germany, can utilise MAs, including TMA, DMA and MMA, as carbon, nitrogen
and energy sources (Chen et al 2010a, Chen et al 2010c, Dunfield et al 2003). *M. silvestris* BL2 employs an indirect pathway involving TMAO as the key intermediate for the degradation of TMA to ammonium and formaldehyde (Chen et al 2011). The enzymes responsible for MMA degradation in this bacterium through γ-glutamylmethylamide (GMA) and *N*-methylglutamate (NMG) and the enzyme TMA monooxygenase responsible for the initial oxidation of TMA to TMAO have been identified previously (Chen et al 2010c, Chen et al 2011). It is hypothesized that TMAO can be further converted to MMA through a demethylation and an oxidation step, however, the genetics and biochemistry underpinning TMAO catabolism in this bacterium remains to be established. TMAO not only occurs in the natural environment but also is widely used as important industrial solvent (Yancey 2005). Studying the catalytic mechanisms of TMAO degradation by microorganisms and its subsequent conversion to methylated amines, such as DMA, will advance our understanding of the impact of TMAO release into the environment.

The main aims of this chapter are:

- To identify the gene encoding Tdm in the model bacterium *Methylocella silvestris*;
- To identify the gene encoding a TMAO transporter in this bacterium and
- To carry out initial biochemical characterisation of Tdm
3.2 Materials and methods

3.2.1 Growth of *Methylocella silvestris* and mutant strains

M. silvestris and mutants were grown in DNMS using MAs as nitrogen source as described in Chapter 2. Either methanol (10 mM) or succinate (5 mM) was used as the carbon source. Concentrations of MAs in the media were determined by ion-exchange liquid chromatography (see Chapter 2).

3.2.2 Construction of marker-exchange mutants in *Methylocella silvestris*

The marker-exchange mutants (Table 2-2) were generated by Dr. Yin Chen and already available when the project started. Mutants of *M. silvestris* were constructed as described previously (Chen et al. 2010c). Briefly, a downstream region and an upstream region of the target gene were amplified by PCR and sub-cloned into the pGEM-T vector (Promega, Madison, USA) together with a kanamycin (*kan*) gene cassette amplified from the plasmid pCM184 (Marx and Lidstrom 2002), which was inserted between the two regions (primers used are listed in Appendix 1). The downstream and upstream regions together with the *kan* gene cassette were then released from the resulting plasmid and transformed into *M. silvestris* competent cells via electroporation as described previously (Chen et al. 2010b). Mutants were selected on the solid DNMS medium containing kanamycin (25 µg ml⁻¹), which were then screened by diagnostic PCR and subsequent sequencing.
3.2.3 Cloning and heterologous expression of tdm in Escherichia coli

Cloning of tdm of M. silvestris into an expression vector, pET28a, was performed by Dr Yin Chen. Plasmids and strains used for cloning and overexpression of tdm in E. coli are listed in Table 2-2. Briefly, the tdm gene (Msil_3603) was amplified by PCR and sub-cloned into the pGEM-T vector (Promega, Madison, USA), which was then excised using the NdeI/BamHI sites and ligated into the expression vector pET28a (Merck Biosciences, Germany). The resulting plasmid was sequenced prior to being transformed into the expression host E. coli BLR(DE3) pLysS (Merck Biosciences, Germany).

3.2.4 Protein purification and enzymatic assays

Protein purification and 6*His-tag removal were carried out as described in Chapter 2. Several buffers with a range of pH were first compared in order to determine a suitable buffering system and the optimum pH for the purified Tdm. The data presented in Figure 3-1 demonstrated that Tdm had highest activity at pH 6.0 in 10 mM MES (2-(N-morpholino) ethanesulfonic acid) buffer, which was then chosen for the following experiments. For enzymatic activity assays, either formaldehyde or DMA production from TMAO was quantified. DMA and formaldehyde quantification were carried out using the aforementioned ion-exchange chromatography and the Purpald assay as described in Chapter 2, respectively.
Steady-state kinetics were determined in triplicate. To determine the substrate specificity of Tdm, the compounds with similar structure as TMAO were tested. The assays were performed in triplicate and the compounds used were at a final concentration of 10 mM. To determine the stoichiometry of TMAO demethylation by Tdm, the enzyme reaction was initiated by adding TMAO at 2-8 mM and DMA and formaldehyde production was quantified after 60 min when TMAO was completely consumed.

Figure 3-1: Optimal pH of purified recombinant 6*His-tag Tdm and 6*His-tag removed native Tdm in various pH buffers (final concentration, 10 mM). MES: 2-(N-morpholino) ethanesulfonic acid; PIPES: 1,4-piperazinediethanesulfonic acid; Tris-HCl: 2-amino-2-hydroxymethyl-propane-1,3-diol; Acetate: acetic acid and sodium acetate.
3.2.5 Bioinformatics

Homologous proteins were identified using the BLASTp programme using the Msil_3603 and Msil_3606 sequences of *M. silvestris* as the query. Protein sequences were aligned, end-trimmed and analyzed using the MEGA5 package (Tamura et al 2011). All phylogenetic trees were constructed using the minimum evolution method (default settings) with 1,000 bootstrap replicates. Accession numbers from the Uniprot database for all sequences used in phylogenetic analyses are listed in Tables 3-2, 3-3 and 3-4 for tetrahydrofolate (THF)-binding domains, DUF1989 domains and the amino acids-polyamine (APC) superfamily members, respectively. Analysis of conserved domains in protein was carried out using Pfam (release 27.0), (Punta et al 2012).

3.2.6 Analytical ultracentrifugation

Purified Tdm from recombinant *E. coli* was exhaustively dialyzed against 50 mM sodium phosphate (pH 7.0) containing 100 mM NaCl, 1 mM D, L-dithiothreitol. Tdm protein samples were centrifuged at 30,000 r·min⁻¹ at 4 °C for 16 h in an eight-cell An-50 Ti rotor in a Beckman XLI analytical ultracentrifuge (Beckman). Migration of the protein during centrifugation was monitored by measuring the distribution of absorbance at 280 nm across the sample in the centrepiece at 120 consecutive time points. Molecular masses were calculated by the SEDFIT package.
using a c(s) model (Dam et al 2005, Schuck 2000). Protein partial specific volumes, buffer viscosities and densities were all calculated using SEDNTERP (http://sednterp.unh.edu/).

3.2.7 Native polyacrylamide gel electrophoresis

Native page was done as described in Chapter 2.

3.3 Results

3.3.1 Genes of Msil_3603 to Msil_3609 are involved in methylated amine metabolism in Methylocella silvestris

It is known that *M. silvestris* can utilize TMA as a sole carbon and nitrogen source through an indirect pathway, involving TMAO as the key intermediate (Chen et al., 2011). The gene encoding TMA monooxygenase (Tmm), the first enzyme in the TMA oxidation pathway in this bacterium, has already been identified (ORF *Msil_3604*) (Chen et al 2011). However the gene encoding the TMAO demethylase (Tdm) remains unknown. Comparative proteomics data have shown that peptides encoded by the genes in the neighbourhood of *tmm* (Figure 3-2) were also induced in the presence of TMA, suggesting a role in TMA oxidation (Chen et al 2011). In order to establish the role of the neighbouring gene in TMA metabolism and to identify the Tdm-encoding gene, several marker-exchange mutants in this bacterium have been generated. The mutants were then cultivated in a defined medium using
TMA, TMAO, DMA or MMA as the sole nitrogen source in order to establish their growth phenotype on MAs.

As it has been predicted previously (Chen et al 2011), the tmm mutant (ΔMsil_3604) could grow on TMAO, DMA and MMA, but not TMA (Table 3-1), confirming that it is only involved in the first step of TMA oxidation. Two mutants, ΔMsil_3608 and ΔMsil_3609, could only grow on MMA (Table 3-1), suggesting that they are likely to encode subunits of the DMA monooxygenase (Dmm), which is the immediate upstream step for the oxidation of DMA to MMA. The gene Msil_3607 is only 585 bp long and a mutant of Msil_3607 is therefore not constructed in this study. However, Dmm has been previously purified from *Aminobacter aminovorans* and it is known to consist of 3 subunits (Alberta and Dawson 1987). Therefore, it is hypothesised that Msil_3607-Msil_3609 may encode a Dmm in *M. silvestris*.
Figure 3-2 The genomic neighbourhood of TMA monooxygenase (tmm) in *Methylocella silvestris* BL2 and their putative functions. Conserved domains (highlighted in black) in Msil_3603 and Msil_3605 were identified using the conserved domain database (Marchler-Bauer et al., 2013).

<table>
<thead>
<tr>
<th>ORF</th>
<th>Length (AA)</th>
<th>Gene name</th>
<th>Annotation</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Msil_3603</td>
<td>761</td>
<td>tdm</td>
<td>Glycine cleavage system T protein, containing a N-terminal domain of unknown function (DUF1989) and a C-terminal tetrahydrofolate-binding domain (Gcv_T)</td>
<td>TMAO demethylase</td>
<td>This study</td>
</tr>
<tr>
<td>Msil_3604</td>
<td>451</td>
<td>tmm</td>
<td>A flavin-containing monooxygenase</td>
<td>TMAO monooxygenase</td>
<td>Chen et al., 2011</td>
</tr>
<tr>
<td>Msil_3605</td>
<td>378</td>
<td>dmmD</td>
<td>Aminomethyltransferase, containing a tetrahydrofolate-binding domain (Gcv_T)</td>
<td>DMA monooxygenase subunit?</td>
<td>This study</td>
</tr>
<tr>
<td>Msil_3606</td>
<td>571</td>
<td>tmoP</td>
<td>Putative transmembrane amino acid transporter protein</td>
<td>TMAO permease</td>
<td>This study</td>
</tr>
<tr>
<td>Msil_3607</td>
<td>195</td>
<td>dmmA</td>
<td>Hypothetical protein</td>
<td>DMA monooxygenase subunit α</td>
<td>This study</td>
</tr>
<tr>
<td>Msil_3608</td>
<td>317</td>
<td>dmmB</td>
<td>Putative NADPH-flavodoxin reductase</td>
<td>DMA monooxygenase subunit β</td>
<td>This study</td>
</tr>
<tr>
<td>Msil_3609</td>
<td>351</td>
<td>dmmC</td>
<td>Protein of unknown function (DUF3445)</td>
<td>DMA monooxygenase subunit γ</td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 3-1 Growth of wild type and mutants of *Methylocella silvestris* on methylated amines*

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Wild type (h⁻¹)</th>
<th>∆Msil₃₆₀₃ (h⁻¹)</th>
<th>∆tmm (ΔMsil₃₆₀₄) (h⁻¹)</th>
<th>∆Msil₃₆₀₅ (h⁻¹)</th>
<th>∆Msil₃₆₀₆ (h⁻¹)</th>
<th>∆Msil₃₆₀₈ (h⁻¹)</th>
<th>∆Msil₃₆₀₉ (h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMA</td>
<td>0.030 ± 0.002</td>
<td>-</td>
<td>-</td>
<td>0.010 ± 0.001</td>
<td>0.025 ± 0.001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TMAO</td>
<td>0.045 ± 0.000</td>
<td>-</td>
<td>0.045 ± 0.003</td>
<td>0.010 ± 0.003</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DMA</td>
<td>0.032 ± 0.002</td>
<td>0.027 ± 0.004</td>
<td>0.040 ± 0.006</td>
<td>0.024 ± 0.004</td>
<td>0.024 ± 0.001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MMA</td>
<td>0.031 ± 0.001</td>
<td>0.034 ± 0.005</td>
<td>0.047 ± 0.003</td>
<td>0.029 ± 0.000</td>
<td>0.025 ± 0.001</td>
<td>0.027 ± 0.003</td>
<td>0.027 ± 0.001</td>
</tr>
</tbody>
</table>

*, Methanol was used as the carbon source and methylated amines were used as the sole nitrogen source.

-, No growth. Values presented are average ± standard deviations of experiments run in triplicates.
The mutant ΔMsil_3603 can utilize DMA and MMA, but not TMA or TMAO (Table 3.1). Msil_3603 is annotated as a glycine cleavage T protein (aminomethyl transferase) in the Genbank and Uniprot databases. It is composed of two domains, an uncharacterized N terminal domain (DUF1989) and a conserved THF-binding C terminal domain (Gcv_T), which is found in several well-characterized THF-dependent enzymes, such as glycine cleavage T protein (Okamura-Ikeda et al 2005) and dimethylsulfoniopropionate demethylase (Schuller et al 2012). Phylogenetic analysis of the THF-binding domain revealed that Msil_3603 formed a unique cluster in the family (Figure 3-3 A). Other sequences clustered within this clade include representatives that are known to metabolise MAs (Kalyuzhnaya et al 2006, Lidbury et al 2014). The N-terminus of Msil_3603 is an uncharacterized domain (DUF1989) with no known function. Phylogenetic analysis of the proteins of the DUF1989 superfamily showed the presence of four distinct clusters (Figure 3-3 B), none of which has been assigned function experimentally. DUF1989 in Msil_3603 shows modest sequence similarity (9-30%) to urea-carboxylase associated proteins, whose functions in urea catabolism are not yet known (Kanamori et al., 2004). It is hypothesized that the ORF Msil_3603 may encode Tdm (E.C. 4.1.2.32) in this bacterium and this was tested further as shown below.
TMAO demethylase (Tdm)

Putative DMA monooxygenase subunit (DmmD)

Dimethylsulfoniopropionate demethylase (DmA)

Dimethylglycine/sarcosine dehydrogenase/oxidase

Glycine cleavage system T protein (Gvc_T)

Methylocella silvestris BL2 Msil_3603 (B8EIZ6)
Methyloversatilis universalis FAM5 (F5RCR4)
Mesorhizobium loti MAFF303099 (Q986L6)
Ruegeria pomeroyi DSS-3 (Q5LT52)
Pseudomonas fluorescens SBW25 (C3K8G9)

Pelagibacter ubique HTCC1062 (Q4FP21)
Arthrobacter globiformis (Q9AGP8)
Rattus norvegicus (Q64380)
Arthrobacter efficiens DSM 44549 (Q8HF5)

Pyrococcus horikoshii OT-3 (Q5LS57)
Bipolaris maydis (B8EIZ6)
Segniliparus rotundus JCM 13578(D6ZAM2)
Corynebacterium efficiens DSM 44549 (Q8HF5)

Colesioides inrinitis RS (J3KFC9)
Schizosaccharomyces pombe 972 (Q10082)
Asthyia gossypii ATCC 10895 (Q7T5E2)
Drosophila yakuba (Q9AGP8)
Agrobacterium tumefaciens C58 (Q7CZE5)

Bacillus subtilis 168 (P54378)
Escherichia coli K12 (P27248)
Saccharomyces cerevisiae S288c (P48015)
Plasm salinus (P48015)
Bos taurus (P25285)
Homo sapiens (P48728)

Methylocella silvestris BL2 Msil_3605 (B8EIZ8)
Methyloversatilis universalis FAM5 (F5RCR4)
Mesorhizobium loti MAFF303099 (Q986L6)
Ruegeria pomeroyi DSS-3 (Q5LT57)
Pseudomonas fluorescens SBW25 (C3K8G9)

Pelagibacter ubique HTCC1062 (Q4FP21)
Arthrobacter globiformis (Q9AGP8)
Rattus norvegicus (Q64380)
Arthrobacter efficiens DSM 44549 (Q8HF5)

Pyrococcus horikoshii OT-3 (Q5LS57)
Bipolaris maydis (B8EIZ6)
Segniliparus rotundus JCM 13578(D6ZAM2)
Corynebacterium efficiens DSM 44549 (Q8HF5)

Colesioides inrinitis RS (J3KFC9)
Schizosaccharomyces pombe 972 (Q10082)
Asthyia gossypii ATCC 10895 (Q7T5E2)
Drosophila yakuba (Q9AGP8)
Agrobacterium tumefaciens C58 (Q7CZE5)

Bacillus subtilis 168 (P54378)
Escherichia coli K12 (P27248)
Saccharomyces cerevisiae S288c (P48015)
Plasm salinus (P48015)
Bos taurus (P25285)
Homo sapiens (P48728)

Methylocella silvestris BL2 Msil_2675 (B8EIZ8)
Methyloversatilis universalis FAM5 (F5RCR4)
Mesorhizobium loti MAFF303099 (Q986L6)
Ruegeria pomeroyi DSS-3 (Q5LT52)
Pseudomonas fluorescens SBW25 (C3K8G9)

Pelagibacter ubique HTCC1062 (Q4FP21)
Arthrobacter globiformis (Q9AGP8)
Rattus norvegicus (Q64380)
Arthrobacter efficiens DSM 44549 (Q8HF5)

Pyrococcus horikoshii OT-3 (Q5LS57)
Bipolaris maydis (B8EIZ6)
Segniliparus rotundus JCM 13578(D6ZAM2)
Corynebacterium efficiens DSM 44549 (Q8HF5)

Colesioides inrinitis RS (J3KFC9)
Schizosaccharomyces pombe 972 (Q10082)
Asthyia gossypii ATCC 10895 (Q7T5E2)
Drosophila yakuba (Q9AGP8)
Agrobacterium tumefaciens C58 (Q7CZE5)

Bacillus subtilis 168 (P54378)
Escherichia coli K12 (P27248)
Saccharomyces cerevisiae S288c (P48015)
Plasm salinus (P48015)
Bos taurus (P25285)
Homo sapiens (P48728)

Methylocella silvestris BL2 Msil_3603 (B8EIZ8)
Methyloversatilis universalis FAM5 (F5RCR4)
Mesorhizobium loti MAFF303099 (Q986L6)
Ruegeria pomeroyi DSS-3 (Q5LT52)
Pseudomonas fluorescens SBW25 (C3K8G9)

Pelagibacter ubique HTCC1062 (Q4FP21)
Arthrobacter globiformis (Q9AGP8)
Rattus norvegicus (Q64380)
Arthrobacter efficiens DSM 44549 (Q8HF5)

Pyrococcus horikoshii OT-3 (Q5LS57)
Bipolaris maydis (B8EIZ6)
Segniliparus rotundus JCM 13578(D6ZAM2)
Corynebacterium efficiens DSM 44549 (Q8HF5)

Colesioides inrinitis RS (J3KFC9)
Schizosaccharomyces pombe 972 (Q10082)
Asthyia gossypii ATCC 10895 (Q7T5E2)
Drosophila yakuba (Q9AGP8)
Agrobacterium tumefaciens C58 (Q7CZE5)

Bacillus subtilis 168 (P54378)
Escherichia coli K12 (P27248)
Saccharomyces cerevisiae S288c (P48015)
Plasm salinus (P48015)
Bos taurus (P25285)
Homo sapiens (P48728)
Figure 3-3 Phylogenetic analyses of the tetrahydrofolate (THF)-binding domain (~358 amino acids) (A) and the DUF1989 domain (~197 amino acids) (B) of the putative TMAO demethylase (Tdm, encoded by Msil_3603). Bootstrap values (1,000 replicates) great than 90% are shown in percentage for each node. The bar represents 1 substitution per 10 amino acids in the aligned sequences. The Uniprot accession number of the sequences used for the phylogenetic analysis are listed in Table 3-2, 3-3.
The ORF *Msil_3606* encodes a membrane protein, consisting of 12 transmembrane helices. It is annotated as a putative transmembrane amino acid transporter protein in the Genbank and Uniprot databases. Our phylogenetic analyses suggest that *Msil_3606* belongs to the amino acid-polyamine membrane transporter superfamily (APC family) (Figure 3-4). The APC family currently consists of 14 clades, 12 of which have been functionally assigned (Saier 2000). *Msil_3606*, together with sequences from known MA utilizers (*e.g.* *Methyloversatilis*) formed a distinct clade independent of the currently known APC family members. Marker-exchange mutagenesis experiments showed that the mutant (Δ*Msil_3606*) can grow on TMA, DMA and MMA, but not TMAO (Table 3-1), suggesting that it encodes a functional TMAO transporter. The role of *Msil_3605* in MA oxidation was not very clear. *Msil_3605* has a single THF-binding domain (Gcv_T), which shows 32% identity to the C terminal Gcv_T domain in *Msil_3603*. The Δ*Msil_3605* mutant was able to grow on MMA, however its growth on TMA, TMAO and DMA was much slower compared to those of the wild type (Table 3-1).
3.3.2 Msil_3603 and Msil_3606 are required for Methylocella silvestris to grow on TMAO

In order to establish if Msil_3603 and Msil_3606 are indeed specifically required for TMAO metabolism, TMAO concentrations were quantified by ion-exchange chromatography in the culture medium of the wild type and the mutant strains of *M. silvestris*. Succinate was used as the sole carbon source instead of methanol because...
methanol can damage the ion-exchange chromatography column used in this study.

As shown in Figure 3-5, the wild type strain could grow on TMAO plus succinate and TMAO was completely depleted within 10 days (detection limit, 5 µM). However, the growth rates of the mutants (ΔMsil_3603, ΔMsil_3606) on TMAO as a sole nitrogen source were significantly reduced compared to that of the wild type, and TMAO concentrations in the medium remained unchanged throughout the experiment. Therefore, the data indicate that Msil_3606 encodes a transporter required for TMAO uptake in M. silvestris, which was designated as TmoP.

Figure 3-5 Growth of Methylocella silvestris of wild type (A), the ΔMsil_3603 mutant (B) and the ΔMsil_3606 mutant (C) on TMAO (○) or nitrate (●) as the sole nitrogen source. Quantification of TMAO consumption during growth of the wild type (●), ΔMsil_3603 mutant (○) and the ΔMsil_3606 mutant (●) (D). Nitrate was used as a sole nitrogen source as positive controls. Error bars indicate standard deviations of experiments run in triplicate.
3.3.3 *Msil* _3603_ encodes a bacterial TMAO demethylase

Gene *Msil* _3603_ was cloned from *M. silvestris* into an *Escherichia coli* host, overexpressed and further purified this protein with 6×His tag at its N-terminus by nickel (Ni²⁺) affinity chromatography in order to establish whether it is a *bona fide* TMAO demethylase (Tdm). Eukaryotic Tdm has been purified previously (Fu et al 2006, Kimura et al 2000, Parkin and Hultin 1986, Takeuchi et al 2003), however, its microbial counterpart has only been partially purified from *Aminobacter aminovorans* and *Bacillus* sp. PM6 (Large 1971, Myers and Zatman 1971). The two products of TMAO demethylation are DMA and formaldehyde, and these two compounds were indeed detected when the purified protein was presented with TMAO (Figure 3-6). The stoichiometry of TMAO demethylation is determined to be 1 TMAO \rightarrow 1 DMA + 1 HCHO.

Figure 3-6 Stoichiometry of TMAO demethylation by Tdm (A). Black and grey bars represent formaldehyde and DMA concentrations, respectively. Ratio of DMA to formaldehyde (B). Error bars indicate standard deviations of triplicate experiments.
3.3.4 Initial characterization of Tdm of *M. silvestris* from recombinant *E. coli*.

The purified Tdm protein from recombinant *Escherichia coli* had a molecular weight of ~80 kDa under denaturing conditions (Figure 3-7 A), in good agreement with the calculated value from its amino acid sequence (82,547 Da). Its native molecular weight was estimated by two complementary methods, native gel electrophoresis and analytical ultracentrifugation, both of which suggested that the native Tdm was likely to be hexameric (Figure 3-7 B, C). The purified protein has an optimal pH at ~6.0 (Figure 3-1) and had no recognizable absorbance peak under UV-visible light (220 nm – 600 nm) besides the peak at 280 nm (Figure 3-8). Under optimum conditions, V_{max} and K_m of the recombinant Tdm were determined to be 21.7 ± 0.74 nmol min$^{-1}$ mg$^{-1}$ and 3.3 ± 0.64 mM, respectively by the Eadie-Hofstee plot (Figure 3-9). Its K_m value of Tdm of *M. silvestris* is in good agreement to that of *Aminobacter aminovorans* (2 mM) and *Bacillus* sp. (2.85 mM), respectively (Large 1971, Myers and Zatman 1971). The recombinant Tdm enzyme is specific for TMAO, among the compounds tested, it only showed ~50% activity to dimethyldecylamine N-oxide (Figure 3-10). In contrast to the eukaryotic counterparts (Parkin and Hultin 1986), no enhancement of activity was found with additional ferrous iron or cysteine added to the *in vitro* enzyme assays (Figure 3-11),
however the impact of metals on Tdm activity was further investigated in detail in Chapter 4.

Figure 3-7 Estimation of molecular weight of purified Tdm by denaturing (A) and native (B) gel electrophoresis and analytical ultracentrifugation (C). 1, crude cell-free extract; 2, column flow through fraction of loaded cell-free extract; 3, column wash fraction with binding buffer containing 20 mM imidazole; 4-6, column wash fractions with 1, 3 and 6 bed volumes of washing buffer containing 60 mM imidazole; 7, elution fraction of the purified Tdm. Mf means the molar mass taking into account the current best-fit frictional ratio f/f₀.

\begin{align*}
\text{Mf} &= 144 \text{ kDa} \\
\text{Mf} &= 507 \text{ kDa} \\
\text{Mf} &= 889 \text{ kDa}
\end{align*}
Figure 3-8 UV-visible absorbance spectrum (220 – 600 nm) of the purified recombinant Tdm of *Methylocella silvestris* BL2.

Figure 3-9 Steady-state kinetic parameters estimation. Michaelis-Menten representation of raw data (A). Eadie-Hofstee plot of kinetic data (B). Error bars indicate standard deviations of experiments run in triplicate.
Figure 3-10 Relative activity of Tdm to selected structure analogues of TMAO. Error bars indicate standard deviations of experiments run in triplicate.

Figure 3-11 The effect of ferrous iron and cysteine on the activity of purified Tdm of *Methylocella silvestris*. Final concentration, cysteine, 2 mM; ascorbate, 2 mM; FeCl₂, 0.2 mM; NADH, 0.4 mM; EDTA, 10 mM.
3.3.5 Discussion

In this study, a TMAO membrane transporter (TmoP), the TMAO demethylase (Tdm) and the putative DMA monooxygenase have been identified in Methylocella silvestris. The presence of a specific transporter required for TMAO suggest that it can be taken up by Methylocella silvestris from the environment (Anthony 1982, Chen et al 2011). Although it is clear that TMAO can be used as a ubiquitous osmolyte by a range of marine biota (Gibb and Hatton 2004), the environmental sources of TMAO in soils and other terrestrial habitats are less clear. TMAO is a central metabolite involved in lipid metabolism in mammals and significant concentrations of TMAO have been detected in urine and other body fluids of humans (Smith et al 1994, Zhang et al 1992), rats (Smith et al 1994) and dogs (Richards et al 2013). It is therefore possible that the presence of TMAO in terrestrial environments, including soils, is the result of excretion from animals. However, it is also likely that TMAO is leaked out from microorganisms during the oxidation of TMA by microbial TMA monooxygenases (Chen et al 2011). Recent studies have shown that in agricultural and forest soils, precursors of TMA such as quaternary amines represent a major pool of dissolved organic nitrogen (Warren 2013a, Warren 2013b, Yu et al 2002). Microbial oxidation of TMA in soils may represent yet another source of TMAO in the environment.
The only known microbial TMAO transporter in the literature at the time when the project started was an ATP-dependent active transporter of the ABC superfamily found in *Aminobacter aminovorans* (Raymond and Plopper 2002). This ABC-type TMAO transporter was subsequently discovered by Ian Lidbury, a PhD student from Dr. Chen’s group, in a range of marine bacteria, such as *Ruegeria pomeroyi* (Lidbury et al 2014). This study indicates that another type of microbial transporter for TMAO is present. This newly identified TMAO permease (TmoP) of *Methylocella silvestris* belongs to the APC superfamily but forms a distinct cluster (*Figure 3-4*). APC transporters are membrane permeases co-transporting another solute, acting as either a symporter or an antiporter (Saier 2000). It is not clear whether TmoP acts as a symporter or an antiporter and the co-transporting solute remains to be established. It is interesting to note that TmoP homologues are also found in some methanogenic *Archaea*, e.g. *Methanosarcina acetivorans*, *Methanosarcina mazei* (*Figure 3-4*) but it remains unclear whether TMAO can be directly used as a substrate for methanogenesis.

Microbial Tdm has been partially purified previously (Large 1971, Myers and Zatman 1971), and the gene encoding microbial Tdm remained unknown when the project was started. While my investigation on Tdm in *Methylocella silvestris* was underway, the *tdm* gene was also found in a range of marine bacteria (Lidbury et al
Tdm from marine eukaryotes has also been purified, including those from the Alaskan Pollock (*Theragra chalcogramma*, Kimura et al 2000), the red hake (*Urophycis chuss*, Parkin and Hultin 1986) and the Humboldt squid (*Dosidicus gigas*, Fu et al 2006). Tdm sequences from bacteria and eukaryotes (Takeuchi et al 2003) have no sequence homology and have contrasting characteristics. For example, purified Tdm from *Dosidicus gigas* and *Theragra chalcogramma* have much smaller molecular mass, being 17.5 kDa and 25 kDa respectively. Their K_m values for TMAO (30 mM for *T. chalcogramma* and 26.2 mM for *D. gigas*) are significantly higher than those of the microbial Tdm (2–4 mM). Eukaryotic Tdm requires ferrous ion as an essential metal for activity whereas it has no obvious impact on microbial Tdm in *in vitro* assays (but also see Chapter 4 for detailed characteriation of metal-dependent activity in Tdm). Tdm in bacteria and eukaryotes represent another example of convergent evolution where two forms of Tdm have evolved independently to catalyse the same biochemical reaction.

Another important finding from this study is the functional assignment of the DUF1989 domain as the N terminus of the microbial Tdm. Proteins having domains of unknown functions (DUF) currently represent more than a quarter of sequence entries in public databases such as Pfam (Punta et al 2012). Functional annotation of DUFs remains a great challenge for the scientific community since they not only
present a major knowledge gap between protein structure and functional relationship but also prevent the complete understanding of cellular functions from completed genomes (Galperin and Koonin 2010). Our phylogenetic analyses of DUF1989 representatives (1044 entries in Pfam in total) suggest the presence of at least four major clades, two of which are proteins associated with the urea carboxylase gene cluster (Kanamori et al 2004). However, the functions of the two DUF1989-containing proteins associated to this enzyme in microbial genomes remain unknown and warrant further experimental characterization.

The C-terminus of M. silvestris Tdm contains a highly conserved THF-binding domain, which is found in several enzymes catalysing the release of a formaldehyde molecule. Phylogenetic analyses of the THF-binding domain separate the sequences into five major clusters (Figure 3-3 A), three of which have been characterized previously, including the T protein of the glycine cleavage system, dimethylglycine and sarcosine dehydrogenase and dimethylsulfoniopropionate demethylase. The THF-binding domain of Tdm falls in to one of the previously recognized, but so far uncharacterized clades (Reisch et al 2008, Sun et al 2011). Comparative genomic analyses of the other group of THF-binding domain protein, represented by Msil_3605, revealed that they are located in the neighbourhood of the putative DMA
monooxygenases (Dmm) in other methylamine-utilizers (Figure 3-12), suggesting a role in DMA oxidation.
Figure 3-12 Putative DMA monooxygenase gene cluster in selected methylated amine utilizers (A). Purple: DMA monooxygenase α subunit (DmmA), Yellow: DMA monooxygenase β subunit (DmmB), Blue: DMA monooxygenase γ subunit (DmmC), Red: DMA monooxygenase δ subunit (DmmD). Gene locus tags in the genomes are shown. DMA monooxygenase homologues in selected methylated amine utilizers (B). Values in brackets are protein sequence identities to the respective homologues of *Methylocella silvestris* BL2. Identities to the respective homologues of *Methylocella silvestris* BL2 were given by IMG (The Integrated Microbial Genome) using Blastp program (https://img.jgi.doe.gov/cgi-in/w/main.cgi?section=FindGenesBlast&page= geneSearchBlast) (Markowitz et al., 2012).
Based on the present and previous studies (Chen et al 2010c, Chen et al 2011), it is now possible to propose a metabolic pathway of TMA metabolism in this bacterium. TMA is likely to be transported into the cell via an as-yet-unidentified transporter and is subsequently oxidised to release formaldehyde and ammonium (Figure 3-13). Previous genome analysis only identified the glutamine synthetase (GS)/glutamate synthase (GOGAT) as the pathway for ammonium assimilation in this bacterium (Chen et al 2010c). Formaldehyde released from MA oxidation can either be incorporated into biomass through the serine cycle or subjected to oxidation to CO$_2$ for generating energy and reducing equivalents. Because M. silvestris can grow on DMA and MMA, it is therefore likely that specific membrane transporters for these compounds are present in its genome. This study has suggested that the genes Msil_3607- Msil_3609 are likely to encode the Dmm whose activity has been confirmed previously in this bacterium (Chen et al 2011), and the knockout mutants can no longer grow on DMA. Dmm has previously been purified from Aminobacter aminovorans and shown to contain three subunits consisting of 24, 36 and 42 kDa respectively (Alberta and Dawson 1987), which are in good agreement with the predicted molecular mass of Msil_3607-Msil_3609, respectively. The role of the THF-containing ORF Msil_3605 in this pathway is not clear. The mutant had reduced growth rates when grown on DMA and TMAO, and it may encode a
subunit, which can be loosely associated with Dmm but facilitate the conjugation of formaldehyde released from TMAO demethylation, which may help to offset the toxicity effect of formaldehyde accumulation in the cell.
Figure 3-13 Proposed model of TMAO transport and metabolism in *Methylocella silvestris*. TMAO is either directly imported through the TmoP or resulted from the oxidation of TMA by Tmm. A membrane transporter for TMA in this bacterium is yet to be discovered. TMAO degradation by Tdm yields DMA and HCHO, which is likely to be conjugated to THF by the protein encoded by Msil_3605. MMA is further converted to ammonium through the γ-glutamylmethylamide/N-methylglutamate pathway, involving γ-glutamylmethylamide synthetase (Msil_2635), N-methylglutamate synthase (Msil_2632-Msil_2634) and N-methylglutamate dehydrogenase (Msil_2636-Msil_2639) (Chen et al 2010c). Ammonium is assimilated by *M. silvestris* as a nitrogen source through the glutamine synthetase (GS)/ glutamate synthase (GOGAT) pathway (Chen et al 2010c).
To conclude, genes encoding enzymes responsible for the uptake and catabolism of TMAO have been identified in *Methylocella silvestri*. The newly identified Tdm and TmoP proteins have not only furthered our understanding of TMA/TMAO degradation in this soil bacterium, but also expanded our knowledge about microbial cycling of Mas in terrestrial environments, functional assignment of the DUF1989 family and the expanding functions encoded in the APC superfamily.
<table>
<thead>
<tr>
<th>Cluster</th>
<th>Function</th>
<th>Uniprot accession No</th>
<th>Organism</th>
<th>Length (AA)</th>
<th>Identity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>Glycine cleavage system, T protein (Gvc_T)</td>
<td>P49364</td>
<td>Pisum sativum</td>
<td>408</td>
<td>23</td>
<td>(Vauclare et al., 1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P25285</td>
<td>Bos taurus</td>
<td>397</td>
<td>25</td>
<td>(Fujiwara et al., 1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O58888</td>
<td>Pyrococcus horikoshii OT-3</td>
<td>398</td>
<td>29</td>
<td>(Lokanath et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P48728</td>
<td>Homo sapiens</td>
<td>403</td>
<td>25</td>
<td>(Okamura-Ikeda et al., 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P54378</td>
<td>Bacillus subtilis 168</td>
<td>362</td>
<td>32</td>
<td>(Kunst et al., 1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P27248</td>
<td>Escherichia coli K12</td>
<td>364</td>
<td>27</td>
<td>(Stauffer et al., 1993)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P48015</td>
<td>Saccharomyces cerevisiae S288c</td>
<td>400</td>
<td>19</td>
<td>(Sinclair et al., 1996)</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>Dimethylglycine / sarcosine dehydrogenase/oxidase</td>
<td>Q64380</td>
<td>Rattus norvegicus</td>
<td>911</td>
<td>26</td>
<td>(Cook et al., 1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q63342</td>
<td>Rattus norvegicus</td>
<td>848</td>
<td>27</td>
<td>(Porter et al., 1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q9AGP8</td>
<td>Arthrobacter globiformis</td>
<td>830</td>
<td>29</td>
<td>(Leys et al., 2003)</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>Dimethylsulfonpropionate demethylase (DmdA)</td>
<td>Q5LS57</td>
<td>Ruegeria pomeroyi DSS-3</td>
<td>364</td>
<td>26</td>
<td>(Reisch et al., 2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q4FP21</td>
<td>Pelagibacter ubique HTCC1062</td>
<td>369</td>
<td>24</td>
<td>(Reisch et al., 2008)</td>
</tr>
<tr>
<td>Cluster</td>
<td>Function</td>
<td>Uniprot accession No</td>
<td>Organism</td>
<td>Length (AA)</td>
<td>Identity (%)</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>TMAO demethylase (Tdm)</td>
<td>B8EIZ6</td>
<td>Methylocella silvestris BL2</td>
<td>761</td>
<td>100</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3K8G9</td>
<td>Pseudomonas fluorescens SBW25</td>
<td>770</td>
<td>60</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q5LT52*</td>
<td>Ruegeria pomeroyi DSS-3</td>
<td>789</td>
<td>61</td>
<td>(Lidbury et al., 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q986L6*</td>
<td>Mesorhizobium loti MAFF303099</td>
<td>789</td>
<td>64</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F5RCR6</td>
<td>Methyloversatilis universalis FAM5</td>
<td>762</td>
<td>73</td>
<td>This study</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>Putative DMA monooxygenase subunit (DmmD)</td>
<td>B8EIZ8</td>
<td>Methylocella silvestris BL2</td>
<td>378</td>
<td>32</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q5LT35</td>
<td>Ruegeria pomeroyi DSS-3</td>
<td>381</td>
<td>33</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q986K1</td>
<td>Mesorhizobium loti MAFF303099</td>
<td>377</td>
<td>34</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3K8H2</td>
<td>Pseudomonas fluorescens SBW25</td>
<td>376</td>
<td>35</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F5RCR4</td>
<td>Methyloversatilis universalis FAM5</td>
<td>372</td>
<td>33</td>
<td>This study</td>
</tr>
</tbody>
</table>

AA: amino acids.

*Note that the start codon of these two genes has been mis-annotated in the genomes and a 408 AA upstream region are included for sequence alignment.
Table 3-3 Representatives of DUF1989 domain containing proteins

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Function</th>
<th>Uniprot accession No.</th>
<th>Organism</th>
<th>Length (AA)</th>
<th>Identity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>TMAO demethylase</td>
<td>B8EIZ6</td>
<td>Methylocella silvestris BL2</td>
<td>761</td>
<td>100</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3K8G9</td>
<td>Pseudomonas fluorescens SBW25</td>
<td>770</td>
<td>57</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q5LT52*</td>
<td>Ruegeria pomeroyi DSS-3</td>
<td>789</td>
<td>63</td>
<td>(Lidbury et al., 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q986L6*</td>
<td>Mesorhizobium loti MAFF303099</td>
<td>789</td>
<td>64</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F5RCR6</td>
<td>Methyloversatilis universalis FAM5</td>
<td>762</td>
<td>78</td>
<td>This study</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>Urea carboxylase associated protein 2</td>
<td>F2KE31</td>
<td>Pseudomonas brassicacearum NFM421</td>
<td>241</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B8EQ37</td>
<td>Methylocella silvestris BL2</td>
<td>270</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B8HW86</td>
<td>Cyanothece sp. PCC 7425</td>
<td>243</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E4TWW3</td>
<td>Sulfuricurvum kuijense YK-1</td>
<td>251</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D6ZAM3</td>
<td>Segniliparus rotundus JCM 13578</td>
<td>286</td>
<td>19</td>
<td>(Kanamori et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F3HFH2</td>
<td>Pseudomonas syringae pv. Maculicola</td>
<td>241</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q9A799</td>
<td>Caulobacter crescentus CB15</td>
<td>279</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F5YXM4</td>
<td>Mycobacterium sp. JDM601</td>
<td>244</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td>Function</td>
<td>Uniprot accession No.</td>
<td>Organism</td>
<td>Length (AA)</td>
<td>Identity (%)</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>Urea carboxylase associated protein 1</td>
<td>D6ZAM2</td>
<td>Segniliparus rotundus JCM 13578</td>
<td>220</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q8FRP5</td>
<td>Corynebacterium efficiens DSM 44549</td>
<td>238</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q02AQ0</td>
<td>Solibacter usitatus Ellin6076</td>
<td>216</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q13MV8</td>
<td>Burkholderia xenovorans LB400</td>
<td>218</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q47JZ9</td>
<td>Dechloromonas 82romatic RCB</td>
<td>219</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q7MRQ8</td>
<td>Wolinella succinogenes ATCC 29543</td>
<td>205</td>
<td>27</td>
<td>(Kanamori et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q2K0B3</td>
<td>Rhizobium etli CFN 42</td>
<td>216</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q6N9Y0</td>
<td>Rhodopseudomonas palustris ATCC BAA-98</td>
<td>211</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Cluster 4</td>
<td>Unknown</td>
<td>J3KFC9</td>
<td>Coccidioides immitis RS</td>
<td>292</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q10082</td>
<td>Schizosaccharomyces pombe 972</td>
<td>302</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q750E2</td>
<td>Ashbya gossypii ATCC 10895</td>
<td>304</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B4PNY1</td>
<td>Drosophila yakuba</td>
<td>276</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q7CZE5</td>
<td>Agrobacterium tumefaciens C58</td>
<td>318</td>
<td>13</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A8F9R9</td>
<td>Bacillus pumilus SAFR-032</td>
<td>198</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O31473</td>
<td>Bacillus subtilis 168</td>
<td>198</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q1GJV4</td>
<td>Ruegeria sp. TM1040</td>
<td>233</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G8QBJ9</td>
<td>Pseudomonas fluorescens F113</td>
<td>204</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td>Function</td>
<td>Uniprot accession No.</td>
<td>Organism</td>
<td>Length (AA)</td>
<td>Identity (%)</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------------------</td>
<td>----------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>Unknown</td>
<td>M2NF15 10762</td>
<td>Baudoinia compniacensis UAMH</td>
<td>527</td>
<td>20</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2U8B5</td>
<td>Bipolaris maydis C5</td>
<td>611</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q0U6C2</td>
<td>Phaeosphaeria nodorum SN15</td>
<td>256</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1ESZ2</td>
<td>Neofusicoccum parvum UCRNP2</td>
<td>255</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5B095</td>
<td>Methylobacterium extorquens AM1</td>
<td>231</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q9RWQ3</td>
<td>Deinococcus radiodurans VKM B-1422</td>
<td>216</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

AA: amino acids.

*Note that the start codon of these two genes has been mis-annotated in the genomes and a 408 AA upstream region are included for sequence alignment.
Table 3-4: Representatives of the amino acid/polyamine/organocation (APC) superfamily membrane transporters

<table>
<thead>
<tr>
<th>No</th>
<th>Family name (abbreviation)</th>
<th>Gene / Organism</th>
<th>Uniprot accession No</th>
<th>Description in database</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Amino Acid Transporter (AAT)</td>
<td>PheP Escherichia coli K12</td>
<td>P24207</td>
<td>Phenylalanine:H(^+) symporter</td>
<td>(Pi et al., 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AroP Escherichia coli K12</td>
<td>P15993</td>
<td>Aromatic amino acid:H(^+) symporter</td>
<td>(Honoré and Cole, 1990)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GabP Escherichia coli K12</td>
<td>P25527</td>
<td>(\gamma)-aminobutyrate:H(^+) symporter</td>
<td>(Niegemann et al., 1993)</td>
</tr>
<tr>
<td>2</td>
<td>Basic Amino Acid/Polyamine Antiporter (APA)</td>
<td>PotE Escherichia coli K12</td>
<td>P0AAF1</td>
<td>Putrescine:ornithine antiporter</td>
<td>(Kashiwagi et al., 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CadB Escherichia coli K12</td>
<td>P0AAE8</td>
<td>Cadaverine:lysine antiporter</td>
<td>(Soksawatmaekhin et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ArcD Pseudomonas aeruginosa LMG 12228</td>
<td>P18275</td>
<td>Arginine:ornithine antiporter</td>
<td>(Lüthi et al., 1990)</td>
</tr>
<tr>
<td>No</td>
<td>Family name (abbreviation)</td>
<td>Gene / locus number</td>
<td>Organism</td>
<td>Uniprot accession No</td>
<td>Description in database</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Cationic Amino Acid (CAT)</td>
<td>CTR1</td>
<td>Mus musculus</td>
<td>Q09143</td>
<td>System Y⁺ high affinity basic amino acid transporter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAT6</td>
<td>Arabidopsis thaliana</td>
<td>Q9LZ20</td>
<td>Neutral and cationic amino acids Transporter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAT4</td>
<td>Homo sapiens</td>
<td>O43246</td>
<td>Cationic amino acid transporter</td>
</tr>
<tr>
<td>4</td>
<td>Amino Acid/Choline Transporter (ACT)</td>
<td>Ctr</td>
<td>Saccharomyces cerevisiae S288c</td>
<td>P19807</td>
<td>Choline permease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GabA</td>
<td>Emericella nidulans</td>
<td>Q9Y860</td>
<td>γ-aminobutyric acid (GABA) permease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uga4</td>
<td>Saccharomyces cerevisiae S288c</td>
<td>P32837</td>
<td>γ-aminobutyric acid (GABA) permease</td>
</tr>
<tr>
<td>5</td>
<td>Ethanolamine Transporter (EAT)</td>
<td>EUTP</td>
<td>Rhodococcus erythropolis</td>
<td>Q53148</td>
<td>Ethanolamine import permease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MTTP</td>
<td>Methanosarcina acetivorans</td>
<td>Q8TUC6</td>
<td>Probable methylamine import permease</td>
</tr>
<tr>
<td>No</td>
<td>Family name (abbreviation)</td>
<td>Gene / locus number</td>
<td>Organism</td>
<td>Uniprot accession No</td>
<td>Description in database</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Archaeal/Bacterial Transporter (ABT)</td>
<td>Cat-1</td>
<td>Archaeoglobus fulgidus</td>
<td>O28661</td>
<td>Putative cationic amino acid permease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ApcT</td>
<td>Methanocaldococcus jannaschii</td>
<td>Q58026</td>
<td>Broad specificity amino acid transporter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YbaT</td>
<td>Escherichia coli K12</td>
<td>P77400</td>
<td>Unknown</td>
</tr>
<tr>
<td>7</td>
<td>Glutamate:GABA Antiporter (GGA)</td>
<td>GadC</td>
<td>Lactococcus lactis subsp. Cremoris MG1363</td>
<td>O30417</td>
<td>Glutamate:γ-aminobutyrate antiporter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YcaM</td>
<td>Escherichia coli K12</td>
<td>P75835</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GadC</td>
<td>Escherichia coli O103:H2 12009</td>
<td>C8U8G2</td>
<td>Glutamate:GABA antiporter</td>
</tr>
<tr>
<td>8</td>
<td>L-type Amino Acid Transporter (LAT)</td>
<td>LAT1</td>
<td>Rattus norvegicus</td>
<td>Q63016</td>
<td>L-type neutral amino acid transporter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRM1</td>
<td>Schistosoma mansoni</td>
<td>Q26594</td>
<td>Schistosome neutral and cationic amino acid transporter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MUP1</td>
<td>Saccharomyces cerevisiae s288c</td>
<td>P50276</td>
<td>L-methionine and selenomethionine transporter</td>
</tr>
<tr>
<td>No</td>
<td>Family name (abbreviation)</td>
<td>Gene / locus number</td>
<td>Organism</td>
<td>Uniprot accession No</td>
<td>Description in database</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>9</td>
<td>Spore Germination Protein (SGP)</td>
<td>GRBB</td>
<td>Bacillus subtilis 168</td>
<td>P39570</td>
<td>Spore germination protein B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GerKB</td>
<td>Bacillus subtilis 168</td>
<td>P49940</td>
<td>Spore germination protein K2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YndE</td>
<td>Bacillus subtilis 168</td>
<td>O31809</td>
<td>Spore germination protein</td>
</tr>
<tr>
<td>10</td>
<td>Yeast Amino Acid Transporter (YAT)</td>
<td>Gap1</td>
<td>Saccharomyces cerevisiae s288c</td>
<td>P19145</td>
<td>General amino acid permease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can1</td>
<td>Saccharomyces cerevisiae s288c</td>
<td>P04817</td>
<td>Arginine permease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAP1</td>
<td>Hebeloma cylindrosporum</td>
<td>Q8J266</td>
<td>General amino acid uptake permease</td>
</tr>
<tr>
<td>11</td>
<td>Aspartate/Glutamate Transporter (AGT)</td>
<td>YveA</td>
<td>Bacillus subtilis 168</td>
<td>O07002</td>
<td>Aspartate uptake permease</td>
</tr>
<tr>
<td>No</td>
<td>Family name (abbreviation)</td>
<td>Gene / locus number</td>
<td>Organism</td>
<td>Uniprot accession No</td>
<td>Description in database</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>12</td>
<td>The Polyamine:H+ Symporter (PHS)</td>
<td>POT1</td>
<td>Leishmania major</td>
<td>Q5C8V6</td>
<td>Polyamine (putrescine, spermidine):H+ symporter</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>POT1.1</td>
<td>Trypanosoma cruzi</td>
<td>Q4DIK5</td>
<td>Putrescine preferring polyamine:H+ symporter</td>
</tr>
<tr>
<td>13</td>
<td>The Amino Acid Efflux (AAE)</td>
<td>YjeH</td>
<td>Escherichia coli K12</td>
<td>P39277</td>
<td>Probable hydrophobic amino acid efflux transporter</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>YjeH</td>
<td>Salmonella typhimurium LT2</td>
<td>Q8ZKC0</td>
<td>Ceftriaxone resistance porter</td>
</tr>
<tr>
<td>14</td>
<td>Unknown APC-1 (U-APC1)</td>
<td>Strop_1487</td>
<td>Salinispora tropica CNB-440</td>
<td>A4X503</td>
<td>Unknown</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>SCO6385</td>
<td>Streptomyces coelicolor A3(2)</td>
<td>O69917</td>
<td>Unknown</td>
</tr>
<tr>
<td>15</td>
<td>Unknown APC-2 (U-APC2)</td>
<td>PTO0784</td>
<td>Picrophilus torridus JCM 10055</td>
<td>Q6L0Y3</td>
<td>Unknown</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>CAAT</td>
<td>Thermoplasma acidophilum JCM 9062</td>
<td>Q9HJ13</td>
<td>Cationic amino acid transporter related protein</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>SSO1173</td>
<td>Sulfolobus solfataricus P2</td>
<td>Q97YX9</td>
<td>Unknown</td>
</tr>
<tr>
<td>No</td>
<td>Family name (abbreviation)</td>
<td>Gene / locus number</td>
<td>Organism</td>
<td>Uniprot accession No</td>
<td>Description in database</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>16</td>
<td>TMAO permease (TmoP)</td>
<td>Msil_3606</td>
<td>Methylocella silvestris BL2</td>
<td>B8EIZ9</td>
<td>TMAO transporter (100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MM_2964</td>
<td>Methanosarcina mazei Go1</td>
<td>Q8PSW2</td>
<td>Putative transporter? (26%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PFLU_232 9</td>
<td>Pseudomonas fluorescens SBW25</td>
<td>C3K8G8</td>
<td>Putative transporter? (53%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mll7301</td>
<td>Rhizobium loti MAFF303099</td>
<td>Q986L7</td>
<td>Putative transporter? (76%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>METUNv1_02074</td>
<td>Methyloversatilis universalis FAM5</td>
<td>F5RCR9</td>
<td>Putative transporter? (56%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mtbp</td>
<td>Methanosarcina acetivorans C2A</td>
<td>Q8TN67</td>
<td>Putative transporter? (28%)</td>
</tr>
</tbody>
</table>

Values in brackets are sequence identities to TmoP of *Methylocella silvestris* BL2
Chapter 4 O₂-independent demethylation of trimethylamine N-oxide
by a TMAO demethylase of *Methylocella silvestris* BL2
4.1 Introduction

Bacterial Tdm is a key enzyme involved in bacterial degradation of TMA and TMAO (Chen et al 2011, Lidbury et al 2014, Zhu et al 2014) The enzyme was first proposed in the 1970s and has been partially purified from Bacillus sp. PM6 (Myers and Zatman 1971) and Pseudomonas ammohorans (now Aminobacter aminorans (Large 1971)). Despite being purified from aerobic strains, Tdm can convert TMAO anaerobically to equimolar amounts of DMA and HCHO (1 TMAO \rightarrow 1 DMA + 1 HCHO) (Large 1971, Lidbury et al 2014) (Chapter 3). The gene encoding Tdm has only been identified recently and it is now known that tdm is widely distributed in nature, particularly in heterotrophic bacteria of the Roseobacter clade and the SAR11 clade of marine bacterioplankton (Lidbury et al 2014).

Tdm is a homohexameric protein, each monomer comprising of two domains, an uncharacterized DUF1989-containing domain at its N-terminus and a tetrahydrofolate (THF)-binding domain (GCV_T) at its C-terminus. DUF1989 in Tdm shows modest sequence similarity (<30%) to urea-carboxylase associated proteins, whose functions in urea catabolism are as-yet unknown (Kanamori et al 2004). GCV_T domains, however, are found in several well-characterized THF-dependent enzymes, such as glycine cleavage T protein (Okamura-Ikeda et al 2005) and dimethylsulfoniopropionate demethylase (Schuller et al 2012), with a function of binding THF to accept formaldehyde. Therefore, it has been proposed previously that the N-terminal DUF1989 domain of Tdm may play a role in substrate binding and subsequent catalysis whereas its C-terminal GCV_T domain is responsible for HCHO conjugation with THF (Chapter 3).

It has been suggested that metal ions may play a role in Tdm catalysis (Myers and Zatman 1971). For example, the partially purified Tdm of Bacillus sp. PM6 was
strongly activated by ferrous iron (Myers and Zatman 1971). In agreement with the putative role of metals in catalysis, purified Tdm of Methylocella silvestris does not contain either FAD or NAD (Chapter 3). Although a crystal structure for Tdm has yet to be solved, structures of three DUF1989-domain containing proteins (3ORU, 3SIY, 3DI4) available in the PDB database all contain Zn$^{2+}$. However, the types of metal(s) present in Tdm are yet to be established experimentally, and the metal stoichiometry is not known.

Cytochrome P450 and horseradish peroxidase (HRP) oxidatively demethylate tertiary amine by inserting oxygen into the C$_\alpha$−H bond by haem Fe(IV)-oxo (Cpd I) to generate a carbinolamine that spontaneously dealkylates forming the free amine and aldehyde (Roberts and Jones 2010). Two mechanisms of the initial C$_\alpha$−H bond activation have been proposed, H-Atom Abstraction (HAT) that only forms C-centred substrate radical, and Single Electron Transfer (ET) pathway that forms both N- and C-centred substrate radicals during catalysis (Figure 4-1, (Chiavarino et al 2008)). Therefore, identification of the substrate radical intermediate will shed light on the reaction mechanism. 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO) spin trap was employed to investigate the intermediate of HRP oxidation of N-substituted aromatic amines and found that N- or C-centred substrate radicals were detected depending on the structure of radical formed (Van der Zee et al 1989). In this chapter, DMPO spin trapping was employed to investigate substrate intermediate, hence to illuminate Tdm enzymatic mechanism.
The aims of the work described in this chapter are:

- To identify the metal cofactors and stoichiometry in Tdm
- To identify metal ion binding sites
- To investigate catalytic mechanism of Tdm

4.2 Materials and methods

4.2.1 Cloning, expression and purification of Tdm and mutants of *M. silvestris*

Plasmids and strains used for cloning and overexpression of Tdm and its mutants in *E. coli* are listed in Table 2-2. Tdm expression and purification were carried out as described in Chapter 2. Site-directed mutations in *tdm* were introduced by PCR and confirmed by DNA sequencing as described in Chapter 2. The oligonucleotides used in this study are shown in Appendix 1. For the Tdm reactivation and Fe$^{2+}$ titration experiment, the 6*His-tag was removed from Tdm as described in Chapter 2. Protein sample preparation for various purposes is illustrated in Figure 4-2.
Figure 4.2 The workflow of Tdm sample preparation for biochemical analysis and crystallisation screening.

4.2.2 Enzyme activity assay

Enzyme activity was measured by quantifying HCHO production from TMAO degradation as described in Chapter 2. Enzyme kinetic parameters (V_{max}, K_m, k_{cat}) were calculated as described in Chapter 2. A range of concentrations of ethylenediaminetetraacetic acid (EDTA, 0 – 50 mM), ascorbic acid (0 – 10 mM) and H_2O_2 (0 – 100 µM) were added in the enzyme assays with 5 mM TMAO to a final volume of 50 µl to investigate their effects on Tdm activity.

For the metal replacement experiment, purified Tdm was diluted in a buffer containing 20 mM Tris-HCl (pH 7.8) and 100 mM NaCl to a final concentration of 1 mg ml$^{-1}$ and incubated with various metal ions (MgCl_2, MnCl_2, $\text{Fe(NH}_4\text{)}_2\text{(SO}_4\text{)}_2$, CoCl_2, NiSO_4, CuSO_4, ZnSO_4) at an M^{2+}:Tdm ratio of 500 for 6 hours at 4 °C. 2 mM
ascorbic acid was used when Fe(NH$_4$)$_2$(SO$_4$)$_2$ was applied to maintain Fe$^{2+}$ in its reduced state. 2.5 µg of Tdm and 5 mM TMAO were used for HCHO assay as described above.

Inhibition by dimethylethylamine (DMEA) was studied using assay solutions containing 1-4 mM TMAO and 0-4 mM DMEA. Inhibition constants (K_i) were determined on the basis of uncompetitive inhibition using Equation 4-1 (Berg 2015),

$$V = \frac{V_{max}[S]}{K_m+[S](1+[I]/K_i)}$$

(4-1)

where V_{max} is the maximal activity, K_i is inhibition constant, [S] and [I] are the concentrations of substrate and inhibitor, respectively.

4.2.3 Fe$^{2+}$ reactivation

6*His-tag-cleaved Tdm was diluted in buffer containing 20 mM Tris-HCl (pH 7.8) and 100 mM NaCl to a final concentration of 1 mg ml$^{-1}$, which was then incubated with 100 µM H$_2$O$_2$ for 20 min on ice. Wherever necessary, ascorbic acid and Fe(NH$_4$)$_2$(SO$_4$)$_2$ were added to a final concentration of 500 µM and 10–500 µM, respectively. The samples were then incubated for 20 min on ice prior to the quantification of Tdm activity using the aforementioned HCHO assay (Chapter 2).

4.2.4 Fe$^{2+}$ titration

The Fe$^{2+}$ titration, using Fe(NH$_4$)$_2$(SO$_4$)$_2$ was performed with the 6*His-tag-cleaved Tdm. To maintain Fe$^{2+}$ in its reduced form, the titration assay was performed with 2 mM ascorbic acid with varying molar ratios of Fe$^{2+}$:Tdm in the Tris-NaCl buffer (20 mM Tris, 100 mM NaCl, pH 7.8) for 4 hrs before HCHO essay was carried out. The titration data for metal stoichiometry (n) determination were analysed by nonlinear curve fitting using Equation 4-2 (Chai et al 2009, Drake and Klakamp 2007).

$$y = y_0 + (y_m - y_0) * \frac{(n+x+K_d)-\sqrt{(n+x+K_d)^2-4*n*x}}{2*n}$$

(4-2)
where x is the concentration of total metal ion and y is the activity percentage to the maximal activity, y_m is the maximal activity, y_0 is the activity percentage of as-isolated enzyme without added metal, K_d is the dissociation constant, and n is the number of binding sites (stoichiometry).

4.2.5 **Inductively coupled plasma-mass spectrometry and optical emission spectrometry (ICP-MS/OES)**

3% (v/v) trace metal grade nitric acid purified in house by sub-boiling point distillation was used as the sample matrix. ICP-MS analyses were carried out on an Agilent Technologies 7500 ICP-MS instrument. ICP-OES was performed on a Perkin Elmer Optical Emission Spectrometer Optima 5300DV instrument. The standards for calibration were freshly prepared by diluting Zn, Fe, S, Ni stock solutions (at 1000 mg l$^{-1}$, Sigma-Aldrich) with 3% (v/v) HNO$_3$ in doubly-deionized water with concentrations from 0.2–1 mg l$^{-1}$ for Zn, Fe and Ni, and 4–20 mg l$^{-1}$ for S. About 2.4 mg protein was diluted in 3% HNO$_3$ matrix for metal analysis. The content of S was quantified in order to determine the protein concentration. The contents of Zn, Fe, Ni and S were measured using the emission lines of 213.857 nm (Zn), 234.830 nm (Fe), 231.604 nm (Ni) and 180.669 nm (S), respectively.

4.2.6 **Homology modelling**

A homology model for the DUF1989 domain of Tdm (residues 1 to 383) was created using the DUF1989 domain family protein (PDB: 3ORU) as the template using the SWISS-MODEL webserver (http://swissmodel.expasy.org) (Arnold et al 2006). 3-D structures were visualized using Chimera (Pettersen et al 2004).

4.2.7 **Secondary and quaternary structure determination**

Secondary and quaternary structure was determined by CD and size-exclusion chromatography respectively as described in Chapter 2.
4.2.8 Gas chromatography–mass spectrometry (GC-MS) determination of secondary amines

Fifty µg purified Tdm was incubated at room temperature (~20 °C) in a final volume of 1 ml in 10 mM MES buffer (pH 6.0) with either 50 mM TMAO or 25 mM dimethylethylamine (DMEA), or both for 30 min. Secondary amines (i.e. DMA, MEA) were derivatized using benzenesulfonyl chloride (BSC) (Sigma-Aldrich) and determined by GC-MS as described previously (Zhang et al 2012). The mixture was basified with 2 mL of 10 mol l⁻¹ aqueous sodium hydroxide solution and 0.2 mL BSC were added and left for 30 min at room temperature with occasional gentle shaking. The residue derivatives were hydrolysed at 80°C for 20 min. Subsequently the solution was cooled down to room temperature and acidified with 18.5% aqueous solution of hydrochloric acid to pH 5.5. The mixture was extracted with 1 ml dichloromethane. The organic phase was used for the analysis of secondary amines as benzenesulfonyl derivatives by GC-MS. An Agilent 6890/5973 GC-MS platform equipped with an automatic liquid sampler was used for amine analysis. An aliquot (1 µl) of the dichloromethane layer was injected into GC-MS. GC conditions were as follows: column, Agilent HP-5ms capillary column (30 m × 0.25 mm i.d.; film thickness, 0.25 µm); column temperature, 100°C for 3 min, then the temperature was increased at 5°C min⁻¹ rate up to 180°C, after that 10°C min⁻¹ rate up to 250°C, followed by 5 min at 290°C; carrier gas, helium; flow rate, 1 ml min⁻¹; split ratio, 100:1.

4.2.9 Isotope labelling studies with TMA¹⁸O

TMA¹⁸O was synthesized by oxidizing TMA by H₂¹⁸O² (Dustan et al 1899). 100 µg TMA solution in water (≥99%, Sigma-Aldrich) was added to 250 µg of 2-3% (v/v) H₂¹⁸O₂ (Sigma-Aldrich), which was then left overnight at room temperature.
Excessive TMA was evaporated by heating up to 90˚C for 15 min. The fish odour of TMA gradually disappeared. H$_2^{18}$O was removed by freeze-drying. The white crystal that remained was dissolved in 1 ml distilled water. Purity of synthesized TMA18O was then assessed by direct infusion to mass spectrometer without any previous separation. An ion trap mass spectrometry (Thermo Scientific, Waltham, MA, USA) equipped with an electrospray ionization (ESI) source in the positive ion mode was used for analysis. ESI settings were as follows: capillary temperature 200 ºC, capillary voltage 4 kV. TMA18O concentration was quantified by ion chromatography as described in Chapter 2.

HCHO adduction and detection were carried out according to (Jiang et al 2013) with the following modification. HCHO was adducted by sodium bisulfite (NaSO$_3$) (Sigma-Aldrich) to form hydroxymethanesulfonate (HMS$^-$) CH$_2$(OH)SO$_3$$. The reaction mixture for HCHO activity assays contained 10 mM TMA18O or TMAO, 10 mM NaSO$_3$ in 1ml of 10 mM MES buffer, pH 6.0. The reaction was initiated by adding 10 µg of purified recombinant Tdm and incubated for 20 min at room temperature.

A high performance liquid chromatography LC System (Waters, Milford, MA, USA) equipped with a Xbridge BEH amide analytical column (150 × 3.0 mm × 2.5 µm; Warters, Irland) was used for separation. The column was thermostated at 30 ºC, and a flow rate of 0.30 ml min$^{-1}$ was employed. The following 20 min gradient program was used: 5 min hold at 90% mobile phase A (100% acetonitrile) and 10% mobile phase B (10 mM ammonium acetate in H$_2$O, pH 4.5), gradient to 50% A in 10 min, 5 min hold at 50% A. All samples and standards utilized a 5 µL injection volume.

Aforementioned ESI-MS in the negative ion mode was used for analysis. ESI settings were as follows: capillary temperature 200 ºC, capillary voltage 2 kV. The
deprotonated molecular ions [M-H]⁻ with m/z=111 and 113 were identified as the unique peak for HMS and ¹⁸O-HMS, respectively. Fragmentation of HMS and ¹⁸O-HMS form product m/z=81 (HSO₃⁻) after dissociation of –CH₂O=30 and CH₂¹⁸O=32.

4.2.10 DMPO spin trapping

The spin trap 5,5-dimethyl-pyrroline-N-oxide (DMPO) (for EPR-spectroscopy) was obtained from Sigma-Aldrich. To trap radicals formed during Tdm catalysis, the reaction solutions contained 100 mM DMPO, 100 mM TMAO, 60 µM Tdm which was prepared in 20 mM Tris-HCl, pH 7.8 and 100 mM NaCl at room temperature. Controls were prepared without Tdm or TMAO.

All EPR spectra were recorded at ambient temperature (ca. 291 K) on a Bruker EMX (X-band) spectrometer. 1.0 mm quartz tubes with inner diameter (I.D.) of 1.0 mm and outer diameter of 1.2 mm (Wilmad Labglass) were used. Typical key EPR spectrometer settings were modulation amplitude 2.0 G and microwave power 0.63 mW, 2 mT modulation amplitude, 1.0 ×10⁵ receiver gain, sweep gain 100 s with repeated number of 8 X-scans.

4.2.11 Multiple sequence alignments

Multiple sequence alignments were performed using the iterative alignment program MUSCLE (Edgar 2004).

4.2.12 Statistical analyses

Analysis of variance (ANOVA) and Tukey HSD post-hoc tests were performed using the R software package version 3.2. (2015). Data are expressed as means ± standard deviations.
4.3 Results

4.3.1 Tdm is a novel zinc-iron dependent protein

Early studies in the 1970s have suggested that bacterial Tdm is a metal-dependent enzyme. The Bacillus Tdm is strongly stimulated by ferrous iron and reducing agents such as ascorbate and glutathione (Myers and Zatman 1971). In agreement with these previous studies, inhibition of Tdm activity was observed when the purified enzyme was incubated with the metal chelator EDTA (Figure 4-3). To characterize the metal ion(s) in Tdm, I carried out ICP-MS metal scan analyses of purified recombinant Tdm of Methylocella silvestris, which detected the presence of Zn, Fe and Ni above background levels (data not shown).

![Figure 4-3](image)

Figure 4-3 Tdm activity is inhibited by EDTA. Activities were determined by quantifying HCHO production using 5 mM TMAO. Activity%: The activity percentage of Tdm with EDTA to the one without EDTA. Error bars indicate standard deviations of experiments run in triplicate.

To obtain a more accurate estimation of metal contents in Tdm, Zn, Fe, Ni as well as S (for accurate determination of protein concentrations) were quantified by ICP-OES. The results showed that 1 monomer of Tdm contained 0.97 ± 0.03 Zn$^{2+}$ and $0.35 \pm$
0.02 iron in the as-isolated Tdm (CK-Tdm, Table 4-1). Trace amounts of Ni^{2+} (<0.1 molar equivalents per Tdm monomer) were also found.

To address whether Zn or Fe could be replaced by each other, Fe and Zn enriched Tdm (Fe-Tdm, Zn-Tdm) were purified from *E. coli* cultivated in media supplemented with either Fe(NH$_4$)$_2$(SO$_4$)$_2$ or ZnCl$_2$ (0.5 mM final concentration). Tdm expressed in Fe-supplemented media showed slightly yet significantly higher Fe$^{2+}$ content (0.38 ± 0.02 mol per mol monomer) (*p*<0.05), whereas Tdm expressed in Zn-supplemented media had reduced Fe$^{2+}$ content (0.12 ± 0.01 mol per mol monomer) in purified Tdm, in coincidence with an increase of Zn$^{2+}$ content (1.33 ± 0.03 mol per mol monomer) (*p*<0.05), suggesting a replacement of Fe by Zn in purified Tdm. Additionally, Fe-enriched Tdm had a higher catalytic activity compared to that of CK-Tdm or Zn-enriched Tdm (Table 4-1), suggesting a role of Fe in catalysis.

Table 4-1 Steady-state kinetics parameters of Zn and Fe-enriched Tdm

<table>
<thead>
<tr>
<th></th>
<th>CK-Tdm</th>
<th>Fe-Tdm</th>
<th>Zn-Tdm</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m (mM)</td>
<td>3.88 ± 0.19a</td>
<td>4.09 ± 0.21a</td>
<td>4.29 ± 0.12a</td>
</tr>
<tr>
<td>V_{max} (nmol min$^{-1}$ mg$^{-1}$)</td>
<td>14.61 ± 1.13a</td>
<td>16.99 ± 0.70b</td>
<td>12.41 ± 0.52c</td>
</tr>
<tr>
<td>k_{cat} (s$^{-1}$)</td>
<td>19.49 ± 1.51a</td>
<td>22.65 ± 0.94b</td>
<td>17.30 ± 1.37c</td>
</tr>
<tr>
<td>k_{cat}/K_m M$^{-1}$s$^{-1}$*103</td>
<td>5.03 ± 0.34a</td>
<td>5.54 ± 0.36a</td>
<td>4.02 ± 0.22b</td>
</tr>
<tr>
<td>Metal equiv</td>
<td>Zn$^{2+}$ 0.97 ± 0.03a</td>
<td>0.92 ± 0.04a</td>
<td>1.33 ± 0.03b</td>
</tr>
<tr>
<td>Fe$^{2+}$ 0.33 ± 0.02a</td>
<td>0.38 ± 0.02b</td>
<td>0.12 ± 0.01c</td>
<td></td>
</tr>
</tbody>
</table>

CK-Tdm: Tdm purified recombinant *E. coli* cultivated using the LB medium. Fe-Tdm: The culture medium was supplemented with Fe(NH$_4$)$_2$(SO$_4$)$_2$ at a final concentration of 0.5 mM. Zn-Tdm: The culture medium was supplemented with ZnCl$_2$ at a final concentration of 0.5 mM. Values are means ± standard deviations. Different superscript letters in the same row between samples denote significant differences between different metal enrichment (*p*<0.05).

To further probe the iron species in as-isolated Tdm, activity assays were performed with the addition of a reducing agent (ascorbic acid, Asc) or an oxidizing agent
(hydrogen peroxide, \(H_2O_2 \)) at varying concentrations. The results demonstrated Asc did not show any inhibition until a final concentration of 8 mM (Figure 4-4) whilst \(H_2O_2 \) inhibited Tdm activity effectively. More than 80% activity was lost upon incubation with 100 \(\mu M \) \(H_2O_2 \) (Figure 4-5 A). Furthermore, when isolated Tdm was incubated with various divalent metal ions, it was observed that \(Fe^{2+} \) significantly enhanced Tdm activity, particularly in the presence of Asc (Figure 4-5 B). Interestingly, the activity of \(H_2O_2 \)-pretreated Tdm can at least be partially restored by incubating with Asc and \(Fe^{2+} \) (Figure 4-5 C). Taken together, the data suggest a role of ferrous iron in the native as-isolated Tdm during catalysis.

Due to the traditional protein overexpression and purification procedures, oxygen sensitive ferrous iron is prone to loss (Gantt et al 2006, Zhu et al 2003). The ICP-OES analyses of as-isolated Tdm may have underestimated iron contents in this protein (Table 4-1). To determine \(Fe^{2+} \) stoichiometry, a \(Fe^{2+} \) titration experiment was carried out. To eliminate the non-specific binding of metal contamination to the 6*His-tag, 6*His-tag-free Tdm was used. The data presented in Figure 4-5 D gave a stoichiometry number of \(n = 0.91 \). Together, the data suggest that Tdm is a \(Zn^{2+} \) and \(Fe^{2+} \) dependent protein with \(Zn^{2+}:Fe^{2+}:Tdm \) monomer ratios of 1:1:1.
Figure 4-4 The effect of ascorbic acid on Tdm activity. Activity\%: The activity percentage of Tdm with ascorbic acid to the one without ascorbic acid. The error bars represent standard deviation from experiments run in triplicate.
Figure 4-5 (Previous page) Fe^{2+} is a native cofactor for Tdm. The addition of H_{2}O_{2} significantly affects Tdm activity (A). Tdm activity was measured by quantifying the formation of HCHO. The effects of metal ion additions on Tdm activity (B). Different letters denote significant differences between different M^{2+} metal ions reconstitution (p < 0.05). Mg^{2+}: MgCl_{2}. Mn^{2+}: MnCl_{2}. Fe^{2+}: Fe(NH_{4})_{2}(SO_{4})_{2}. Co^{2+}: CoCl_{2}. Ni^{2+}: NiSO_{4}. Cu^{2+}: CuSO_{4}. Zn^{2+}: ZnSO_{4}. The loss of Tdm activity by the addition of H_{2}O_{2} can be partially restored by adding reducing agents in the enzyme assay (C). Tdm was pretreated with 100 µM H_{2}O_{2} for 15 min. Inactivated Tdm was then reactivated by adding 500 µM Asc and Fe^{2+} at varying concentration for 20 min before enzyme activity assay was carried out. H_{2}O_{2}: Tdm pretreated with 100 µM H_{2}O_{2}; +Asc: H_{2}O_{2}-pretreated Tdm incubated with 500 µM ascorbic acid; +Asc_Fe 10, +Asc_Fe 50, +Asc_Fe 100, +Asc_Fe 500: H_{2}O_{2}-pretreated Tdm incubated with 500 µM ascorbic acid and 10, 50, 100 or 500 µM of Fe(NH_{4})_{2}(SO_{4})_{2} respectively. Different letters denote significant differences between different metal reconstitution (p< 0.05). Titration of Tdm with increasing concentrations of Fe^{2+} and the activity was measured by quantifying HCHO formation (D). Titration data were plotted using a non-linear fitting using the multiple independent binding sites model (Chai et al 2009, Drake and Klakamp 2007), giving n = 0.91 per Tdm monomer. The error bars represent standard deviation from experiments run in triplicate.
4.3.2 Three cysteine residues (C263, C279, C343) contribute to Zn\(^{2+}\) coordination in Tdm

A 3D structure for any Tdm protein is yet to be determined. Tdm is composed of two domains (see Chapter 3). The C-terminal GCV_T domain is best characterized in the T protein of the glycine cleavage complex, which is required for glycine catabolism (Okamura-Ikeda et al 2005) and is not known to contain a metal cofactor. It is therefore postulated that metal-binding sites for Zn\(^{2+}\) and Fe\(^{2+}\) are likely located in the N-terminal uncharacterized DUF1989 domain.

The PDB database contains structures of 3 members of the DUF1989 protein family (3SIY, 3ORU, 3DI4) from genus *Rugeria* (previously known as *Silicibacter*), which all contain Zn\(^{2+}\). To predict the Zn\(^{2+}\)-binding sites in Tdm, homology modelling was therefore applied. The SWISS-MODEL template library was searched with Blast and HHBlits (HMM-HMM–based lightning-fast iterative sequence search). Both algorithms indicated that the N-terminal domain of Tdm (residues 128 to 352) gave the highest sequence identity (34%) to the sequence of 3ORU (resolution of 1.1 Å), which was therefore chosen as the reference structure for modelling.

The established model predicted a conserved Zn\(^{2+}\) coordination motif in Tdm, despite its poor global and per-residue model quality assessed using the QMEAN scoring function (Qualitative Model Energy Analysis) (Benkert et al 2011). In agreement with the existing structures of DUF1989 family proteins in the PDB database, homology modelling predicted that Zn\(^{2+}\) was coordinated by three cysteine residues in Tdm (Cys263, Cys279, Cys343) with the thiol S-Zn\(^{2+}\) distance around 2.3 Å (Figure 4-6 A). Multiple sequence alignment of Tdm proteins from a range of microbes of terrestrial and oceanic origins covering α-, β-, γ-proteobacteria revealed strict conservation of this 3-Cys Zn\(^{2+}\) binding motif in Tdm proteins (Figure 4-10).
To probe the role of these residues in Tdm activity, site directed mutants were constructed. These mutant proteins were purified (Figure 4-6 B) and their activities and metal contents were characterized. Tdm C343A showed 2 contaminants around 42 and 22 kDa. To remove the contaminant protein, I overloaded the column to compete away the other proteins. After optimisation, the purified recombinant Tdm C343A was >95% pure shown by SDS-PAGE (lane 5, Figure 4-6 B). The results showed that all three single mutants were inactive, along with significantly reduced Zn\(^{2+}\) and Fe\(^{2+}\) contents \((p<0.05)\) (Table 4-2). Although CD spectroscopy revealed only very minor changes in overall secondary structure of these three mutants (Figure 4-6 C), the native homohexamer, which dominates in wild-type Tdm, was virtually absent in the mutants (Figure 4-6 D). Together, the results suggested that C263, C279 and C343 were crucial for maintaining structural integrity in native Tdm.

Table 4-2 Activity and metal quantification of wild type Tdm and mutants

<table>
<thead>
<tr>
<th>Oligomeric status</th>
<th>Activity (nmol min(^{-1}) mg(^{-1}))</th>
<th>(M^{2+}):Tdm (monomer) ratio</th>
<th>(Zn^{2+})</th>
<th>(Fe^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Hexamer</td>
<td>14.61±1.13</td>
<td>0.97 ± 0.03 (^{a})</td>
<td>0.33 ± 0.02 (^{a})</td>
</tr>
<tr>
<td>C263A</td>
<td>Monomer</td>
<td>0</td>
<td>0.44 ± 0.01 (^{g})</td>
<td>0.04 ± 0.05 (^{a})</td>
</tr>
<tr>
<td>C279A</td>
<td>Monomer</td>
<td>0</td>
<td>0.26 ± 0.14 (^{b})</td>
<td>0.03 ± 0.01 (^{c})</td>
</tr>
<tr>
<td>C343A</td>
<td>Aggregate/monomer</td>
<td>0</td>
<td>0.23 ± 0.09 (^{b})</td>
<td>0.04 ± 0.03 (^{a})</td>
</tr>
<tr>
<td>D198A</td>
<td>Unknown</td>
<td>0</td>
<td>0.66 ± 0.05 (^{e})</td>
<td>0.12 ± 0.01 (^{c})</td>
</tr>
<tr>
<td>D198N</td>
<td>Aggregate/hexamer</td>
<td>0</td>
<td>0.67 ± 0.02 (^{b})</td>
<td>0.18 ± 0.02 (^{b})</td>
</tr>
<tr>
<td>D198E</td>
<td>Aggregate/hexamer</td>
<td>0</td>
<td>0.53 ± 0.01 (^{f})</td>
<td>0.33 ± 0.01 (^{a})</td>
</tr>
<tr>
<td>H256A</td>
<td>Monomer</td>
<td>0</td>
<td>0.72 ± 0.01 (^{d})</td>
<td>0.04 ± 0.01 (^{e})</td>
</tr>
<tr>
<td>H276A</td>
<td>Hexamer</td>
<td>0</td>
<td>0.91 ± 0.01 (^{b})</td>
<td>0.09 ± 0.02 (^{d})</td>
</tr>
<tr>
<td>F259A</td>
<td>Hexamer</td>
<td>0</td>
<td>0.87 ± 0.03 (^{c})</td>
<td>0.05 ± 0.00 (^{e})</td>
</tr>
<tr>
<td>W321A</td>
<td>Hexamer</td>
<td>0</td>
<td>0.83 ± 0.03 (^{c})</td>
<td>0.11 ± 0.00 (^{c})</td>
</tr>
<tr>
<td>Y305A</td>
<td>Hexamer</td>
<td>0</td>
<td>0.94 ± 0.03 (^{a})</td>
<td>0.15 ± 0.02 (^{b})</td>
</tr>
</tbody>
</table>

Values are means ± standard deviations. Different superscript letters in the same column between samples denote significant differences between different metal reconstitution \((p<0.05)\).
Figure 4-6 Determination of Zn$^{2+}$ binding site in Tdm. Homology modelling of the DUF1989 domain in Tdm (blue) suggests that C263, C279 and C343 are potential Zn$^{2+}$ binding sites (A). SDS-PAGE of Tdm variants (B). 1, crude cell-free extract; 2, column wash fraction with binding buffer containing 20 mM imidazole; 3, column wash fraction with washing buffer containing 60 mM imidazole; 4, elution fraction of the purified protein; 5, elution fraction of Tdm C343A after optimisation of protein purification. Far-UV CD spectra of wild-type Tdm (WT) and site-directed mutants (C263A, C279A, C343A) (C). Oligomeric states of variants (D). Red: WT; dark green: C263A; blue: C279A; orange: C343A. The native Tdm exists predominantly as a homohexamer (Chapter 3).
4.3.3 H276 is a potential Fe$^{2+}$ binding ligand in Tdm

Due to the lack of a crystal structure of Tdm and the absence of Fe$^{2+}$ in existing crystal structures of DUF1989 family proteins, I performed multiple sequence alignment of Tdm sequences in order to gain insight into conserved residues, which may shed light on the residues involved in Fe$^{2+}$ coordination (Figure 4-10 A). A 2-His-1-carboxylate facial triad is a common motif in a number of non-haem Fe$^{2+}$-containing enzymes, where two histidine residues and one carboxylate-containing side chain are arranged at one face of an octahedron whereas the opposite face of the octahedron is available to coordinate a variety of exogenous ligands (Hegg and Que 1997, Koehntop et al 2005). The sequence alignment revealed the presence of two strictly conserved histidines (His256, His276) in all Tdm analysed (Figure 4-10 A).

In order to test whether H256 and H276 were indeed Fe$^{2+}$ binding sites, point mutants were constructed, and the mutants were subsequently purified (Figure 4-7) and characterized. Enzyme assays reveal that the two mutants (H256A, H276A) completely lost activity (Table 4-2). Metal analysis showed that the H276A mutant indeed had lost Fe$^{2+}$ but its Zn$^{2+}$ content remained unchanged compared to that of the wild type Tdm. Furthermore, the loss of Fe$^{2+}$ in the H276A mutant cannot be attributed to a structural alteration caused by site-directed mutagenesis since its secondary and quaternary structure is comparable to that of the wild type (Figure 4-7 B, C).

The H256A mutant was also inactive and had almost completely lost its Fe$^{2+}$. It also had a significantly lower Zn$^{2+}$ content (Zn$^{2+}$:Tdm monomer ratio was 0.72 ± 0.01, compared to 0.97 ± 0.03 for wild type) (Table 4-2). Although its secondary structure remained largely unchanged as revealed by CD spectroscopy, this mutant did not form native hexamer (Figure 4-7 B, C). Therefore, it is concluded that H276 is a
potential Fe$^{2+}$-binding site whilst H256 plays a role in maintaining overall structure and may also be a Fe$^{2+}$-binding ligand.

Figure 4-7 H276 is a potential Fe$^{2+}$-binding site. SDS-PAGE of Tdm H256A and H276A (A). 1, crude cell-free extract; 2, column wash fraction with binding buffer containing 20 mM imidazole; 3, column wash fraction with washing buffer containing 60 mM imidazole; 4, elution fraction of the purified protein. Far-UV CD spectra of wild type Tdm (WT) and variants (H256A, H276A) (B). Oligomeric states of variants (C). purple: H256A, blue: H276A.
4.3.4 The “bridging” nature of D198 in Tdm

When Zn$^{2+}$ is involved in maintaining protein structure, it is commonly coordinated by four protein ligands in the order of Cys>His>Asp/Glu in a tetrahedral geometry (Auld 2001). Intriguingly, the three existing crystal structures of DUF1989 family proteins (i.e. 3ORU) employ a 3-Cys-OH$_2$ Zn$^{2+}$ binding motif with the fourth ligand being a water molecule in the crystal structure (Figure 4-8 A). Searching the surrounding zone (<2.5 Å) (Harding 2001) of the Zn$^{2+}$ ion did not reveal any other potential binding ligand.

Although cysteines are commonly found in structural Zn sites, the 3-Cys-OH$_2$ tetrahedral coordination is found in the catalytic sites of several enzymes, e.g. cytidine deaminase (CDA) from *Mycobacterium tuberculosis* (3IJF) (Sánchez-Quitian et al 2010), human (1MQ0) (Chung et al 2005) and mouse (1ZAB) (Teh et al 2006), and CDA-related enzyme, Blasticidin S deaminase from *Aspergillus terreus* (2Z3G, 1WN6) (Kumasaka et al 2007). In these structures, the catalytic H$_2$O forms H-bonding to the side chain oxygen of Glu and main chain nitrogen of Cys in the vicinity to maintain a tetrahedral arrangement. Zinc ion appears to act as electrophilic catalyst through an accompanying water molecule. Structure superimposition revealed that a 3-Cys-OH$_2$ motif of 3ORU is similar to CDA (Figure 4-8 A). Asp66 of 3ORU is in good agreement with the conserved Glu in CDA, i.e. Glu58 of 3IJF and Glu56 of 2Z3G (Figure 4-8 A), indicating that D66 may also H-bond to catalytic H$_2$O.

Multiple sequence alignment of various Tdm proteins and DUF1989 family proteins demonstrated strict conservation of this aspartate residue (corresponding to D198) in Tdm (Figure 4-10 A). To investigate whether D198 is indeed important in TMAO demethylation by Tdm, three site-directed mutants were made, D198A (no oxygen atom), D198N (one oxygen atom, neutral side chain) and D198E (two oxygen atoms,
negatively charged). Variants were purified by Ni-NTA and purities were examined by SDS-PAGE (Figure 4-8 B). All three mutants were inactive, and their Zn$^{2+}$ contents (Zn$^{2+}$:Tdm ratios between 0.5-0.7) were significantly lower than that of the WT (0.97 ± 0.03) (p<0.05) (Table 4-2). Although their overall secondary structure remained largely unchanged, alteration of quaternary structure was observed and the mutants were prone to aggregation (Figure 4-8 C, D).

Incidentally, the Fe$^{2+}$ content of D198 mutants varied too, with a trend of D198A (0.12 ± 0.01) < D198N (0.18 ± 0.02) < D198E (0.33 ± 0.01). The D198E mutant retained its binding capacity to Fe$^{2+}$, similar to that of the wild type enzyme (0.33 ± 0.02) and a large proportion of this mutant still retained hexameric state as observed in the wild type Tdm (Table 4-2). Therefore, the data suggest that D198 also likely provides a carboxyl group for Fe$^{2+}$ binding.
Figure 4-8 A unique “bridging” aspartate residue D198. Superimposition of Zn$^{2+}$-binding motif of 3ORU (magenta) with catalytic Zn$^{2+}$-site of CDA of *Mycobacterium tuberculosis* (3IJF, blue) and *Aspergillus terreus* (2Z3G, golden) (A). Zn$^{2+}$ ion is shown as grey sphere. Water is shown as red sphere. SDS-PAGE of Tdm D198A, D198N and D198E (B). 1, uninduced crude cell-free extract; 2, cell-free extract induced by 0.2 mM IPTG; 3, cell-free extract induced by 0.5 mM IPTG; 4, cell-free extract induced by 1 mM IPTG; 5, purified recombinant protein. Far-UV CD spectra of WT and variants (D198A, D198N, D198E) (C). Oligomeric states of variants (D). purple: D198A, green: D198N, blue: D198E.
4.3.5 The substrate-binding pocket

TMAO-binding pockets have been studied previously in two enzymes, namely the substrate-binding protein (TmoX) of the TMAO ABC transporter and TMAO reductase (TorT) (Li et al 2015, Moore and Hendrickson 2012). In both proteins, a hydrophobic substrate-binding pocket, composed of three to four aromatic residues, was found to recognize and bind TMAO via cation-π interaction (Gallivan and Dougherty 1999). Sequence alignment of Tdm proteins indeed revealed the presence of several conserved phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp) residues (Figure 4-10 A). In an attempt to identify TMAO-binding sites in Tdm, site-directed mutants were generated by individually replacing these Phe, Tyr and Trp residues with Ala. Variants were purified by Ni-NTA and purities were examined by SDS-PAGE (Figure 4-9 A). Three of these mutants, F259A, Y305A and W321A, have completely lost activity (Table 4-2), while the overall secondary and structure was retained (Figure 4-9 B, C), suggesting a role of these aromatic residues in substrate binding. The remainder of the mutants (Y185A, Y237A, Y267A, Y273A, W298A, W327A, Y363A) were, however, still active (Table 4-3), thus these residues are unlikely to contribute to substrate binding.
Figure 4-9 F259, Y305 and W321 are potential substrate pocket residues. SDS-PAGE of Tdm F259A, Y305A and W321A (A). 1, 3, 5, uninduced crude cell-free extract; 2, 4, 6, induced crude cell extract; 7, 8, 9, purified F259A, Y305A, W321A, respectively. Far-UV CD spectra of wild type (WT) Tdm and variants (F259A, Y305A, W321A) (B). Oligomeric states of variants (C). grey: F259A, green: Y305A, blue: W321A.
Table 4-3 Site-directed mutants of conserved aromatic residues in Tdm

<table>
<thead>
<tr>
<th>Mutants</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y178A</td>
<td>n.d.</td>
</tr>
<tr>
<td>Y185A</td>
<td>+</td>
</tr>
<tr>
<td>Y237A</td>
<td>+</td>
</tr>
<tr>
<td>F238A</td>
<td>n.d.</td>
</tr>
<tr>
<td>F259A</td>
<td>-</td>
</tr>
<tr>
<td>Y267A</td>
<td>-</td>
</tr>
<tr>
<td>Y268A</td>
<td>n.d.</td>
</tr>
<tr>
<td>Y273A</td>
<td>+</td>
</tr>
<tr>
<td>W298A</td>
<td>+</td>
</tr>
<tr>
<td>F304A</td>
<td>n.d.</td>
</tr>
<tr>
<td>Y305A</td>
<td>-</td>
</tr>
<tr>
<td>W321A</td>
<td>-</td>
</tr>
<tr>
<td>Y327A</td>
<td>+</td>
</tr>
<tr>
<td>W353A</td>
<td>n.d.</td>
</tr>
<tr>
<td>Y363A</td>
<td>+</td>
</tr>
</tbody>
</table>

n.d.: mutants were either not constructed or constructed but can not be induced by IPTG, therefore the activities were not determined; -: inactive; +: active.
Figure 4-10 Investigation and visualisation of the residues involved in metal coordination and substrate binding. Multiple sequence alignment of bacterial Tdm proteins (Uniprot accession numbers are shown) and two DUF1989 family protein entries whose structures are available from the PDB database (Q5LXE3; Q1GJV4) (A). **B8E1Z6**: *Methylocella silvestris* BL2; **C3K8G9**: *Pseudomonas fluorescens* SBW25; **Q5LT52**: *Ruegeria pomeroyi* DSS-3; **Q986L6**: *Mesorhizobium loti* MAFF303099; **F5RCR6**: *Methylovorans universalis* FAM5; **B6BQC7**: *Candidatus Pelagibacter* sp. HTCC7211; **J9Z2K4**: *alphaproteobacterium* strain HMB59. The conserved putative Zn$^2+$ (C263, C279, C343) and Fe$^2+$ (H256 and H276) coordination centres are highlighted in red boxes. Conserved aromatic amino acid residues in Tdm but not Q5LXE3 or Q1GJV4 are indicated by asterisk (*). Potential residues contributing to the formation of the substrate pocket (F259, Y305, W321) are indicated by arrows. Visualisation of the identified residues forming metal binding centers and substrate pocket (B). Blue: Zn$^2+$ binding sites; orange: potential Fe$^2+$ binding site; green: “bridging” D198; purple: putative substrate-binding pocket. Cautions should be taken that, due to the low sequence identity and absence of Fe$^{2+}$ in the template (3ORU), the rotamer of H256, H276, F259, Y305 and W321 are not of high confidence according to the homology model.
4.3.6 The catalytic mechanism of TMAO degradation by Tdm

TMAO degradation catalysed by Tdm resembles N-dealkylation by other non-haem Fe\(^{2+}\)-containing enzymes, such as DNA dealkylase (AlkB) (Mishina and He 2006), histone demethylase (JHDM1, JMJD6) (Chang et al 2007, Tsukada et al 2006) and Rieske-type demethylase (Daughtry et al 2012, Summers et al 2012). A high-valent Fe(IV)-oxo complex is a common active species for attacking the C-H bond of saturated carbon centres by non-haem Fe\(^{2+}\)-containing proteins. O\(_2\) is required as oxygen donor for all the aforementioned reactions to form the Fe(IV)-oxo complex. However, a previous study on bacterial Tdm suggested that TMAO demethylation is O\(_2\)-independent (Large 1971). The enzyme assays performed using purified Tdm showed no difference in kinetics aerobically and anaerobically, supporting that TMAO demethylation is indeed O\(_2\)-independent (Figure 4-11 A). The O\(_2\)-independency therefore suggests that TMAO functions as both the substrate and the oxygen donor. It is therefore speculated that the substrate TMAO can donate its oxygen atom to Fe\(^{2+}\) and act as a surrogate oxygen donor. Although such a mechanism of surrogate oxygen donation has not been observed in non-haem iron enzymes, it has been found in haem-containing P450 enzymes in the absence of NAD(P)H and oxygen (reviewed in ref. (Guengerich et al 1996, Hrycay and Bandiera 2015)). Based on the well-studied P450 enzymes, it is proposed that a high-valent oxidant (e.g. Fe(IV)-oxo) is required and a tertiary amine intermediate (i.e. TMA) is formed (Figure 4-11 B). Firstly, TMAO donates oxygen to activate the Fe\(^{2+}\) centre. Fe\(^{2+}\) shared two electrons with O atom therefore forms high valent Fe(IV)-oxo or Fe(V)-oxo complex, which then hydroxylates the N-methyl group to give an
intermediate that decomposes in water to form dimethylamine (DMA) and formaldehyde (HCHO). Meanwhile, Tdm returns to its ferrous resting state.

Figure 4-11 Proposed mechanism of Tdm. Tdm catalyzes an O_2-independent demethylation of TMAO (A). The error bars represent standard deviation from experiments run in triplicate. Schematic diagram of the proposed mechanism of Tdm catalytic cycle (B). The substrate is proposed to act as the oxygen donor to activate the Fe centre to form a putative high valent iron-oxo intermediate (e.g. Fe(IV)-oxo), which then hydroxylates the methyl to give an intermediate that decomposes in water to form DMA and HCHO. Meanwhile, Tdm returns to its ferrous resting state.
To test this hypothesis, a crossover experiment was performed using a TMA analogue in order to trap the formation of putative secondary amine species that can be released during the Tdm catalytic cycle (Back and Dyck 1997). DMEA, a structural homologue of the postulated TMA intermediate, was added to the enzyme assays with and without the substrate, TMAO. If the tertiary amine intermediate (i.e. TMA) is formed and acts as a substrate during the catalytic cycle, the high-valent Fe species, e.g. Fe(IV)-oxo, may also abstract H from its analogue DMEA, hence forming the corresponding secondary amine species, MEA (Figure 4-12 A). The secondary amine products (DMA, MEA) were derivatized by BSC and quantified by GC-MS. In the absence of TMAO, Tdm does not catalyse the demethylation of DMEA. However, in the presence of TMAO, both DMA (m/z: 77.1, 141.1, 185.1) and MEA (m/z: 77.1, 141.1, 184.1) were detected, and DMA formation was competitively reduced in the presence of DMEA (Figure 4-12 B,C,D). The results therefore supported the postulated mechanism, both confirming that TMAO is required as oxygen donor, and that the resulting tertiary amine is a substrate for oxidative demethylation during the catalytic cycle of Tdm.
Figure 4-12 Formation of a secondary amine product, MEA by Tdm using a TMA-analogue, DMEA. Proposed diagram of MEA formation from DMEA in the presence of the natural substrate TMAO (A). Gas chromatography – mass spectrometry (GC-MS) analysis of secondary amines produced during Tdm reaction in the presence or absence of DMEA (B). The enzyme reaction contains either 50 mM TMAO (blue line), or 25 mM DMEA (green line) or both (red line). Only in the presence of the natural substrate TMAO, MEA was formed (red line). Mass spectra of benzenesulfonyl chloride derivatized secondary amines, BS-DMA (C, blue) and BS-MEA (D, red).
To examine the effect of DMEA on Tdm activity, the HCHO assay was performed with varying concentrations of DMEA and TMAO. Double reciprocal plots revealed that DMEA acts as an uncompetitive inhibitor of Tdm shown by constant slope at different concentration of DMEA. K_m and V_{max} are both reduced (Figure 4-13 A), with inhibition constant (K_i) of 2.7 mM (Figure 4-13 B). V_{max} of Tdm was nearly 0 when DMEA at 5 mM final concentration.

![Figure 4-13](image)

Figure 4-13 DMEA inhibits Tdm activity. Lineweaver-Burk plot of Tdm in the absence and presence of DMEA at varying concentrations (A). A secondary plot of the intercept derived from the primary Lineweaver-Burk plot versus DMEA concentrations (B). With both decreased V_{max} and K_m, DMEA is a uncompetitive inhibitor of Tdm ($K_i = 2.7$ mM).

4.3.7 Unlabelled formaldehyde was produced using TMA18O as substrate

To further confirm that TMAO, rather than O$_2$, is the oxygen donor for Tdm, TMA18O was synthesized and the 18O label was followed during Tdm catalysis. Synthesized TMA18O was verified by mass spectrometry (Figure 4-14 A). Formaldehyde produced during Tdm catalysis was adducted by sodium bisulfite and a subsequent ion with $m/z=111$ (HMS') would be detected by mass spectrum. If the hypothesis is true that the oxygen atom of formaldehyde is derived from the substrate TMA18O, formaldehyde should be 18O-labeled, hence an $m/z=113$ (18O-HMS') would
be observed. However, only the $m/z=111$ ion was found in both TMAO and TMA18O reaction mixture (Figure 4-14 B) at the retention time of 6.2 min with similar intensity values. MS/MS analysis of products from bombardment of the $m/z=111$ ion selected from the initial MS ion separations resulting in detection of HSO$_3^-$ ($m/z=81$), a product derived from bombardment of HMS$^-$ ($m/z=111$) and the release of HCHO ($m/z=32$) (Figure 4-14 C). Extracted ion chromatogram at $m/z=113$ was observed from both reactions with 18O-labeled and TMA16O, but did not display a distinct peak (Figure 4-14 D). MS/MS analysis of ion $m/z=113$ at 6.2 min resulted in an ion at $m/z=95.8$ (Figure 4-14 E), suggesting that $m/z=113$ is from reaction matrix rather than 18O-HMS$^-$.
Figure 4-14 Determination of O-transfer using TMA18O. Purity of the chemically synthesized TMAO, as assessed by mass spectrometry (A). TMA18O displayed a M+1 peak at $m/z=78.31$ and 2M+1 peak at $m/z=154.98$. The small peak of 152.98 m/z represents 2M+1 with one 16O and one 18O. H$_2$O$_2$ used for TMA18O synthesis contained 90% H$_2^{18}$O$_2$ and 10% H$_2^{16}$O$_2$. Extracted ion chromatogram of the HMS ion $m/z=111$ from Tdm reaction using TMA16O (light blue) and TMA18O (brown) (B). MS/MS analyses of the $m/z=111$ ion resulted in the detection of HSO$_3^-$ ($m/z = 81$) after releasing of HCHO ($m/z=32$) (C). Extracted ion chromatogram the unidentified ion $m/z=113$ from Tdm reaction using TMA16O (light blue) and TMA18O (brown) (D). MS/MS analysis of the $m/z=113$ from both reactions produced an unidentified ion of $m/z=95.8$. HSO$_3^-$ ($m/z = 81$) was not detected from the parent ion (E).
4.3.8 DMPO-OH but not substrate radical was detected

A DMPO spin trap experiment was designed to reveal substrate radicals formed during Tdm catalysis. However, neither a N- nor C-centred substrate intermediate radical was detected. Interestingly, DMPO-OH adduct was detected (Figure 4-15, marked by *). When TMAO was omitted from the incubation mixture, weak DMPO-OH adduct was also detected, possibly due to slow hydrolysis of DMPO. There were some small radical adduct signals detected from both with and without TMAO (Figure 4-15, marked by arrows), suggesting that these radicals were either from unspecific catalysis of DMPO by Tdm or DMPO spontaneously.

![Figure 4-15](image_url) DMPO spin trap of intermediates during TMAO demethylation. *: DMPO-OH, arrows: DMPO-unknown species.
4.4 Discussion

4.4.1 Tdm is a novel Zn2+ and Fe2+ containing metalloprotein

Data presented in this chapter suggest that Tdm is a Zn2+ and Fe2+-dependent metalloenzyme and the Zn2+:Fe2+:Tdm monomer ratio is likely to be 1:1:1. In Tdm, Zn2+ is coordinated by three cysteine thiolates (C263, C279 and C343) and 1 water molecule, which resembles catalytic Zn2+ site of CDA (Chung et al 2005, Kumasaka et al 2007, Sánchez-Quitian et al 2010, I et al 2006). Meanwhile, I also demonstrated that Fe2+ plays a catalytic role. It is noteworthy that both Zn2+ and Fe2+ are in the close vicinity of Asp198. Therefore, it is possible that Tdm has a co-catalytic binuclear Zn2+-Fe2+ centre. Binuclear Zn2+-Fe2+ sites have been found in many enzymes, such as glycerophosphodiesterase (Daumann et al 2013), glyoxalase II (Zang et al 2001), enamidase (Kress et al 2008) and protein phosphatase 2B (Namgaladze et al 2002). The resolved structures of existing binuclear Zn2+-Fe2+ proteins revealed that Zn2+ is predominantly coordinated by a histidine side chain. However, caution should be applied when interpreting the Zn2+ site in Tdm due to the low quality of the overall model obtained through homology modelling. We cannot rule out the possibility that the fourth Zn2+ ligand may be provided by the D198 in Tdm.

Indeed, it is propose that a D198 has a dual role of stabilizing both Zn2+ and catalytic Fe2+. Mutagenesis study of the conserved D198 in Tdm supported the idea that D198 is crucial for maintaining structural integrity through interaction with Zn2+, either directly or indirectly through H-bonding with Zn2+-bound water (Figure 4-16). Replacing D198 with Ala, Asn and Glu resulted in quaternary structural alteration as well as reduced Zn2+ content in the Tdm mutants (0.5~0.7 vs 1 in the wild type).
D198 also likely contributes to Fe\(^{2+}\)-binding together with H276. The mutagenesis results demonstrate that a carboxyl group is important in maintaining Fe\(^{2+}\) stoichiometry in Tdm and the Fe\(^{2+}\):Tdm ratio of the D198E mutant (0.33 ± 0.01) was comparable to that of the WT (0.33 ± 0.02) while the D198A mutant (0.12 ± 0.01) lost Fe\(^{2+}\) significantly (p<0.05). So far, it is unclear what other residue could contribute to Fe\(^{2+}\) coordination in Tdm. It is very likely that Tdm employs a non-classic 2-His-1-carboxylate triad because the conserved H256 also seems to have a structure maintaining role. Variations of the classical 2-His-1-carboxylate triad motif for Fe\(^{2+}\) coordination have recently been found in a number of enzymes. For example, in the halogenase SyrB2 (uniprot entry: Q9RBY6), the carboxylate is absent and instead, a halogen ion takes its place in the coordination sphere (Blasiak et al 2006). In diketone-cleaving dioxygenase, Dke1 (Uniprot entry: Q8GNT2) (Diebold et al 2010) and cysteine dioxygenase, CDO (Uniprot entry: Q16878, P60334), a three-histidine triad is found (Gardner et al 2010, McCoy et al 2006) whereas in carotenoid oxygenase (Uniprot entry: P74334), a four-histidine motif is present (Kloer et al 2005). Although H256 and H276 are far apart from homology modelling, we should take into caution that the prediction of these two residues may not be reliable due to low sequence identidy and absence of Fe\(^{2+}\) in the template (Figure 4-10 B). Further
structural and biochemical investigations are certainly warranted to conclusively map the ligands involved in Zn$^{2+}$ and Fe$^{2+}$-coordination in Tdm.

4.4.2 Substrate recognition and binding by a hydrophobic pocket

The identification of F259, Y305 and W321 indicated that Tdm likely recognizes and binds TMAO by cation-π interaction, which has also been found in other TMAO-binding proteins, such as TmoX and TorT (Li et al 2015, Moore and Hendrickson 2012). The cation-π interaction has long been recognized as an important non-covalent binding interaction relevant to structural biology (Gallivan and Dougherty 1999). The aromatic rings of Phe, Tyr and Trp provide negative electrostatic potential allowing interaction with cations (Dougherty 1996). Such cation-π interaction also seems common in proteins involved in quaternary amine transport and metabolism, e.g. choline-TMA lyase (CutC) from Desulfovibrio alaskensis G20 (Craciun et al 2014), acetylcholine esterase from Tetronarce californica (Harel et al 1993, Zhong et al 1998), substrate-binding protein (ChoX) of choline/acetylcholine from Sinorhizobium meliloti (Oswald et al 2008), and substrate-binding protein (ProX) of glycine betaine from Archaeoglobus fulgidus (Schiefner et al 2004). Interestingly, the Fe$^{2+}$:Tdm ratios of these mutants were also significantly reduced compared to that of the wide type. It is therefore likely that these hydrophobic residues are located adjacent to the Fe$^{2+}$ centre and thus may directly or indirectly influence Fe$^{2+}$ coordination in Tdm. Same as the prediction of Fe$^{2+}$-coordination sites, the structure of substrate pocket may not be reliable as a result of low sequence identity and non-conservative hydrophobic amino acids (Figure 10 A, B).

4.4.3 The O$_2$-independent N-dealkylation of Tdm

Non-haem iron enzymes participate in many metabolically important reactions by activating dioxygen (Bugg 2001, Que and Ho 1996). Tdm carries out an oxidative N-
dealkylation which resembles other well characterized \(\alpha \)-ketoglutarate-dependent mononuclear non-haem enzymes, such as DNA dealkylase (AlkB) (Mishina and He 2006), and histone demethylase (e.g. JHDM1, JMJD6) (Chang et al 2007, Tsukada et al 2006). \(\alpha \)-ketoglutarate-dependent oxygenases activate dioxygen to form high-valent Fe(IV)-oxo species as the oxidant. Fe(IV)-oxo complex subsequently transfers an oxygen atom to the substrate to generate a carbinolamine intermediate, followed by formaldehyde release from the carbinolamine intermediate, producing demethylated adenine or lysine. However, Tdm is different from \(\alpha \)-ketoglutarate-dependent oxygenases in that the Tdm-catalysed reaction is \(\text{O}_2 \)-independent (Figure 4-11 A).

Chemically, many single-oxygen atom donors are capable of generating Fe(IV)-oxo species (e.g. NaOX, X = Cl or Br, iodosylbenzene (PhIO)) (Balland et al 2004, Rohde et al 2003). Although surrogate single-oxygen atom donors have been found in biological systems, such as P450 enzymes, they haven’t been found in non-haem iron containing enzymes. \(N, N \)-dimethylaniline \(N \)-oxide (DMAO) is an intermediate formed during P450-mediated demethylation of \(N, N \)-dimethylaniline. Recently studies have demonstrated that DMAO can serve as a surrogate single oxygen donor because DMAO gave identical isotope effects as natural system using NADPH and \(\text{O}_2 \) (Dowers et al 2004, Roberts and Jones 2010). It is proposed that, akin to DMAO for P450 enzymes, TMAO can act as a surrogate oxygen donor for Tdm. A potential mechanism for TMAO degradation by Tdm is shown in Figure 4-11 B. Our cross-over experiments did support the presence of a TMA-alike intermediate during the catalytic cycle as proposed in Figure 4-12. The TMA analogue, in this study, DMEA, uncompetitively inhibited TMAO demethylation by stabilised enzyme-substrate complex.
To validate this hypothesis that TMAO has a dual role of being an oxygen atom donor and the substrate, TMA\(^{18}\text{O}\) was used and the formation of \(^{18}\text{O}\)-HCHO was trapped using sodium bisulfite (Jiang et al 2013). The formation of \(^{18}\text{O}\)-labelled HCHO-bisulfite adduct would give a mass peak at \(m/z=113\) whereas \(^{16}\text{O}\)-unlabelled HCHO-bisulfite adduct would give a peak at \(m/z=111\). However, only \(^{16}\text{O}\)-unlabelled-adduct was observed (Figure 4-14) in reactions when Tdm was incubated with TMA\(^{18}\text{O}\). Nevertheless, the data do not rule out the possibility that rapid exchange of oxygen atom may have occurred between the highly active Fe species (e.g. Fe(IV)-oxo, Fe(V)-oxo) and the solvent (water) prior to oxygen atom transfer to the –CH\(_3\) group of TMAO. Similar rapid exchange of oxygen in high-valent Fe has been reported previously in biomimetic systems (Seo et al 2004).

The nature of the high-valent Fe species during Tdm catalysis remains unclear. The Fe(IV)-oxo species is common in haem and non-haem Fe\(^{2+}\)-containing enzymes (Costas et al 2004, Krebs et al 2007, Makris et al 2006, Nehru et al 2007). In addition, another high-valent iron-oxo complex, Fe(V)-oxo has been postulated as an active oxidant in Rieske dioxygenase enzyme (Kovaleva and Lipscomb 2008, Shan and Que 2006) and authenticated in non-haem iron biomimetic systems (Tiago de Oliveira et al 2007). Clearly further investigation is required to confirm the active Fe species during Tdm catalysis.

4.4.4 C-H bond activation mechanism remains unclear

According to Tdm mechanism hypothesis (Figure 4-11 B), a C- or N-centred substrate radical is formed before oxygen rebound to substrate intermediate depending on the mechanism of C-H bond activation. However, no substrate radical was detected in this DMPO spin-trapping experiment. One possible explanation might
be that, although DMPO was added immediately after reaction started, substrate intermediate may have turned over too fast to be trapped.

Although the detection of hydroxyl radical fits the hypothesis of cocatalytic Zn$^{2+}$, the DMPO-OH signals should be viewed cautiously because, quite often, they are artefacts rather than free hydroxyl radicals derived from the systems under study. Possible causes of DMPO-OH signals are 1) spontaneous hydrolysis of DMPO, which are usually weak; 2) non-specific reaction with other chemicals, such as H$_2$O$_2$, or nucleophilic addition of water (Ranguelova and Mason 2011). As a result, it is necessary to perform kinetic-based competition experiment with hydroxyl radical scavengers (e.g. ethanol, formate, DMSO) in order to establish the existence of free hydroxyl radical in spin-trapping experiment (Ranguelova and Mason 2011).

4.4.5 Hypothetical roles of co-catalytic Zn

The exact role of Zn$^{2+}$ in the progression of TMAO demethylation remains unclear. Although the site-directed mutagenesis data largely supported the role of Zn$^{2+}$ in maintaining Tdm structure, its involvement as a co-catalytic Zn$^{2+}$-Fe$^{2+}$ centre is also possible. For example, one can envisage that Zn$^{2+}$ may facilitate oxygen atom transfer from TMAO to Fe$^{2+}$ through Lewis acid-base interaction with the O atom at step ② (Figure 4-17 A). Similarly, Zn$^{2+}$ may bind to the O atom of the complex formed at step ④ to mediate C-N bond cleavage (Figure 4-17 C). A similar role of Zn$^{2+}$ in catalytic site of alcohol dehydrogenase (ADH) for C-H bond cleavage is well known (Bugg 2012). Alternatively, Zn$^{2+}$ may also stabilize the reactive high valent Fe species during catalysis through electrostatic interaction via a solvent oxygen, e.g Fe(IV)-oxo (step ③, Figure 4-17 B). It has been shown that the conserved positively charged arginine residue can help to stabilize and polarize the negative charge on the

Figure 4-17 Possible function of Zn$^{2+}$ in TMAO demethylation of polarizing TMAO (A); stabilizing Fe(IV)-oxo (B) and mediating C-N bond breakage (C).
In summary, the combination of site-directed mutagenesis, homology modelling and analytical chemistry have provided insight into the structure-function relationship of a novel Zn$^{2+}$ and Fe$^{2+}$ metalloprotein, Tdm. It carries out an unusual O$_2$-independent oxidative demethylation utilizing the substrate as the oxygen donor. Determination of the three-dimensional structure is now required to validate the model proposed in this study.
Chapter 5 Crystallisation and biochemical characterization a Tdm homologue from a marine bacterium *Ruegeria pomeroyi* DSS-3
5.1 Introduction

TMAO is a ubiquitous organic osmolyte that occurs in a wild variety of marine biota, including algae, zooplankton and fish. It is postulated that in these Eukaryotes, TMAO is derived from hydrolysis of phosphatidylcholine to TMA followed by oxidation by host flavin-containing monooxygenases (Seibel and Walsh 2002, Yancey 2005). TMAO is a potent protein stabiliser to counteract the effect of destabilizers (i.e. temperature, urea), and can enhance protein folding (Singh et al 2005, Street et al 2006, Yancey 2005).

TMAO increases with depth in bony fish (Kelly and Yancey 1999, Samerotte et al 2007). Levels of TMAO in the Kermadec snail fish captured at 7000 m revealed they had the highest recorded TMAO content of ~400 mmol kg\(^{-1}\) (wet mass), giving the evidence that TMAO maybe biochemically restrain marines fish from inhabiting deepest ocean depth (Yancey et al 2014).

Based on the numerous studies that proved important biological and physiological roles TMAO plays in marine organism, it is reasonable to assume that TMAO presents in seawater. However, the study of TMAO concentration of marine surface water has been rare due to technical limit at nanomolar level (Gibb and Hatton 2004).

Gibb & Hatton (Gibb and Hatton 2004) used a coupled flow injection-ion chromatographic technique to determine TMAO in natural seawater and found that TMAO ranged from below the analytical detection limit (1.65 nmol l\(^{-1}\)) to 76.9 nmol l\(^{-1}\) in the coastal waters off the Antarctic Peninsula.

Despite the difficulty to quantify TMAO content in seawater, it has been recognized to form part of the MAs pool that are important nutrients for heterotrophic marine bacterioplankton (Anthony 1982, King 1987, Lidbury et al 2014, Lidbury et al 2016). Recent study has identified genes encoding Tdm and a TMAO ABC transporter in
numerically dominant marine bacteria of the *Roseobacter* clade (MRC) and the SAR11 clade (Lidbury et al 2014, Lidbury et al 2015). MRC accounts for around 10% of bacterioplankton in the open ocean (Buchan et al 2005, Labbe and Rettmer 1989, Rappé and Giovannoni 2003) and up to 25% in coastal waters (DeLong 2005, Giebel et al 2011, Suzuki et al 2001). SAR11 clade of the *Alphaproteobacteria* comprises about 25% cells of coastal, estuary and open sea habitats (Malmstrom et al 2004). MRC and SAR11 clade are key players in the ocean carbon cycle (Rusch et al 2007). The metabolism of TMAO as energy source has a substantial ecological significance which may explain the dominance of MRC and the SAR11 clade. Efficient conversion of organic substrate into biomass stimulates growth, which provides the ecological advantage of these bacteria. Meanwhile, N-remineralisation to ammonium, and export to support other microorganisms in the environment (Halsey et al 2012, Lidbury et al 2015, McClelland et al 2001).

In Chapter 4, recombinant Tdm of *Methylocella silvestris* (Tdm_BL2 hereafter) has been identified as a Zn$^{2+}$ and Fe$^{2+}$-dependent enzyme, in which Zn$^{2+}$ and Fe$^{2+}$ constitute a unique cocatalytic centre. Metal replacement experiment of Tdm_BL2 *in vitro* (Chapter 4) has shown that Fe$^{2+}$ is essential for the maximum activity. However, the native metal cofactor in microbial Tdms of different origins (*i.e.*, terrestrial versus marine) may differ as a result of metal availability. For example, Zinc replaced iron to form protoporphyrin (ZnPP) during haem synthesis (Labbe and Rettmer 1989); phytoplankton substituted Fe-containing ferredoxin by flavodoxin (LaRoche et al 1996). Substitution of cobalt and cadmium for Zn$^{2+}$ at active sites of zinc enzymes such as carbonic anhydrase in *Thalassiosira weissflogii* (Lane and Morel 2000, Price and Morel 1990) has also been observed when Zn$^{2+}$ was limited.
The dependency of Zn\(^{2+}\) and Fe\(^{2+}\) raises the question that would Zn\(^{2+}\) or Fe\(^{2+}\) be replaced by other ions when Zn\(^{2+}\) or Fe\(^{2+}\) is in short supply, e.g. High Nutrient–Low Chlorophyll (HNLC) region including the Southern Ocean, the equatorial Pacific, and parts of the Antarctic Ocean (Carol and Timothy 1997, Moore et al 2013). HNLC oceans typically have subnanomolar concentrations of dissolved iron (Martin et al 1994, Mawji et al 2015). Such low concentration of dissolved iron has been identified as the limiting nutrient for both primary productivity and bacteria growth (Behrenfeld and Kolber 1999, Church et al 2000, Moore et al 2013, Tagliabue et al 2014), thus iron fertilisation triggered massive primary production in HNLC region (Coale et al 1996). Apart from “Fe-hypothesis”, Morel (Morel et al 1994) proposed a “Zn-hypothesis”, suggesting Zn as well as Fe may be limiting phytoplankton growth. Dissolved Zn concentrations in the surface waters of the open Pacific, Atlantic Oceans or Southern Ocean are in the subnanomolar range (Lohan et al 2002, Zhao et al 2014). ~98% of Zn is bound to strong and uncharacterized organic ligands such that the concentration bioavailable Zn, is in the picomolar range (Andersen et al 2011, Lohan et al 2002).

Given the wide distribution of Tdm genes in marine bacterioplankton (Lidbury et al 2014), one can envisage that Tdm may use other metals to replace cocatalytic metal centre where there is a limited supply of Fe or Zn in the seawater. Manganese (Mn) is of particular interest in this regard, because dissolved Mn is present in relatively high concentrations compared with dissolved Fe in surface waters of the sea (Chester 1990, Mawji et al 2015, Saager et al 1989). Mn has a reduction potential that overlaps with that of Fe (da Silva and Williams 2001). It has been reported that Mn and Fe are exchangeable by replacing metal ion at the active centre, for example swapping metals in Fe- and Mn-dependent homoprotocatechuate 2,3-dioxygenases homologues.
from *Brevibacterium fuscum* (Fe-dependent) and *Arthrobacter globiformis* (Mn-dependent) *in vitro* did not interfere enzyme activity (Emerson et al 2008). Alternatively, Mn or Fe are incorporated in similar active site of homologues enzymes, but exhibit significant activity with only their native cofactor, for example Mn-, Fe-superoxide dismutases (SOD) (Ken et al 2005, Stallings et al 1984, Vance and Miller 1998).

Therefore it is hypothesised that Tdm homologues from marine environment may have different metal cofactors, compared to the Zn\(^{2+}\) and Fe\(^{2+}\) found in Tdm_BL2. To test the hypothesis, two oceanic Tdm homologues were characterised, the pelagic α-proteobacterium SAR11 strain HIMB59 (uniprot entry number: J9Z2K4, Tdm_HIMB59 hereafter) and the coastal MRC strain *Ruegeria pomeroyi* DSS-3 (uniprot entry number: Q5LT52, Tdm_DSS3 hereafter).

The aims of this chapter are:

- To compare the enzymatic activity of Tdm homologues present in the marine bacteria, SAR11 strain HIMB59 and *Ruegeria pomeroyi* DSS-3
- To identify the metal cofactors of Tdm homologues from marine bacterium
- To set up crystallization trials for the determination of Tdm structure in order to reveal its structure-function relationship

5.2 Materials and methods

5.2.1 Cloning and heterologous expression of tdm wild type, mutants and C-terminal truncated Tdm in Escherichia coli

Tdm_HIMB59 and Tdm_DSS3 overexpression constructs were generated by Dr. Ian Lidbury (Lidbury et al 2014). Briefly, The *tdm* gene from *R. pomeroyi* DSS-3 was amplified by PCR and cloned into the expression vector pET28a (Merck Biosciences, Germany). The *tdm* gene from the SAR11 strain HIMB59 was chemically synthesized
(GenScript Corporation) and cloned into pET28a. The resulting plasmids were transformed into the expression host *E. coli* BLR(DE3) pLysS (Merck Biosciences, Germany). Tdm_BL2 wild type and mutant overexpression constructs (C263A, C279A) were generated as described in Chapter 2. The C-terminal truncated Tdm_BL2 ranging from amino acid position 1 to 383 (Tdm_383) and 1-389 (Tdm_389) were amplified by PCR using plasmid pET28a-Tdm_BL2 as the template with the primers Tdm_F/Tdm_383_R and Tdm_F/Tdm_389_R, respectively (Appendix 1). The C-terminal truncated Tdm_BL2 genes were then excised using the NdeI/BamHI sites and ligated into the expression vector pET28a (Merck Biosciences, Germany) as aforementioned. Plasmids were sequenced for confirmation.

5.2.2 Protein purification and enzymatic assays

Protein induction, purification using the Ni-NTA column followed by desalting, and subsequent enzymatic assays were performed as described in Chapter 2. Inhibition assay of DMSO on Tdm_BL2 was determined using assay solutions containing 1.5-6 mM TMAO and 0.1-1 mM DMSO. Inhibition constants (K_i) were determined as described in Chapter 4.

5.2.3 Size-exclusive chromatography

As described in Chapter 2.

5.2.4 Inductively coupled plasma - mass spectrometer and optical emission spectrometer (ICP-MS/OES)

As described in Chapter 4.

5.2.5 Crystallisation screening

Crystallisation screening was performed as described in Chapter 2. Tdm_BL2 and Tdm_DSS3 were screened in the Structure Biology Lab (C10) at the University of Warwick in collaboration with Prof. Vilmos Fulop and Dr. Alexander Cameron.
Crystallisation screening of Tdm.BL2 variants C263A and C279A were carried out in Prof. Yuzhong Zhang’s lab, State Key Lab of Microbial Technology, Shandong University, China. Protein concentration was ~4 mg mL\(^{-1}\) in 20 mM Tris-HCl pH 7.8, 100 mM NaCl. Screens used include Procomplex suit (Qiagen), PEG/Ion HR2-126 (Qiagen), PEG/Ion 2 Screen (Hampton), PEGRx 1 HR2-082 (Hampton), PEGRx 2 HR2-084 (Hampton), Crystal Screen Lite HR2-128 (Hampton), Crystal Screen 2 HR2-112 (Hampton), Crystal Screen 2 HR2-110 (Hampton), Index (Rigaku), Wizard 1/2/3/4 (Rigaku).

5.2.6 Expansion of successful hits in a 24-well format

To improve crystal morphology and diffraction, conditions identified as supporting either nucleation or crystal formation in the 96-well screens were further expanded in a 24-well format. This allowed for changes in crystal formation upon slight adjustments in the pH and concentration of the precipitant to be explored. In this case, 1 mL of mother liquor was dispensed into the well. Typically, protein to mother liquor ratios of 1 µl:1 µl and 2 µl:1 µl were set up on the same plastic coverslip, which was then placed over the well and sealed with vacuum grease to produce a hanging drop set up. As before, plates were left at 18°C and periodically checked for better crystal formation.

5.2.7 Seeding

For seeding experiments, a horsehair was dipped into the drop of parent crystals and streaked across six drops in consequence, resulting in serial dilution of the crystal seed across the plate.

5.2.8 Additive screen

To further refine crystallisation conditions, additional screens were exploited using the Crystal Screen Lite HR2-128 (Hampton Research) supplemented with various
cations. Sitting drops were comprised of 1 µl of protein samples, 1 µl of well solution and 0.3 µl of additives including, BaCl$_2$, CaCl$_2$, CoCl$_2$, CuCl$_2$, MgCl$_2$, MnCl$_2$, SrCl$_2$, YCl$_3$, ZnCl$_2$

5.3 Results

5.3.1 Tdm homologue from *R. pomeroyi* DSS-3 is a trimer

Denatured molecular weight of recombinant Tdm_HIMB59 and Tdm_DSS3 are ~80 kDa (Figure 5-1 A), which are consistent with the molecular weight calculated from amino acid sequence (88.33 kDa and 86.20 kDa, respectively). The yield of Tdm_HIMB59 was so low that no further characterisation was performed. Gel filtration revealed that the native molecular weight of Tdm_DSS3 was ~260 kDa (Figure 5-1 B), indicating that Tdm_DSS3 is a trimer.
Figure 5-1 Molecular weight determination of the recombinant Tdm_DSS3 and Tdm_HIMB59. SDS-PAGE of Tdm_DSS3 and Tdm_HIMB59 showed a denatured molecular weight ~ 80 kDa (A). 1, crude cell-free extract; 2, column wash fraction with binding buffer containing 20 mM imidazole; 3, column wash fraction with washing buffer containing 60 mM imidazole; 4, elution fraction of the purified truncated protein. Native molecular weight estimation by gel filtration (B). Tdm from the α-proteobacterium HIMB59 gave very low yield so that gel filtration and subsequent biochemical characterisation were not performed. Standard curve for the molecular mass determination was established using Ferritin (440 kDa), β-Amylase from sweet potato (200 kDa), Aldolase2 (158 kDa), Conalbumin (75 kDa) and Ovalbumin (43 kDa) as described in Chapter 2. The calculated size of Tdm_DSS3 was 260 kDa.
5.3.2 The activity of Tdm_DSS3 is comparable to Tdm_BL2

The purified recombinant Tdm_DSS3 has an optimum pH at around 6 (Figure 5-2 A). Under optimum conditions, V_{max} and K_m of the recombinant Tdm_DSS3 were determined to be $13.71 \pm 0.62\, \text{nmol min}^{-1}\, \text{mg}^{-1}$ and $3.19 \pm 0.15\, \text{mM}$, respectively by the Eadie-Hofstee plot (Figure 5-2 B). Its K_m value of Tdm_DSS3 is in good agreement with that of Methylocella silvestris ($3.3 \pm 0.64\, \text{mM}$), Aminobacter aminovorans (2 mM) and Bacillus sp. (2.85 mM), respectively (Large 1971, Myers and Zatman 1971, Zhu et al 2014).

![Figure 5-2](image_url)

Figure 5-2 Optimum pH (A) and steady-state kinetic parameters (B) of recombinant Tdm_DSS3 by the Eadie-Hofstee plot. Error bars indicate standard deviations of experiments run in triplicate.
5.3.3 Tdm_DSS3 does not use DMSO as a substrate

Previous study has shown that bacterial Tmm, which is responsible for the oxidation of TMA into TMAO, can also oxidise TMA analogue, dimethylsulphide (DMS) at comparable rates to that of TMA (Chen et al 2011). Lidbury and Kröber (Lidbury et al 2016) proposed that DMS oxidation by Tmm may be a significant route for DMSO production in the oceans. However, the subsequent Tdm_DSS3 that catalyse TMAO can not degrade DMSO nor DMS (Figure 5-3). The same substrate specificity has been observed for Tdm_BL2 (Figure 3-10) and DMSO acts as an effective uncompetitive inhibitor of Tdm_BL2 with inhibition constant (K_i) of 0.66 mM (Figure 5-4).

![Graph: Activity nmol/min/mg for TMAO, DMS, and DMSO](image)

Figure 5-3 Tdm_DSS3 does not degrade DMS nor DMSO
Figure 5-4 DMSO inhibits Tdm activity. Lineweaver-Burk plot of Tdm_BL2 in the absence or presence of DMSO at varying concentrations (A). A secondary plot of the intercept is derived from the primary Lineweaver-Burk plot versus DMSO concentration (B). With both decreased V_{max} and K_m, DMSO is therefore a uncompetitive inhibitor of TMAO demethylation by Tdm_BL2, with K_i of 0.66 mM.
5.3.4 Tdm from DSS-3 is more susceptible to EDTA

EDTA inhibition assay performed previously on Tdm_BL2 showed that less than 20% activity was inhibited upon incubation with 10 mM EDTA. Tdm_DSS3, however, is more sensitive to EDTA. At a concentration of 10 mM, EDTA caused ~40% reduction of the enzyme activity (Figure 5-5).

![Figure 5-5](image)

Figure 5-5 Inhibition of Tdm activities by EDTA.

5.3.5 No other metals other than Zn and Fe was detected in Tdm from *R. pomeroyi*

ICP-MS scan revealed the presence of Fe, Zn and Ni in recombinant Tdm_DSS3. Fe, Zn, Ni and S were therefore quantified by ICP-OES. ICP-OES data showed that Ni was negligible (<0.1), which was probably due to the leaching from the Ni-NTA column. Zn content was 0.1-0.2 equivalent per monomer of Tdm_DSS3, much lower than that of Tdm_BL2 (1 equivalent per monomer of Tdm_BL2). The Fe content was more difficult to ascertain. The first batch of purified Tdm_DSS3 showed Fe:Tdm ratio of 1.15 ± 0.23 per monomer, whilst the second batch was 0.29 ± 0.06 per
monomer (Table 5-1). As a result, further experiments are required to confirm Fe:Tdm_DSS3 ratio.

Table 5-1 Metal ion quantification of recombinant Tdm_DSS3 by ICP_OES

<table>
<thead>
<tr>
<th>M²⁺:Tdm (monomer) ratio</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1</td>
<td>0.10±0.09</td>
<td>1.15±0.23</td>
<td><0.1</td>
</tr>
<tr>
<td>Batch 2</td>
<td>0.16±0.04</td>
<td>0.29±0.06</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Each batch of enzyme was prepared in triplicate using 3 separate Ni-NTA columns.

5.3.6 96-well crystallisation screening trials

Purified wild type Tdm from *M. silvestris* and *R. pomeroyi*, and two mutants of Tdm_BL2 were screened (Table 5-2). In order to set up crystallization screening, a highly concentrated recombinant Tdm proteins (4-10 mg ml⁻¹) are required. However, Tdm_BL2 and Tdm_DSS3, tend to aggregate during concentration using the spin columns (Vivaspin, GE healthcare, UK) as shown in Figure 5-6 A. Therefore, the hexamer fraction of Tdm_BL2 and the trimer fraction of Tdm_DSS3 were collected, which were then used for crystallisation screenings directly without further concentration in order to avoid aggregation. The collected fractions represent the Tdm enzymes in its native form with the concentrations between 2-4 mg ml⁻¹, lower than the recommended concentration recommended for crystallization trials.

Table 5-2 Proteins and polypeptides used for crystallisation screening

<table>
<thead>
<tr>
<th>Protein</th>
<th>Organism</th>
<th>Oligomeric status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tdm_BL2</td>
<td>Methylocella silvestris BL2</td>
<td>Hexamer</td>
<td>Wild type</td>
</tr>
<tr>
<td>Tdm_DSS3</td>
<td>Ruegeria pomeroyi DSS-3</td>
<td>Trimer</td>
<td>Wild type</td>
</tr>
<tr>
<td>Tdm_BL2 C263A</td>
<td>Methylocella silvestris BL2</td>
<td>Monomer</td>
<td>C263A mutant</td>
</tr>
<tr>
<td>Tdm_BL2 C279A</td>
<td>Methylocella silvestris BL2</td>
<td>Monomer</td>
<td>C279A mutant</td>
</tr>
</tbody>
</table>

I also intended to set up crystallization trials using the Tdm_BL2 mutants, C263A and C279A. These two mutant proteins form monomers, which might be easier to form.
crystals due to smaller molecular weight. However, it was observed that these two mutants formed multiple oligomeric aggregates after concentrating using the spin columns (Figure 5-6 B). Similarly, only the monomers collected through gel filtration columns were used for crystallisation screening (concentrations ~3mg ml\(^{-1}\)), however, no promising crystals were observed throughout the experiments despite that a range of screening matrices were used.

![Figure 5-6](image_url) Gel filtration purification of wild-type Tdm_BL2 and Tdm_DSS3 (A) and variants Tdm_BL2 C263A and C279A (B).

Given that Tdm_BL2 has a massive native molecular weight of 480 kDa, it may be difficult to crystallise. I have previously hypothesized that the N-terminal DUF1989 domain contains the metal cofactors and is where TMAO bound and catalysed to produce HCHO (see Chapter 4 for more information), thus DUF1989 is of more interest than the well studied C-terminal GCV_T domain. As a result, two versions of C-terminal truncated Tdm_BL2 were constructed, Tdm_BL2_383 ranging from amino acid positions 1 to 383 where the DUF1989 domain ends, and Tdm_BL2_389 ranging from amino acid positions 1 to 389 (Figure 5-7 A). Tdm_BL2_383 and Tdm_BL2_389 were induced for expression in recombinant *E. coli* and purified using an identical approach used for the full-length Tdm_BL2. Purity and molecular weight
of the truncated Tdms were determined by SDS-PAGE (Figure 5-7 B). Gel filtration data showed that, in contrast to the wild-type Tdm, Tdm_BL2_383 and Tdm_BL2_389 existed as monomers (Figure 5-7 C). Activity assays using truncated Tdm_BL2_383 and Tdm_BL2_389 by quantifying formaldehyde formation demonstrated that they were inactive. Metal quantification by ICP-OES revealed that C-terminal truncated mutants did not contain Fe, and the Zn\(^{2+}\):protein ratio was reduced to 0.5-0.6 per monomer (Figure 5-7 D), suggesting that C-terminal truncated mutants did not fold properly. Therefore, Tdm_BL2_383 and Tdm_BL2_389 were not included in the crystallisation screening trials.
Figure 5-7 Construction and characterisation of C-terminal truncated Tdm_BL2 mutants. Scheme of C-terminal truncated Tdm_BL2 mutants (A). SDS-PAGE (12.5% w/v, Bio-Rad, USA) analysis of C-terminal truncated Tdm_BL2 mutants (B). Ladder, PageRuler Prestained Protein Ladder (left, Thermofisher Scientific), Sigma-Aldrich colour burst (right, Sigma-Aldrich); 1, uninduced crude cell-free extract of *E.coli* containing Tdm_BL2_383; 2, induced crude cell-free extract of *E.coli* containing Tdm_BL2_383; 3, uninduced crude cell extract of *E.coli* containing Tdm_BL2_389; 4, induced crude cell-free extract of *E.coli* containing Tdm_BL2_389; 5, elution fraction of Tdm_BL2_383; 6, elution fraction of Tdm_BL2_389. Native molecular weight estimation by gel filtration (C). Standards were the same as Figure 5-2. The calculated sizes of Tdm_BL2_383 and Tdm_BL2_389 were 50.8 and 52.5 kDa, respectively.
Initial screenings were prepared using the sitting drop vapour diffusion method. The initial crystallisation trails indicated that Tdm_DSS3 was more promising with small plates observed under pH 7-8 with PEG3350 or PEG6000 as precipitant at 20% concentration (PACT premier, Molecular Dimensions) after 3 days at 18°C (example shown Figure 5-8).

![0.1M Tris-HCl (pH 8.0), 0.2 M NaCl, 20% PEG6000](image)

Figure 5-8 Microcrystal formation of Tdm_DSS3. The sitting drop method of vapour diffusion was used with commercial sparse matrix screens. Small crystals are indicated by arrows. Scale bar=50 µm.

Although Tdm_BL2 WT and variants formed promising precipitates such as light/heavy amorphous precipitates under certain conditions, no crystal was observed. As a result, Tdm_DSS3 was processed for subsequent fine-screening.

5.3.7 24-well refinement of suitable crystallisation conditions for Tdm_DSS3

Refinement of Tdm_DSS3 crystallisation condition was carried using the 24-well plate setup as described in materials and methods. Tris-HCl (pH 8.0) and HEPES (pH 7.5) buffers were tested with either PEG3350 or PEG6000, varying from 16%-26% (w/v) in a total of six 2% increments. NaCl remained to be 0.2 M throughout all conditions. The results of refinement, after incubation for 3 days at 18°C, were shown in Figure 5-9. As indicated in **Figure 5-9**, HEPES (pH 7.5) buffer with 16% PEG6000 gave the biggest crystals, two-dimensional plates, about 15-30 µm in length and 5-20 µm in width. No well-formed three-dimensional crystals were observed. Diffraction quality is affected by crystal size and regularity (Glaeser et al 2000), as a result, seeding and
additive screening were exploited to optimise crystallisation. The crystals grew smaller as PEG6000 concentration increased to 26%. Therefore, 0.1 M HEPES (pH 7.5), 0.2 M NaCl, 16% (v/v) PEG 6000 was adopted for further seeding and additive refinements.

Figure 5-9 Optimisation of crystallisation conditions for Tdm_DSS3. Crystals are indicated by arrows. Scale bar=50 µm.

5.3.8 Refinement of Tdm_DSS3 crystal morphology and diffraction by seeding and additive screen

Horsehair crystal seeding was carried out in the 24-well format under the optimised condition after 1 day incubation. However, neither seeding nor additive screening using additional multivalent metal ions showed any obvious improvement in terms of crystal shape or size.
5.4 Discussion

5.4.1 Tdm_DSS3 shows comparable activity to Tdm_BL2 but has different quaternary structure

Tdm_DSS3 had an optimal pH of 6 and displayed comparable activity to that of *M. silvestris*. Tdm_DSS3 is more sensitive to EDTA inhibition comparing to Tdm_BL2, which might be due to different oligomeric status of the enzymes. Comparing to the homotrimeric Tdm from *R. pomeroyi*, Tdm of *M. silvestris* is homohexameric that may have restricted access of EDTA to the metal centre.

Although the structure of DMSO resembles TMAO, it is neither a substrate nor a competitive inhibitor of Tdm. In fact, DMSO acts as an effective uncompetitive inhibitor of Tdm, indicating that DMSO binds to the Tdm-TMAO complex. The other uncompetitive inhibitor for Tdm that has been found (Chapter 4) is a TMA analogue, DMEA (Figure 4-12). Interestingly, TMA itself did not show any inhibition of TMAO demethylation by Tdm_BL2 even at the concentration as high as 100 mM (data unshown). It remains unclear where DMSO or DMEA binds and how they inhibited Tdm demethylation. Resolving Tdm structure will certainly help to illuminate the mechanism of uncompetitive inhibition by DMSO and DMEA.

5.4.2 Tdm_DSS3 is an Fe-dependent enzyme

The presence of Fe and the absence of Mn suggested that Tdm_DSS3 employs Fe to mediate electron transfer. Further study is required to accurately determine Fe: Tdm_DSS3 ratio. Interestingly, it displayed 0.1-0.2 Zn$^{2+}$:Tdm_DSS3 (monomer) ratio, much lower than that of Tdm_BL2. In Chapter 4, it was concluded that, in Tdm_BL2, Zn$^{2+}$ is a cocatalytic centre and contributes to the maintenance of overall structure of Tdm_BL2. So far, it is not clear whether the lower amount of Zn$^{2+}$ found in Tdm of *R. pomeroyi* was due to zinc contamination or in deed, majority of Zn$^{2+}$ in
this enzyme was lost during purification. The latter explanation is less likely because my previous study on Tdm_BL2 (Chapter 4) revealed that Zn$^{2+}$ is essential for Tdm_BL2 and a loss of Zn$^{2+}$ leads to structure alteration. Besides, the strong binding affinity of Zn$^{2+}$ to the thiol group of the cysteines (C263, C279, C343), which are also conserved in Tdm of _R. pomeroyi_ (C287, C303, C367) (Figure 4-6 B), suggests that a lower Zn$^{2+}$ content in Tdm_DSS3 is not likely due to its loss during purification. However, additional experiments are required to investigate whether Zn addition to the purified Tdm_DSS3 will enhance its activity. Further study is required to determine the precise metal composition and metal centres in Tdm_DSS3.

5.4.3 Crystal obtained from Tdm_DSS3 grew as small plates

Although I have managed to observe Tdm_DSS3 crystals, they were two-dimensional plates with small sizes, not good enough to get good quality X-ray diffraction data. Crystallisation optimization strategies, such as micro-seeding and additive screening, did not significantly improve the crystals. Further optimization can be performed, such as using different temperatures, different protein concentrations, or using various Tdm mutants. Given that Tdm is a ferrous iron containing protein, which is sensitive to oxidation by air, anaerobic crystallisation should also be considered. Alternatively, one can try to create a C-terminal truncated Tdm with longer flanking region in order to keep the mutant properly folded. Since the N-terminus contain the metal binding sites, such a smaller truncated protein may be relatively easier for crystallization trials and further optimization. Alternatively, Cryo-electron microscopy can be used to investigate Tdm 3D structure without crystallisation (Baumeister and Steven 2000, Saibil 2000).
Chapter 6 Conclusions and future perspective
This Chapter discusses the principal findings of this project in the context of the main objectives outlined in Section 1.9, and highlights areas where further investigation is necessary.

The identification of tdm and TMAO transporter gene (tmoP) in Methylocella silvestris BL2 (Aim 1) was sought in Chapter 3. Marker-exchange mutagenesis enabled the identification of several genes involved in TMAO metabolism, including Msil_3606, a permease of the amino acids-polyamine (APC) superfamily, and Msil_3603, consisting a N-terminal domain of unknown function (DUF1989) and a C-terminal tetrahydrofolate-binding domain. Null mutants of Msil_3603 and Msil_3606 can no longer grow on TMAO. Thus it is hypothesised that Msil_3603 and Msil_3606 encode tdm and tmoP, respectively. In vitro enzyme assay of recombinant Msil_3603 further supported the idea that Msil_3603 and Msil_3606 encode Tdm. Purified Msil_3603 from recombinant Escherichia coli can convert TMAO to dimethylamine and formaldehyde (1 TMAO \rightarrow 1 dimethylamine + 1 formaldehyde).

Phylogenetic analysis of TmoP showed that it forms a distinct group from the other APC transporters. APC transporters are membrane permeases co-transporting another solute, acting as either a symporter or an antiporter (Saier 2000). It is not clear whether TmoP acts as a symporter or an antiporter and the co-transporting solute remains to be established.

TmoP homologues are also found in some methanogenic Archaea, e.g. Methanosarcina acetivorans, Methanosarcina mazei, and annotated as DMA transporter. It remained unclear whether these TmoP homologues are true DMA transporter. If not, it might suggest that these methanogenic Archaea can utilise TMAO directly as well. Methanogenic Archaea are able to degrade TMA, DMA and

TMAO has been shown to be an alternative electron acceptor among diverse bacteria when they encounter microaerobic or anoxic conditions (Barrett and Kwan 1985, Czjzek et al 1998, Sellars et al 2002) and a TMAO reductase operon (torCAD) has been identified about two decades ago (Méjean et al 1994). Recent study has shown that haloarchaea, Halobacterium sp. Strain NRC-1, can also use DMSO/TMAO as alternative electron acceptors but with a different reductase operon, dmsREABCD (Müller and DasSarma 2005). Therefore it is reasonable to expect that methanogenic Archaea can also use TMAO anaerobically as an electron acceptor. However, blasting Methanosarcina acetivorans, Methanosarcina mazei with dmsREABCD or torCAD as entries did not reveal any hit. As a result, it remains elusive whether TMAO can be used directly by methanogenic Archaea.

Genetic characterisation of Tdm (Aim 2) revealed that it consists of a N-terminal DUF1989 domain without assigned function and a C-terminal GCV_T domain. GCV_T domain has been found to play an important role in one-carbon unit metabolism in that is responsible for HCHO conjugation with THF. As a result, GCV_T domain is found in several enzymes catalysing the release of HCHO, including T protein of the glycine cleavage system, dimethylglycine and sarcosine dehydrogenase and dimethylsulfoniopropionate demethylase. Phylogenetic analysis of GCV_T domain of Tdm revealed that it falls into one of the previously recognized, but so far uncharacterized clades (Reisch et al 2008, Sun et al 2011).

Initial biochemical and biophysical characterisation (Aim 2) demonstrated that Tdm is a hexamer, displays high substrate specificity that only catalyses demethylation of TMAO and a structural homologue, dimethylidodecylamine N-oxide, and each
monomer incorporates 1 equivalent of Zn$^{2+}$ and 1 equivalent of Fe$^{2+}$ as metal cofactors.

To elucidate the structure and functional mechanism of Tdm (Aim 3), site-directed mutagenesis, homology modelling and metal analyses by inorganic mass spectrometry have been applied in combination. Zn$^{2+}$ is coordinated by a 3-sulfur-1-O motif. H276, and maybe H256, contribute to Fe$^{2+}$ binding. An aspartate residue (D198) likely bridges Fe$^{2+}$ and Zn$^{2+}$ centres, suggesting that co-catalytic dinuclear centre. Site-directed mutagenesis of Tdm also led to the identification of three hydrophobic aromatic residues likely involved in substrate coordination (F259, Y305, W321), potentially through a cation-π interaction.

Tdm catalyses a unique O$_2$-independent demethylation. Therefore, it is hypothesised that TMAO has a dual role of being both a substrate and an oxygen donor for formaldehyde formation. The cross-over experiment using a substrate intermediate analogue supported the hypothesis by giving direct evidence of a TMA-alike intermediate produced during the Tdm catalytic cycle.

With the previous studies on haem and non-haem Fe$^{2+}$-containing enzymes, one can envisage that a high-valent iron-oxo complex (e.g. Fe(IV)-oxo, Fe(V)-oxo) is produced and responsible for C-H activation. As a result, it is postulated that TMAO acts as the oxygen donor to activate the Fe centre to form a putative high valent iron-oxo intermediate (e.g. Fe(IV)-oxo, Fe(V)-oxo), which then hydroxylates the methyl group to give a carbinolamine intermediate that decomposes in water to form DMA and HCHO. Meanwhile, Tdm returns to its ferrous resting state.

In future, advanced spectroscopic methods such as electron paramagnetic resonance and Mössbauer spectroscopy (Rohde et al 2003, Tiago de Oliveira et al 2007) could
be used to determine the nature of the iron-containing active site and its redox state during catalysis.

Methylocella species show remarkable metabolic diversity, from one carbon compounds, methane, methanol, methylamines, to multicarbon compounds, acetate, succinate, malate, ethanol, and pyruvate (Dedysh et al., 2005). Crombie and Murrell (2014) recently described the simultaneous growth of the *M. silvestris* on methane and short-chain propane that has never been documented over a century of research into methanotroph. Identification and mechanism investigation of key enzymes involved in methylamine metabolism from *M. silvestris*, such as Tdm in this study, gives a valuable insight into its metabolic versatility.

By studying the mechanism of Tdm, it may shed some light on the function of DUF1989 domain (Aim 4). Since the well-studied GCV_T domain does not have any metal cofactor, it is believed that Zn$^{2+}$ and Fe$^{2+}$ are located in the DUF1989 domain. This is consistent with the hypothesis that DUF1989 cleaves HCHO, which was then transferred to the GCV_T domain where conjugation to THF takes place. The aforementioned homology modelling was performed using single DUF1989 domain protein structure available in PDB to give some insight into the structural conformation of DUF1989 domain of Tdm. Although it helped to identify 3 Cys that coordinate Zn$^{2+}$ and a conserved Asp that probably links Zn$^{2+}$ and Fe$^{2+}$, the overall quality of the established homology model was poor. In order to gain more accurate 3D-structure information of DUF1989 domain (Aim 3), C-terminal truncated mutants were constructed. However, the structure was disrupted indicated by the loss of metal cofactors and altered quaternary structure. Tdm of *Methylocella silvestris* and *Ruegeria pomeroyi* DSS-3 were screened for crystallisation. So far, the best Tdm crystals I have obtained are from Tdm of *Ruegeria pomeroyi* DSS-3, which are 2-
dimensional small plates. Further optimisation is required to achieve high quality crystals. Alternatively, Cryo-electron microscopy can be used to investigate Tdm 3D structure without crystallisation (Baumeister and Steven 2000).

Tdm homologues are widely distributed in marine bacterioplankton, from nutrient-enriched coastal water to oligotrophic open sea. Fe$^{2+}$ and Zn$^{2+}$ are regarded as the limiting micronutrients for the low primary productivity in some areas of the seawater (Anderson et al 1978, Behrenfeld and Kolber 1999, Carol and Timothy 1997, Moore et al 2013, Morel et al 1994). To investigate metal dependency of Tdm homologues from Zn$^{2+}$ and/or Fe$^{2+}$-depleted environment (Aim 5), Tdm homologues from *R. pomeroyi* DSS-3 isolated from coastal water and oligotrophic α-proteobacterium HIMB59 were heterologously expressed in *E. coli*, purified and characterised. Tdm from *R. pomeroyi* DSS-3 displayed comparable activity as the one from *M. silvestris* implied by close K_m (3.19 ± 0.15 mM and 3.3 ± 0.64 mM, respectively) and V_{max} (13.71 ± 0.62 nmol min$^{-1}$ mg$^{-1}$ and 14.61 ± 1.13 nmol min$^{-1}$ mg$^{-1}$, respectively). Preliminary metal determination suggested that Tdm from *R. pomeroyi* DSS-3 may still incorporate Fe$^{2+}$, but not Zn$^{2+}$. Further study is required to determine the precise metal composition and metal centres in Tdm of *R. pomeroyi* DSS-3. The yield of Tdm from the α-proteobacterium HIMB59 was too low to allow subsequent characterisation. Since TMAO is an important nutrient (C, N and energy source) for marine bacteria (Lidbury et al 2014, Lidbury et al 2015, Sun et al 2011), and the capability of using TMAO as energy source may explain the predominance of MRC and SAR11 clade, identification of metal cofactors in Tdm from marine bacteria will illuminate how bacteria adapt to micronutrient stress and establish the link between micronutrient cycling (*e.g.* trace metals) and C/N cycling.
In summary, this thesis makes a contribution to the understanding of indirect MAs metabolic pathway through the identification and mechanistic investigation of Tdm. The O$_2$-independent demethylation performed by Tdm gives a new insight into the generation of active high-valent iron-oxo complex from non-haem Fe$^{2+}$-containing enzyme. Furthermore, a novel TMAO transport, TmoP, has been identified, which is different to the previously known ABC-type TMAO transporter (Li et al 2015, Lidbury et al 2015, Raymond and Plopper 2002) and a putative Dmm has also been proposed.
References

165

Warren CR (2013b). Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. *New Phytol* **198**: 476-485.

Appendix 1-1 List of oligos used in this thesis

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
<th>Note</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers for general use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M13_F</td>
<td>GTAAAACGACGCGCCAG</td>
<td></td>
<td>(Vieira and Messing 1982)</td>
</tr>
<tr>
<td>M13_R</td>
<td>CAGGAAACAGCTATGAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7 promoter</td>
<td>TAATACGACTCACTATAGGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7 terminator</td>
<td>GCTAGTTATTGCTACGCGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primers used for tdm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tdm_F</td>
<td>CATATGAATGTGATCGGCGGCCCCAAAAGGGGT</td>
<td>Amplification of tdm from Methylocella silvestris</td>
<td>Thesis</td>
</tr>
<tr>
<td>Tdm_R</td>
<td>GGATCCCTATGCCCTGACTCGCGCCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3603_A_F</td>
<td>CGACGAAGCGATCATTTACAA</td>
<td>Construction of Msil_3603::kan mutant of M. silvestris</td>
<td>Thesis</td>
</tr>
<tr>
<td>3603_A_R</td>
<td>CCACGTCGATGATCTGGATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3603_B_F</td>
<td>GTTTGGGGCGCTTTTGTGCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3603_B_R</td>
<td>GGTCGACGACTCCACCTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3604_A_F</td>
<td>CCCTCTTGTTCTTCCCCTTCC</td>
<td>Construction of tmm::kan mutant of M. silvestris</td>
<td>Thesis</td>
</tr>
<tr>
<td>3604_A_R</td>
<td>TTGACCCTACCGGTAACAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence(5’-3’)</td>
<td>Note</td>
<td>Reference</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>3604_B_F</td>
<td>CGCCAGCCAATGCTATAAAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3604_B_R</td>
<td>GCGATATCCCATGATGCTCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3605_A_F</td>
<td>TCTTGAATGATCGCCACAGA</td>
<td>Construction of 3605::kan mutant of M. silvestris</td>
<td>Thesis</td>
</tr>
<tr>
<td>3605_A_R</td>
<td>ATGCTCGAAGTAGCGCCAGAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3605_B_F</td>
<td>CGTGTICCTGTGGGATCAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3605_B_R</td>
<td>ATCGTGAACGCGGCTTTGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3606_A_F</td>
<td>CGTCCTGATGCTTCTGTTT</td>
<td>Construction of 3606::kan mutant of M. silvestris</td>
<td>Thesis</td>
</tr>
<tr>
<td>3606_A_R</td>
<td>CACAAGGATGCTTTCGATGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3606_B_F</td>
<td>TACCTCAGCCATGTCACGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3606_B_R</td>
<td>AGCAACAAAAACGACCAATCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3608_A_F</td>
<td>GAAGAGGCCCTTTCCATGAGC</td>
<td>Construction of 3608::kan mutant of M. silvestris</td>
<td>Thesis</td>
</tr>
<tr>
<td>3608_A_R</td>
<td>TGGTCTTGAGATAGGCAGAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3608_B_F</td>
<td>GCAAGATCAGCAGCACCATCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3608_B_R</td>
<td>CATGATCGAAGCGATTGGAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3609_A_F</td>
<td>ATGAACCACGCGATTCAAGC</td>
<td>Construction of 3609::kan mutant of M. silvestris</td>
<td>Thesis</td>
</tr>
<tr>
<td>3609_A_R</td>
<td>TATATCGAACGGGCTCACAGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence(5’-3’)</td>
<td>Note</td>
<td>Reference</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>3609_B_F</td>
<td>ATTCAACATCGGCATGACCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3609_B_R</td>
<td>GCGGGTCAATCCCTTATAGTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3603_con_F</td>
<td>ATCCGACAGGCCATTTGAAAAG</td>
<td>Confirmation of Msil_3603::kan mutant</td>
<td>Thesis</td>
</tr>
<tr>
<td>3603_con_R</td>
<td>GCGCCTTTTCTGGATCATAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3604_con_F</td>
<td>ATCGCGCTACTTCGAGCAT</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td>3604_con_R</td>
<td>GAGCCTTTTCAATGCCTGTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3605_con_F</td>
<td>GGATTGGTCGTTTTGTGCT</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td>3605_con_R</td>
<td>GTCGGACTGTTTTTCGAAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3606_con_F</td>
<td>GTTCGGACGCGCCGATAAGAC</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td>3606_con_R</td>
<td>GTCGACGATGTTGCTGATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3608_con_F</td>
<td>GTTTGTCCGCGATCATTTCT</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td>3608_con_R</td>
<td>GTCGCAAACACACAAAGGACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3609_con_F</td>
<td>CACCAGCATCTTTGAAGAAT</td>
<td></td>
<td>Thesis</td>
</tr>
<tr>
<td>3609_con_R</td>
<td>GAAGACGGGATAACCGATCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kan_F</td>
<td>GGTAGGTCGACGCATGCGAGCTCGGAAGCACCAGTTGCTGCTC</td>
<td>Amplification of kanamycin gene cassette</td>
<td>Thesis</td>
</tr>
<tr>
<td>Kan_R</td>
<td>GGTAGGTCGACGCATGCGAGCTCAAGGTTGCTGACTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence(5’-3’)</td>
<td>Note</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tdm1187_F</td>
<td>GCGTGAATCCGGTTTCCATT</td>
<td>Sequencing Confirmation of tdm mutants</td>
<td>Thesis</td>
</tr>
<tr>
<td>Tdm1363_R</td>
<td>CGCTTTGCACAGGATTTCG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D198A_F</td>
<td>5’ GCAATGCTCCGGCGCTCGTGCCTTC 3’</td>
<td>Construction of Tdm D198A</td>
<td>Thesis</td>
</tr>
<tr>
<td>D198A_R</td>
<td>5’ AAGGCGACGAGCGCGAGCATGCTTC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C263A_F</td>
<td>5’ ACACATTATGCTCGCCGGCACGCGAACATATTACG 3’</td>
<td>Construction of Tdm C263A</td>
<td>Thesis</td>
</tr>
<tr>
<td>C263A_R</td>
<td>5’ TCGTAATATTTCCGCTCGTCGCGAGCATGATGTG 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C279A_F</td>
<td>5’ CCGGACCGCAATGCGACGACATTTCAAC 3’</td>
<td>Construction of Tdm C279A</td>
<td>Thesis</td>
</tr>
<tr>
<td>C279A_R</td>
<td>5’ TGTGAAATTGTCATGCGCAGATGCGGATGCGGATGCGG 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C343A_F</td>
<td>5’ TCCTCGTCGGCGCGGAGCACATTTGAC 3’</td>
<td>Construction of Tdm C343A</td>
<td>Thesis</td>
</tr>
<tr>
<td>C343A_R</td>
<td>5’ GTCGTCGGCGCGGAGCACATTTGAC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D39A_F</td>
<td>5’ GTTCGACCTTTCTGGCCGGCGGAAGCGATCGTACAATCAGG 3’</td>
<td>Construction of Tdm D39A</td>
<td>Thesis</td>
</tr>
<tr>
<td>D39A_R</td>
<td>5’ GATTTTGAATGCGTCTTCGCGGGCGGAAGGTGTCGAC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E47A_F</td>
<td>5’ TACAAATCTCGCGGGGGGCGAAGGTCGACACG 3’</td>
<td>Construction of Tdm E47A</td>
<td>Thesis</td>
</tr>
<tr>
<td>E47A_R</td>
<td>5’ ATGATCGCTTCGTCGGCC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D167A_F</td>
<td>5’ AGTAAAGCTCGGCTCGGCGGCCAGGCGACG 3’</td>
<td>Construction of Tdm D167A</td>
<td>Thesis</td>
</tr>
<tr>
<td>D167A_R</td>
<td>5’ GGGGCAAGCGAAGCGGC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence (5’-3’)</td>
<td>Note</td>
<td>Reference</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>D190A_F</td>
<td>5’CCAGATCATCGCCGTGGACGGCC 3’</td>
<td>Construction of Tdm D190A</td>
<td>Thesis</td>
</tr>
<tr>
<td>D190A_R</td>
<td>5’ATATAATCGCCGGCGCTGAC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H256A_F</td>
<td>5’ CGTCGGGCGGGGACGACACATTCATGC 3’</td>
<td>Construction of Tdm H256A</td>
<td>Thesis</td>
</tr>
<tr>
<td>H256A_R</td>
<td>5’ GTGTCGGAGACGTCTCA 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H276A_F</td>
<td>5’ CTATCCGGCGGCAATTCATGC 3’</td>
<td>Construction of Tdm H276A</td>
<td>Thesis</td>
</tr>
<tr>
<td>H276A_R</td>
<td>5’ CCCATGTCGTGTAATATTTC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tdm_383_R</td>
<td>5’ GGATCCTTAGGGGCGCGTCAGCGGTCA 3’</td>
<td>Construction of C-terminal truncate Tdm</td>
<td>Thesis</td>
</tr>
<tr>
<td>Tdm_389_R</td>
<td>5’ GGATCCTTACAGCGGAACTGCTTGAATGGAAACC 3’</td>
<td>Construction of C-terminal truncate Tdm</td>
<td>Thesis</td>
</tr>
</tbody>
</table>