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Summary: 10 

Human Leukocyte Antigens (HLAs) are responsible for the display of peptide fragments for 11 

recognition by T cell receptors.  The gene family encoding them is thus integral to human adaptive 12 

immunity, and likely to be under strong pathogen selection.   Despite this, it has proved difficult to 13 

demonstrate specific examples of pathogen-HLA coevolution. Selection from multiple pathogens 14 

simultaneously could explain why the evolutionary signatures of particular pathogens on HLAs have 15 

proved elusive.  Here, we present an individual-based model of HLA evolution in the presence of 16 

two mortality-causing pathogens. We demonstrate that it is likely that individual pathogen species 17 

causing high mortality have left recognizable signatures on the HLA genomic region, despite more 18 

than one pathogen being present. Such signatures are likely to exist at the whole-population level, 19 

and involve haplotypic combinations of HLA genes rather than single loci.   20 

 21 
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Introduction 24 

JBS Haldane’s 1949 paper Disease and Evolution (Haldane 1949) presaged human host-pathogen 25 

coevolution as a field of study (Lederberg 1999).   Haldane noted that the “surprising biochemical 26 

diversity” exhibited by mammalian and avian species is likely a consequence of selection from 27 

pathogens, with: “a particular race of bacteria or virus being adapted to individuals of a certain 28 

range of biochemical constitution”.   By way of example, Haldane pointed out that different human 29 

blood group antigens may have determined the susceptibility of our ancestors to particular strains of 30 

bacteria.  At the conference where he presented this work, Haldane also introduced the hypothesis 31 

that mutations responsible for heritable human blood disorders, such as the thalassaemias, had 32 

spread in certain populations due to the protection they afforded their carriers against death from 33 

malaria.   Few today would dispute any of the arguments in Disease and Evolution, and the malaria 34 

hypothesis has gone on to be confirmed as an example of selection from a specific pathogen 35 

leaving a detectable signature on the human genome (Allison 1954; Siniscalco et al. 1961; Flint et 36 

al. 1986; Hill et al. 1991). 37 

While the list of malaria resistance loci continues to grow (Kwiatkowski 2005; Band et al. 38 

2015), examples of genetic changes as a consequence of selection from any other known human 39 

pathogen are few.  In a review of the host genetics of human infection (Hill 2006), Adrian Hill 40 

highlighted 6 human genes known to have a particularly strong impact on disease susceptibility.  Of 41 

these, three are malaria resistance loci.  The fourth is the prion protein gene, for which the selective 42 

agent is a special case of human infectious disease, consisting as it does of transmissible prion 43 

proteins themselves. The fifth is a deletion in the gene for C-C chemokine receptor type 5 44 

(CCR5Δ32), which offers near complete resistance to HIV infection in the homozygous state (Dean 45 

et al. 1996; Huang et al. 1996; Liu et al. 1996). However, the high frequency of this mutation in 46 

Northern European populations cannot be attributed to selection from HIV since it is such a recent 47 

addition to the set of human pathogens.  Smallpox and the plague have been suggested as 48 

potential selective pressures to account for the distribution of CCR5Δ32, with smallpox shown to be 49 

a theoretically more plausible candidate (Galvani and Slatkin 2003), but the cases for either are 50 



weak (Hummel et al. 2005; Hedrick and Verrelli 2006), and others have suggested that CCR5 51 

diversity may not be a consequence of any recent selection (Sabeti et al. 2005).  The sixth gene 52 

highlighted by Hill is that encoding fucosyltransferase 2. A  loss-of-function mutation in this gene 53 

affords resistance to Norwalk-like virus (Lindesmith et al. 2003; Thorven et al. 2005), and other 54 

diarrhoea-causing pathogens (Imbert-Marcille et al. 2014) - but it is not clear to what extent 55 

selection from these pathogens (or perhaps a combination of these and other infectious diseases) 56 

have determined the frequency of the mutation worldwide.  57 

Haldane himself foresaw the difficulty of detecting human biochemical adaptations to 58 

pathogens, due to the transient nature of the advantage in most cases:  “a disease such as 59 

diphtheria or tuberculosis is caused by a number of biochemically different races of pathogens … in 60 

a different epidemic a different a different type [of host] would be affected” (Haldane 1949).   Our 61 

best-understood examples of Plasmodium falciparum malaria resistance mutations 62 

(haemoglobinopathies, glucose-6 phosphate dehydrogenase deficiency, southeast Asian 63 

ovalocytosis) all cause far reaching changes to red blood cell physiology, changes which are likely 64 

to affect multiple, even all, strains of P. falciparum. Were it not for the fact that these mutations all 65 

cause severe physiological problems in the homozygous state, and are thus under balancing 66 

selection, we may never have detected them as resistance mutations at all since they might have 67 

become fixed in an ancestral human population.   68 

 69 

One set of diverse human proteins which are prime candidates for Haldane’s notion of biochemical, 70 

pathogen strain specific adaptation are the human leukocyte antigens (HLAs).  Class I and class II 71 

HLA molecules are responsible for the display of intracellularly derived peptide antigens (class I) 72 

and extracellularly derived peptide antigens (class II) so that they can be recognised by T cell 73 

receptors.  The nature of the HLA molecule binding cleft determines the type of peptide which can 74 

be presented, creating a potential recognition bottleneck in human adaptive immunity.  Hundreds of 75 

different alleles have been reported at the 3 class I loci and the 3 paired class II loci responsible for 76 

peptide display (HLA-A, B and C in class I and  HLA-DRA and HLA-DRB, HLA-DPA and HLA-DPB 77 



and HLADQA and HLADQB in class II)  - polymorphism which has been attributed to selection, most 78 

likely from pathogens (Doherty and Zinkernagel 1975; Hughes and Nei 1988; Parham et al. 1989; 79 

Takahata and Nei 1990; Hedrick 2002; Borghans et al. 2004; De Boer et al. 2004; Prugnolle et al. 80 

2005; Lenz 2011; Eizaguirre et al. 2012a; Eizaguirre et al. 2012b).  It has in particular been argued 81 

that host-pathogen coevolution as opposed to heterozygote advantage is necessary to maintain 82 

such levels of polymorphism (Borghans et al. 2004).   Specific HLA genotypes have been shown to 83 

confer susceptibility or resistance to different infectious disease outcomes (e.g. Hill et al. 1991; 84 

Kaslow et al. 1996; Jeffery et al. 1999; Dunstan et al. 2014).  A recent study comparing the genetic 85 

diversity of an indigenous North American population before and after the arrival of European 86 

invaders (and their pathogens), found a dramatic change in the frequency of a HLA-DQA1 allele 87 

(Lindo et al. 2016), which might reflect that population’s changing experience of infectious disease.   88 

Population-level evolution of the pathogen HIV has been shown to occur in response to the 89 

immunological selection pressure generated by the presence of particular HLA types (Cotton et al, 90 

2014; Payne et al. 2014), emphasising the co evolutionary potential of pathogen/HLA interactions.  91 

Although, as previously noted, HIV is unlikely to have had enough time to drive substantial changes 92 

in human allele frequencies, the relationship between HIV and HLA is worth considering in more 93 

detail, since it is the best studied pathogen-HLA interaction to date, with data drawn from cohorts of 94 

thousands of patients (reviewed in McLaren and Carrington, 2015).  Certain HLA alleles are 95 

associated with better viral control and a slower progression to AIDS (e.g. HLA B*57 and HLA B*27 96 

alleles), whilst others are associated with faster progression to AIDS (e.g. some HLA B*35 alleles).   97 

As noted by McLaren and Carrington, many individuals with a protective HLA type progress to AIDS 98 

at a similar rate to those without, thus there is no HLA allele which guarantees control of HIV.  99 

However, even though protection is not consistent across individuals, a chimpanzee MHC–B 100 

variant, Patr-B*06:03, with structural similarities to HLA B*57, is associated with lower SIV loads in 101 

chimpanzee faecal samples (Wroblewski et al 2015) – demonstrating that aspects of the way 102 

HLA/MHC molecules help combat retroviruses may be consistent across species. Recent studies 103 

have been able to identify the amino acids present at specific sites in HLA binding grooves which 104 



account for protective effects previously identified at the allelic level – underscoring that the specific 105 

properties of the peptides that HLA molecules are capable of presenting to T cells has a critical 106 

impact on disease progression (The International HIV Controllers Study, 2010; McLaren et al 2015). 107 

However, the expression level of HLA-C has also been shown to have a protective effect, with 108 

higher expression of HLA-C associated with better viral control (Thomas et al, 2009; Kulkarni et al 109 

2011; Apps et al 2013). Whether the protective effect of HLA-C expression level is due to better 110 

presentation to T cells, or to interactions with other elements of the immune system (e.g. Natural 111 

Killer cells) is unknown.  112 

We have previously shown that a multi-strain pathogen and multi-gene host HLA haplotypes have 113 

the potential to display complex co-evolutionary cycling (Penman et al. 2013). Within the framework 114 

we proposed, at any given time only a small subset of host homozygotes would be susceptible to 115 

severe infection. The nature of that subset depended on the state of the pathogen population. 116 

However, this generated enough selection pressure to drive long lasting non-overlapping 117 

associations between alleles at separate HLA loci, even in the presence of recombination between 118 

those loci.  We proposed that such non-overlapping associations could be a signature of pathogen 119 

selection and could even be harnessed as a means to functionally classify different HLAs.  Our 120 

original model, however, included only a single pathogen species. HLAs must be under selection 121 

from multiple pathogens simultaneously.   Here we simulate the co-evolution of two linked HLA loci 122 

with two independently circulating pathogens, where antigens from either pathogen can be 123 

displayed at either HLA locus.  We show that, despite conflicting selection from a second pathogen, 124 

a pathogen that causes consistent, high mortality could theoretically leave a strong signature in HLA 125 

population genetics.  126 

 127 

Methods 128 

We adopted an individual-based simulation approach, extending that described in (Penman et al. 129 

2013).    We considered 10 different HLA binding types (represented by the digits 1-10), which could 130 



be found on HLA molecules encoded by either of 2 linked HLA loci in the host genome.  There was 131 

no restriction on which binding properties could be present at which HLA locus, which meant there 132 

were 100 possible HLA haplotypic combinations ([1,1];  [1,2]; [1,3] ….  [10,10]) in our simulated 133 

population, arranged into diploid host genotypes. Once a host had been infected with a pathogen 134 

expressing a peptide which could be displayed by an HLA molecule encoded in that host’s genome, 135 

we assumed that host to have lifelong immunity against infection with any other pathogen of that 136 

species expressing that peptide.  137 

We assumed that two pathogen species were present (1 and 2).  Each species possessed a 138 

number of antigenically variant peptides, expressed at two different sites per pathogen, and defined 139 

by the HLAs which could bind them (i.e. a digit between 1 and 10).  We allowed 4 variants per 140 

antigenic site on each pathogen, thus 16 possible strains of each pathogen (Kij). The distribution of 141 

variant peptides which could be displayed by particular HLA binding types for each antigenic site on 142 

each pathogen is given in table 1. A visualization of the relationship between host HLA genotype 143 

and pathogen strains is provided in Figure 1.    144 

HLA binding types 1 and 6 only present motifs from pathogen 1. HLA binding types 5 and 10 145 

only present motifs from pathogen 2.  All other HLA binding types can present motifs from either 146 

pathogen.   We assumed no cross immunity between the pathogens, thus whatever peptide from 147 

pathogen Kij happened to be displayed by HLA i  would not elicit any memory immune response 148 

against a peptide from pathogen Lij that could also be displayed by HLA i.   149 

 150 

Each host in the population was represented by a vector containing the host’s age, sex, diploid HLA 151 

genotype, infection status and immunological status.  A maximum of 2000 hosts could exist in the 152 

population, but this maximum did not have to be present at every time step.  If, in a given 153 

generation, the population size ever dropped down to or below an arbitrarily chosen threshold (for 154 

the simulations shown here, 20 individuals), the population was deemed to have failed and that 155 

particular simulation ceased. 156 



A single time step of our simulation represented one day.  During each day, every host could (with 157 

probabilities defined in Table 2) become infected; recover from infection, or die from infection or die 158 

by random chance. Every time step, adult (>5400 days (~15 years) old) female hosts could also 159 

reproduce with a given probability, choosing a male partner at random, and generating an offspring 160 

genotype via Mendelian inheritance. For the simulations shown here, the age of reproducing males 161 

was not restricted to >15 years, but applying such a restriction makes no difference to the 162 

conclusions. An individual with the offspring genotype was then added to the population. If the 163 

population happened to be at its maximum possible size of 2000 then the new individual replaced a 164 

randomly chosen existing member of the population. 165 

Every time a new infection occurred, one of that pathogen’s antigenic sites could mutate so 166 

that it expressed one of the other peptides possible at that site with probability m. Every time hosts 167 

reproduced, recombination could occur between the two HLA loci, (in either maternal or paternal 168 

genotype) with probability r. For simplicity, our model does not explicitly simulate HLA mutation: 169 

over the timescale simulated, in a small population, frequency changes of existing HLA variation are 170 

likely to be more important than the spontaneous emergence of new HLA variants.  However, each 171 

time step there was a fixed probability (α) of a new host individual, of randomly generated diploid 172 

genotype selected from HLA genes 1-10, replacing a randomly chosen existing member of the 173 

population. This represents migration into the population and ensured that the stochastic loss from 174 

the population of one of the pathogen species, or of a particular HLA binding specificity, was not 175 

permanent.    176 

 177 

Parameter values and starting conditions 178 

Our purpose was to determine whether it is possible that a specific pathogen species should leave a 179 

population genetic signature in the HLA region, despite conflicting selection pressures from other 180 

pathogens.  Our analyses therefore focused on varying the probabilities of death from infection 181 

associated with the two pathogens (θ1 and θ2).  We varied θ1 between 0 and 0.0001 per day, and θ2 182 

between 0 and 0.002 per day.  For most of our simulations, θ1 and θ2 applied to hosts of any age, 183 



but we also explored whether our conclusions would change if infectious disease mortality only 184 

affected young children. To achieve this we carried out separate simulations where we only applied 185 

probabilities θ1 and θ2 of dying whilst infected to those < 1800 days (~5 years) old.  186 

For pathogen 1, the transmission parameter and the probability of recovering from infection 187 

during any given day were always β1= 0.3 and  σ1 = 0.02.   When pathogen 2 was continuously 188 

present, we also applied β2 = 0.3 and  σ2 = 0.02. However, we additionally sought to investigate the 189 

consequences of the periodic loss of pathogen 2 from the population. To generate this behaviour 190 

we applied a higher transmission parameter (β2= 0.4) and a higher probability of recovering from 191 

infection on any given day (σ2 = 0.1).   192 

Rates of recombination in the HLA region appear to vary considerably (Carrington 1999, 193 

Cullen et al 2002). The results in the main text use a value of r =0, thus are more likely to apply to 194 

HLA loci that are physically very close, but we explore the effects of two higher recombination 195 

probabilities (r=0.01 and a very high probability of r=0.05) in the supplementary material.   196 

 197 

All other parameters were fixed at values chosen to be plausible for human populations.  The 198 

probability of dying from non-infectious disease causes on any given day (µ) was = 0.00007, and 199 

the probability of a female over the age of 5400 days (~15 years) giving birth on any given day (ϖ) 200 

was = 0.0015.  These values ensured that the population exhibited a plausible age distribution for a 201 

human population in the absence of modern medicine: pyramidal in shape, with the greatest 202 

numbers of individuals in the youngest age groups and ~5% or less of the population over the age 203 

of 40 years (see figure S1).  The probability of a new individual of a random genotype entering the 204 

population during any day was set at α = 0.000278, equivalent to assuming a migrant might arrive 205 

on average once every 3600 days,  and the mutation probability of the pathogen was set at m= 206 

0.00001 per new infection.  207 

 208 



At the start of each simulation, 1000 hosts were present, with ages randomly assigned between 1 209 

and 12600 days (~35 years).  90% of the HLA haplotypes in the population were of the combination 210 

[3,3], intended to capture the fact that a human population might be dominated by a relatively small 211 

number of founding HLA haplotypes. The remaining 10% of HLA haplotypes present were 212 

generated at random from the 10 possible HLA binding types.   No hosts had any preexisting 213 

immunity to either pathogen at the start of the simulation.  To seed infections, 10 hosts were chosen 214 

at random to be infected with randomly generated strains of pathogen 1, and 10 with randomly 215 

generated strains of pathogen 2.  The simulations ran for 270000 days (~740 years).  For each 216 

parameter combination presented in the main text or the supplementary material we carried out 300 217 

simulations. 218 

 219 

Results 220 

i. High mortality from a single pathogen selects for host HLA haplotypes which 221 

recognise as many variants as possible from a single antigenic site on that 222 

pathogen. 223 

We first considered the behaviour of the model when just one of the two pathogens caused 224 

mortality.   We observed that when the mortality caused by pathogen K is very high, the two 225 

most frequent host haplotypes in the population after 740 years of coevolution contained within 226 

them exactly the 4 HLA binding types required to display all of the possible variants present at 227 

one of the antigenic loci belonging to pathogen K.  Figure 2 displays the results of a simulation 228 

exhibiting such adaptation as a consequence of high levels of mortality from pathogen 2.  [5,4] 229 

and [7,3] dominate the population, and between them could present any peptide that could be 230 

displayed at locus 1 of pathogen 2. 231 

As noted in the Methods, we started each simulation with the population containing a high 232 

frequency of a single haplotype. Figure 2C shows that the high level of homozygosity (Hobs) 233 

associated with this state declines as pathogen selection begins, but as adaptation to pathogen 234 



2 emerges, homozygosity rises once more – reflecting the high frequency of only a few HLA 235 

haplotypes in the adapted population.  236 

 237 

Taking the behaviour shown in figure 2 as the most extreme form of population genetic 238 

adaptation possible, we defined 3 levels of population genetic adaptation to a multi-strain 239 

pathogen, which should occur at different pathogen mortality rates: 240 

(i) weak adaptation to pathogen K : one of the two most frequent HLA haplotypes in the 241 

population can display one of pathogen K’s unique motifs.  242 

(ii) moderate adaption to pathogen K : the two most frequent HLA haplotypes in the host 243 

population contain exactly the 4 HLA types required to display all of the possible variants 244 

present at one of pathogen K’s two antigenic loci, and the combined frequency of those 245 

two haplotypes is <=50% 246 

(iii) strong adaptation to pathogen K : the two most frequent haplotypes in the population 247 

contain exactly the 4 HLA types required to display all of the possible variants present at 248 

one of pathogen K’s two antigenic loci, and the combined frequency of those two 249 

haplotypes is >50%.  This is the case represented in figure 2. 250 

 251 

ii. A high mortality pathogen can leave a strong genetic signature despite conflicting 252 

selection from  a second pathogen   253 

Figure 3 illustrates the population genetic patterns observed when both pathogens 1 and 2 cause 254 

mortality, and are continuously present in the population.  The strength of adaptation to pathogen 2 255 

increases with the probability of mortality whilst infected with pathogen 2 (indicated on the x axis in 256 

each graph).   257 

Adaptation to pathogen 2 at high levels of mortality occurs despite the presence of conflicting 258 

selection from pathogen 1 (figures 3B and 3C).  Mortality from pathogen 1 at a low level (figure 3B) 259 

barely disrupts adaptation to pathogen 2 at all, despite the greater pathogen burden on the 260 



population evidenced by the reduction in population survival. A higher level of pathogen 1 mortality 261 

(figure 3C) is associated with some reductions in the probability of observing adaptation to pathogen 262 

2, but so long as pathogen 2 has the greater probability of causing mortality (bars to the right of the 263 

red lines in figure 3),  there is a greater probability that the population will display a form of 264 

adaptation to pathogen 2 than pathogen 1 (54% adaptation to pathogen 2 , 27% adaptation to 265 

pathogen 1 at  θ2 =0.00015; 47% adaptation to pathogen 2 , 37% adaptation to pathogen 1 at  θ2 266 

=0.0002).  267 

When both pathogens 1 and 2 cause a high level of mortality, we might have expected the 268 

conflicting selection pressures to lead to many simulated populations displaying no obvious 269 

adaptation.  However, as seen in figure 3C, where both θ1 =0.0001 and θ2 =0.0001 (i.e. the 270 

pathogens have identical mortality probabilities), 89% of simulations display adaptation to one or 271 

other pathogen. At this level of pathogen 2 mortality, adding mortality from pathogen 1 simply 272 

increases the probability of observing any population adaptation at all. When θ1 =0 and θ2 =0.0001, 273 

52% of simulations display no adaptation (figure 3A); when θ1 =0.00005 and θ2 =0.0001 , 47% of 274 

simulations display no adaptation (figure 3B), but when θ1 =0.0001 and θ2 =0.0001 , only 11% of 275 

simulations display no adaptation (figure 3C).  276 

 277 

The patterns just described are largely unchanged by the addition of recombination (figures S2 and 278 

S3).  However, the probability of observing strong adaptation to pathogen 2 in the presence of high 279 

mortality from pathogen 1 is reduced at  5% recombination between the HLA loci (figure S3C). Our 280 

definition of strong population adaptation involves the top two HLA haplotypes in the population 281 

having a combined frequency >50%. Recombination breaks up haplotypic associations, thus it is 282 

entirely reasonable that high levels of recombination should make strong adaptation less likely.  283 

Nevertheless, adaptation to pathogen 2 itself (when weak, moderate and strong forms are taken 284 

together) increases with increasing pathogen 2 mortality in our simulations at 5% recombination 285 

(figure S3C), despite the conflicting selection from pathogen 1.     286 



 287 

When we limited infectious disease mortality to individuals < 5 years of age, we obtained similar 288 

patterns at higher values of θ1 and θ2. (figure S4). To achieve a selective pressure capable of 289 

shaping the population’s HLA distribution when individuals are only vulnerable to infectious disease 290 

mortality for a short period of time requires higher individual probabilities of death from infection 291 

within that window of vulnerability. 292 

 293 

iii. High mortality pathogens are less likely to leave a strong genetic signature if their 294 

presence in the population is not continuous  295 

If we allow pathogen 2 to have a faster recovery rate and a higher transmission probability we can 296 

generate scenarios where pathogen 2 can become lost from the population due to burning through 297 

its available susceptible hosts.  Following such stochastic loss, pathogen 2 can be re introduced by 298 

an infected host arriving in the host as a random introduction.  As shown in figure 4, weak, 299 

moderate or strong adaptation to an intermittently present pathogen 2 can still be observed if 300 

pathogen 2 causes mortality. However, the greater the mortality caused by the continuously present 301 

pathogen 1, the more likely we are to observe adaptation to pathogen 1 at the expense of 302 

adaptation to pathogen 2, and the less likely we are to observe moderate or strong adaptation to 303 

pathogen 2 (compare panels 4A, 4B and 4C). A low level of mortality from the continuously present 304 

pathogen 1 (θ1 = 0.0005) causes more loss of adaptation to the intermittently present pathogen 2 305 

than when pathogen 2 was continuously present (compare figures 4B and 3B).  306 

    307 

In figure 4, we allowed the intermittently present pathogen 2 much higher mortality rates than the 308 

continuously present pathogen 1, so as to maximise the selective pressure caused by pathogen 2. 309 

As shown in the left hand panels in figure 4, at the highest mortality probabilities, the pathogen load 310 

approaches that at which most populations do not survive. Interestingly, however, increasing the 311 

probability of death from infection with pathogen 2 seems to have little impact on the probability of 312 



observing a population specifically adapted to pathogen 2 (compare the left to right trends within the 313 

graphs in figure 4 with the graphs in figure 3).   It may be that for mortality-causing pathogens which 314 

are only present intermittently, the frequency of the exposure of the population to the pathogen is 315 

more important than the chance of dying whilst infected in determining whether or not the population 316 

exhibits population genetic adaptation to that pathogen.  Additionally, too high a mortality rate for 317 

pathogen 2 may contribute to its rapid loss from the population during any individual epidemic, 318 

which could also reduce its ability to leave a population genetic signature.  319 

 320 

When we allowed recombination to occur between the HLA loci, we observed a clear reduction in 321 

the probability of observing strong population adaptation to the intermittently present pathogen 322 

(pathogen 2) [figures S5 and S6]. At 5% recombination between the loci we never observed strong 323 

adaptation to pathogen 2 (figure S6), although weak and moderate adaptation was still possible.  As 324 

noted previously, this effect is unsurprising, since our definition of strong population adaptation 325 

involves >50% of the HLA haplotypes in the population being adapted to the pathogen in question.  326 

If pathogen 2 is only intermittently present, every time it is absent from the population, 327 

recombination will act unchecked to break up the haplotypic combinations that are specifically 328 

adapted to pathogen 2 – thus maintaining combined frequencies of such haplotypes >50% is 329 

unlikely.  330 

 331 

Discussion 332 

Our simulations demonstrate that individual high-mortality pathogens have the potential to generate 333 

specific signatures amongst HLA genes, despite conflicting selection from other mortality-causing 334 

pathogens. These signatures take the form of population-level HLA haplotype frequency patterns.   335 

The most important implications of our two-pathogen model can be summarized as follows:    336 

(i) The greater the overall pathogen burden, the more likely a population is to display 337 

specific adaptation to any pathogen. 338 



(ii) For continuously-present pathogens, the higher the pathogen mortality, the more likely 339 

the pathogen is to leave a signature. 340 

(iii) Population genetic signatures of adaptation to intermittently-present pathogens can be 341 

readily disrupted by selection from continuously present pathogens, and the lethality of 342 

an intermittently present pathogen per se is not a predictor of whether adaptation will 343 

occur.   344 

Pathogens which are likely to have caused high levels of mortality for continuous periods in the 345 

history of various human populations include Plasmodium falciparum, Leishmania spp. 346 

Mycobacterium tuberculosis, Streptococcus pneumoniae, Treponema pallidum, Poliovirus, Smallpox 347 

Virus and Yellow Fever virus.  Our simulations suggest that pathogens such as these might be more 348 

likely to have determined the array of HLA haplotypes that successfully reached high frequencies in 349 

affected populations than characteristically intermittent pathogens such as Bacillus anthracis, 350 

Yersinia pestis or Rickettsia spp.  We demonstrated that the mortality rate of an intermittently 351 

present pathogen has little effect on the probability of observing adaptation to that pathogen, and 352 

speculated that the frequency of introduction of intermittently present pathogens may be more 353 

important. However, to make any prediction of the frequency of introduction and/or duration of 354 

epidemics necessary for any given intermittent pathogen to have left an HLA signature will require 355 

additional theoretical work, as well as improved understanding of the strain diversity present in the 356 

pathogen species of interest.  357 

 358 

Although the population genetic signatures of pathogen selection we have identified take the form of 359 

HLA haplotype frequency patterns, our model makes no explicit assumption that selection acts at 360 

the allelic or haplotypic level.   However, we do assume that the effects of being able to express 361 

different HLA molecules combine additively. This means that it is always advantageous to maximize 362 

the diversity of HLA recognition types present in a host genome, and this in turn generates a 363 

specific form of selection at the haplotypic level, for only certain combinations of haplotypes 364 

maximize HLA recognition diversity when they coexist.  Maximising recognition diversity certainly 365 



seems likely to be a major factor in determining the evolution of HLA alleles and haplotypes – but it 366 

is possible that HLA alleles interact with one another in non-additive ways too. The most obvious 367 

ways in which this could occur are (i)  if HLA expression level is important (as for HIV and HLA-C), 368 

or (ii) if HLA alleles differ in the breadth of types of peptide that they can display (i.e. in their binding 369 

promiscuity), which certainly affects MHC based infectious disease susceptibility in chickens 370 

(Chappell et al, 2015), and which is also linked to expression level of the MHC/HLA molecule in 371 

question (Chappell et al, 2015).    The type of population genetic pattern which may result from 372 

pathogen selection where HLA expression level or binding promiscuity (or both) is crucial is beyond 373 

the scope of our present model, and allowing for such effects in future models is a priority.   374 

 375 

Most pathogens possess greater antigenic diversity than that represented in our model, and 376 

humans certainly possess greater HLA diversity. Furthermore, our definitions of “weak”, “moderate” 377 

and “strong” patterns of selection rely on our complete knowledge of the modelled system and 378 

which antigenic variants are expressed by which pathogens.  These definitions are therefore not 379 

intended to be applied directly to human populations (where such complete knowledge is beyond 380 

our current understanding), but rather to illustrate the principle that the highest frequency HLA 381 

haplotypes present in a given human population might  represent  “moderate” or “strong” population 382 

genetic signatures of specific pathogens. In other words those haplotypes might, between them, 383 

maximize the capacity of the human immune system to recognize the antigenic diversity present at 384 

just one variable site of a single pathogen species, despite the fact that HLA loci are under selection 385 

from multiple pathogen species.  We propose that it is worth considering which of the mortality-386 

causing pathogens that have coexisted with particular populations for a long time could be 387 

responsible for the elevation of particular combinations of HLA haplotypes.   An additional important 388 

principle to emerge from our model is that selection from identical pathogens could still result in 389 

completely different suites of HLA haplotypes reaching high frequency in different populations, 390 

depending on the antigenic site which happened to become immunodominant  (i.e. the antigenic 391 

site that population’s HLAs evolved to target).    392 



 393 

Will it ever be feasible to measure the degree to which HLA recognition capacity in a population 394 

prioritises the variants of a specific pathogen antigen?  The immune epitope database (Vita et al. 395 

2015) is an invaluable resource, collating our current knowledge of antibody and T cell epitopes. It 396 

is, however, limited by the experiments which have so far been carried out, so does not represent 397 

an unbiased sampling of epitopes that could be recognized.  However, as epitope prediction 398 

continues to improve for different MHC molecules, and as whole genome datasets become 399 

available for more and more pathogens, it may become possible to look for correlations between the 400 

highest frequency HLA haplotypes in specific populations and their capacity, across multiple HLA 401 

loci, to recognize the variation encoded by candidate antigenic regions in high-mortality pathogen 402 

genomes. If evolutionary HLA-pathogen relationships can be identified in this way, they will help 403 

focus our attention on the most immunogenic elements of those pathogens, which will be of 404 

enormous benefit to ongoing efforts to develop effective treatments and prophylaxis.  405 

 406 

In the introduction we noted that selection from malaria parasites has had the most easily 407 

measurable impact on human genetics.  It is becoming clear, however, that understanding malaria 408 

selection by examining a single locus at a time is insufficient: interactions between protective 409 

mutations at separate loci can cancel out the malaria protective effect of both when they are co-410 

inherited (Williams et al. 2005).  Furthermore, such epistasis may have determined the particular 411 

suites of protective variants that co-exist in given populations (Penman et al. 2009; Penman et al. 412 

2011; Penman et al. 2012).  The simulations we present here demonstrate that these principles 413 

could be usefully applied to understanding human-pathogen coevolution generally: adaptation to a 414 

pathogen can take the form of the specific collection of alleles found across several loci, not the 415 

particular variants found at only a single locus.  416 

In addition to the likely non-additive fitness consequences of particular alleles at different 417 

HLA loci, HLA alleles have been shown to interact epistatically with variants at Killer cell 418 



Immunoglobulin like Receptor loci [KIRs] (Martin et al. 2002; Hiby et al. 2004; Khakoo et al. 2004; 419 

Seich al Basatena et al. 2011). KIRs are Natural Killer Cell receptors which are very likely to be 420 

undergoing co-evolution with pathogens (Parham and Moffett 2013; Carrillo-Bustamante et al. 2013; 421 

Carrillo-Bustamante et al. 2014; Carrillo-Bustamante et al. 2015; Penman et al. 2016), and many 422 

KIRs interact directly with HLA molecules in order to perform their function. The repertoire of KIR 423 

alleles present in a particular population may thus also shape the set of HLA haplotypes that come 424 

to dominate.  Balancing selection for extremely high polymorphism in both HLAs and KIRs is 425 

evident in a detailed study of a West African population (Norman et al. 2013).  Cappittini et al 426 

observed that HLA-A,B haplotypic combinations in an Italian population are configured so that HLA-427 

B alleles which do not serve as KIR ligands are more likely to be found alongside HLA-A alleles 428 

which do serve as KIR ligands – maximizing the chance that at least one of HLA-A or HLA–B in an 429 

individual’s genome should have an interacting KIR (Capittini et al. 2012).  It has also been shown 430 

that class I HLAs tend to exist in haplotypes that either combine HLA-B and -C KIR ligands, or have 431 

HLA B alleles which are able to supply ligands for another Natural Killer Cell receptor, CD94:NKG2A 432 

(Horowitz et al 2016). Such effects will have acted alongside selection from specific pathogens in 433 

determining the HLA patterns that have emerged in individual populations, and incorporating them 434 

in future simulation models will assist in attempts to delineate the population genetic signatures of 435 

both.  436 

 437 

Theoretical work on generalised host-pathogen systems has shown that selection from two 438 

independent pathogens, interacting with two separate host loci, can drive the evolution of “high 439 

complementarity equilibria” whereby the host loci exhibit strong linkage disequilibrium (Kouyos et al. 440 

2009). For that specific type of population genetic patterning to emerge, both pathogens would have 441 

to be present.  Here we have focused on the confounding effects of dual pathogen selection to 442 

show that a single pathogen can still drive population genetic patterning even when a second 443 

pathogen interacts with the same loci. However,  future work should also consider the situation 444 

where a subset of pathogens interact solely with a subset of HLA loci, and other pathogens interact 445 



solely with a different subset – the overarching population genetic rules governing the associations 446 

between different sets of alleles at different HLA loci are likely to be affected by such structuring. 447 

 448 

Conclusion  449 

As Haldane pointed out, surviving infectious disease is on a par with the pressure to find food or 450 

successfully mate in terms of evolutionary significance.  For human-pathogen coevolution, the case 451 

for malaria selection is clear, but we have few other examples of infectious diseases that can be 452 

linked directly to changes in human allele frequencies.  Our simulations suggest that evolutionary 453 

signatures of specific, continuously present, high mortality human pathogens should exist in the 454 

form of particular combinations of HLA haplotypes.  Identifying and understanding such patterns 455 

could ultimately pay dividends as we seek to mitigate or emulate the contributions of different 456 

genotypes to human health.  457 
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Figure legends 678 

Figure 1:  A schematic representation of model assumptions.  As noted in the Methods, we 679 

allowed there to exist 10 HLA types with different binding properties (represented by the numbers 1-680 

10), which could be encoded by genes found at either locus of  a 2 locus HLA haplotype.  Pathogen 681 

species 1 and 2 each possess two antigenic sites (represented here by different colours), at which 682 

antigens containing peptide fragments which could be bound by specific HLA molecules can be 683 

expressed. 4 different antigens can be expressed at each antigenic site (see table 1 for a 684 

description of which antigenic variants are present on which site in which pathogen species).The 685 

combination of HLA binding types which can present peptides from a particular pathogen defines its 686 

strain, e.g. a possible strain of pathogen 1 is [2,8].  As illustrated in this figure, certain HLA 687 

molecules are capable of presenting a peptide from either pathogen 1 or pathogen 2.  Note that this 688 

figure does not display the entire range of possible host or pathogen genotypes.   689 

Figure 2:  Changing frequencies of HLA haplotypes over time, under selection from 690 

pathogen 2. Panel (A) illustrates the frequencies of different HLA haplotypes over the course of a 691 

single simulation, panel (B) illustrates the frequencies of different strains of pathogen 2 during the 692 

same simulation, and panel (C) indicates the proportion of the population which is homozygous for 693 

any HLA haplotype (homozygosity, H), and the ratio of the observed homozygosity in the simulation 694 

(Hobs) to that expected under Hardy Weinberg proportions (Hexp).  Each shade of grey in panels (A) 695 

and (B) represents a different haplotype or pathogen strain. There are too many HLA haplotypes 696 

and pathogen strains to label individually, but 2 host haplotypes have been highlighted in red and 697 

blue. Between them, these haplotypes cover all 4 possible variants at antigenic site 1 of pathogen 2.   698 

Parameter values as follows: r= 0.01, β2= 0.3, σ2 = 0.02, θ1  = 0 and θ2 = 0.002; other parameters 699 

were as detailed in the Methods.    700 

 701 

Figure 3:  The adaptation of populations under continuous selection from pathogens 1 and 2.  702 

The bar chart on the left hand side of each panel illustrates the proportion of simulated populations 703 



surviving, out of 300 simulations at each parameter combination.  The bar chart on the right hand 704 

side of each panel illustrates the proportion of the surviving populations displaying adaptation to one 705 

or other pathogen, or no adaptation signal (see legend, and see text for definition of different types 706 

of adaptation).  Within each graph the mortality caused by pathogen 2 (θ2) increases along the x 707 

axis.  The mortality caused by pathogen 1 is zero in panel A (θ1  = 0),  and increases in value in 708 

panels B and C (B: θ1  = 0.00005, C: θ1  = 0.0001).    Pathogen 2 has a higher probability of causing 709 

death during infection than pathogen 1 (θ2 > θ1) in the regions to the right hand side of the vertical 710 

red line in each panel.   β2= 0.3, σ2 = 0.02 and r=0.  All other parameter values were as detailed in 711 

the Methods. 712 

Figure 4:  The adaptation of populations under continuous selection from pathogen 1 and 713 

intermittent selection from pathogen 2.  This figure uses the same layout as figure 3. Unlike in 714 

figure 3, however, the transmission parameter and recovery rate for pathogen 2 have been given 715 

values that lead to pathogen 2 being lost and re introduced into the population (β2= 0.4 and σ2 =0.1). 716 

The range of mortality rates affecting to those infected with pathogen 2 (θ2) are also higher than in 717 

figure 3, as indicated by the x axis of each graph.  Just as in figure 3, the mortality caused by 718 

pathogen 1 is zero in panel A (θ1  = 0),  and increases in value in panels B and C (B: θ1  = 0.00005, 719 

C: θ1  = 0.0001).   All other parameters are as given in the Methods.  720 

 721 
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Table 1: The antigenic properties of the two pathogens.  We conceptualise pathogen antigenic 723 

variation in terms of which host HLA binding sites are capable of presenting a peptide from any 724 

particular pathogen antigenic site.  As shown in Table 1, for pathogen 1, site i, we assume that there 725 

are 4 possible peptide variants the pathogen can express, which can be displayed by HLA 726 

molecules 1, 2, 3 and 4 respectively. It therefore becomes possible to define a pathogen strain in 727 

terms of which HLA types are capable of displaying the particular motifs found at its two antigenic 728 

sites (e.g. “strain 2,8 of pathogen 1” – which expresses peptides that can be bound by HLA 729 

molecules 2 and 8).  We restrict the number of possible variants at each of the antigenic sites in the 730 

model to 4.  Our model must allow for the possibility that the molecular properties which allow a 731 

pathogen peptide to be displayed by a particular HLA molecule might be shared by peptides from a 732 

different species of pathogen, since the fact that a particular HLA molecule might be involved in 733 

making an effective response to more than one pathogen species is the focus of this investigation.  734 

Thus, as shown in the table, HLA molecule 2 is capable of displaying a peptide from pathogen 1 735 

antigenic site i, and from pathogen 2 antigenic site j. However, crucially, our model does not 736 

assume that these two peptides are identical – merely that they can both be displayed by HLA 737 

molecule 2. An adaptive immune response to a peptide from pathogen 1 displayed by HLA 738 

molecule 2 therefore only confers lifelong protection against infection with other strains of pathogen 739 

1 which display the peptide that can be displayed by HLA molecule 2. HLA molecules 2,3,4,8 and 9 740 

can all display peptides from either pathogen. HLA molecules 1,6,5 and 7 can only display a peptide 741 

from one or other pathogen species (see underlining in the third column).  742 

 743 

Pathogen Antigenic site HLA molecules which can present 

peptides from different variants at this 

site.  

1ij i 1,2,3,4  

j 6,7,8,9 

2ij i 3,4,5,7  

j 2,8,9,10 

 744 
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Table 2:  Different events that could take place within each time step and the probability of 747 

each. 748 

Event within the model Probability Notes 

Any host not already 

infected with pathogen 

Kij, and not already 

immune to either Ki or Kj, 

becomes infected with 

pathogen Kij. 

𝛽𝐾𝐻𝐾𝑖𝑗

𝑁
 

Where 𝐻𝐾𝑖𝑗
 = the total number of hosts that were 

already infected with pathogen Kij as the population 

entered that timestep; N= the total number of hosts 

in the population and βK = a transmission parameter 

such that in a population where no hosts have a 

genetic susceptibility to death from infection the 

basic reproductive number of pathogen K would be 

equal to 
𝛽𝐾

𝜎𝐾
.  

Any host already infected 

with pathogen Kij 

recovers from infection 

with that pathogen. 

σK For simplicity, recovery rate depends only on the 

pathogen species (K), not the strain (ij) 

Any host already infected 

with  pathogen Kij, for 

which none of the HLAs 

in that host’s genome can 

display either i or j, dies 

from the infection 

θk  

Any host dies from a 

random cause 

µ This term represents all other causes of death, 

including death from old age.  

Adult female host 

reproduces 

ϖ If a female host reproduces, a male partner is 

chosen at random and an offspring genotype is 

generated via Mendelian inheritance. A new 

individual with this genotype is then added to the 

population. If the population size is already 2000 

then the new member of the population replaces a 

randomly chosen pre-existing member. 

Migration of a new 

individual into the 

population 

α When this event occurs a single new individual (with 

a randomly generated HLA genotype and infected 

with randomly generated genotypes of both 

pathogens) replaces an existing member of the 

population. 

As a new infection takes 

place, the variant at one 

of the two antigenic sites 

on the pathogen strain in 

question is replaced by a 

randomly chosen variant 

from the four which are 

allowed to exist at that 

site.  

m This simulates pathogen mutation, but implicitly 

assumes that the 4 peptide variants allowed at each 

pathogen antigenic site are limited by fitness 

constraints – so mutation to variants other than 

these is impossible.      



Recombination occurs 

between the two HLA loci 

in the host  

r Each individual’s genotype is explicitly simulated, 

making it possible to simulate recombination 

between maternal and paternal chromosomes in 

either the mother or the father when determining the 

chromosome that gets passed on to an offspring 

genotype during reproduction.       
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