
The Library
Modelling and validation of synthesis of poly lactic acid using an alternative energy source through a continuous reactive extrusion process
Tools
Dubey, Satya, Abhyankar, Hrushikesh, Marchante, Veronica, Brighton, James, Blackburn, Kim, Temple, Clive, Bergmann, Björn, Trinh, Giang and David, Chantal (2016) Modelling and validation of synthesis of poly lactic acid using an alternative energy source through a continuous reactive extrusion process. Polymers, 8 (4). 164. doi:10.3390/polym8040164 ISSN 2073-4360.
|
PDF
WRAP-modelling-validation-synthesis-poly-lactic-Dubey-2017.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (2532Kb) | Preview |
Official URL: http://dx.doi.org/10.3390/polym8040164
Abstract
PLA is one of the most promising bio-compostable and bio-degradable thermoplastic polymers made from renewable sources. PLA is generally produced by ring opening polymerization (ROP) of lactide using the metallic/bimetallic catalyst (Sn, Zn, and Al) or other organic catalysts in a suitable solvent. In this work, reactive extrusion experiments using stannous octoate Sn(Oct)2 and tri-phenyl phosphine (PPh)3 were considered to perform ROP of lactide. Ultrasound energy source was used for activating and/or boosting the polymerization as an alternative energy (AE) source. Ludovic® software, designed for simulation of the extrusion process, had to be modified in order to simulate the reactive extrusion of lactide and for the application of an AE source in an extruder. A mathematical model for the ROP of lactide reaction was developed to estimate the kinetics of the polymerization process. The isothermal curves generated through this model were then used by Ludovic software to simulate the “reactive” extrusion process of ROP of lactide. Results from the experiments and simulations were compared to validate the simulation methodology. It was observed that the application of an AE source boosts the polymerization of lactide monomers. However, it was also observed that the predicted residence time was shorter than the experimental one. There is potentially a case for reducing the residence time distribution (RTD) in Ludovic® due to the ‘liquid’ monomer flow in the extruder. Although this change in parameters resulted in validation of the simulation, it was concluded that further research is needed to validate this assumption. View Full-Text
Item Type: | Journal Article | ||||||
---|---|---|---|---|---|---|---|
Subjects: | Q Science > QD Chemistry T Technology > TP Chemical technology |
||||||
Divisions: | Faculty of Science, Engineering and Medicine > Engineering > WMG (Formerly the Warwick Manufacturing Group) | ||||||
Library of Congress Subject Headings (LCSH): | Polylactic acid -- Synthesis, Biodegradable plastics, Ring-opening polymerization | ||||||
Journal or Publication Title: | Polymers | ||||||
Publisher: | M D P I AG | ||||||
ISSN: | 2073-4360 | ||||||
Official Date: | 22 April 2016 | ||||||
Dates: |
|
||||||
Volume: | 8 | ||||||
Number: | 4 | ||||||
Article Number: | 164 | ||||||
DOI: | 10.3390/polym8040164 | ||||||
Status: | Peer Reviewed | ||||||
Publication Status: | Published | ||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||
Date of first compliant deposit: | 25 August 2017 | ||||||
Date of first compliant Open Access: | 29 August 2017 | ||||||
Funder: | Seventh Framework Programme (European Commission) (FP7) | ||||||
Grant number: | InnoREX project grant number: 309802 |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year