Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/92728

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution-NonCommerical 4.0 (CC BY-NC 4.0) license and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by-nc/4.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
The X-Bolt Dynamic plating System is a new device which aims to reduce the risk of implant cut out in trochanteric hip fractures. Some surgeons have observed increased tip apex distances associated with the X-Bolt.

This is a comparative analysis of the tip apex distance and risk of cut out measured from intraoperative radiographs of patients randomised to either the X-Bolt or Sliding Hip Screw as part of the WHiTE oNE trial (Warwick Hip Trauma Evaluation).

Concerns about minimising the tip apex distance may be justified but do not appear to be clinically important.

Cite this article: Bone Joint Res 2017;6:204–207.

Keywords: Tip-apex distance, Hip fracture, X-Bolt
from the femoral head. The reported incidence of SHS cut-out is variable but most recent studies report failures in up to 5% of cases. In 1995, Baumgaertner et al. described the measurement of tip-apex distance and found that amongst a number of risk factors, a tip-apex distance > 25 mm was most strongly predictive of cut-out.

The X-Bolt Dynamic Hip Plating system (X-Bolt Orthopaedics, Dublin, Ireland) is a device which builds on the SHS and seeks to improve fixation in the femoral head with the aim of reducing the risk of ‘cut-out’. It does this with the use of expanding flanges which engage and compress the surrounding cancellous bone in the femoral head and thereby improve fixation. It is not yet clear if the same biomechanical advantages from a tip-apex distance of less than 25 mm apply to the X-Bolt. However, anecdotally, some surgeons report difficulty with minimising the tip-apex distance when implanting the X-Bolt and find that the device “backs out” as the expanding flanges are deployed. This may lead to an increased incidence of cut-out and implant failure.

In this work we compare the radiological measurements of the tip-apex distance and incidence of cut-out for two groups of patients with unstable trochanteric hip fractures treated with the SHS or X-Bolt as part of the Warwick Hip Trauma Evaluation (WHiTE) One trial.

Patients and Methods

We examined the intra-operative radiographs of participants in the WHiTE One study. WHiTE One was an embedded pilot randomised controlled trial to investigate the clinical effectiveness of the X-Bolt compared with SHS (Depuy Synthes, Warsaw, Indiana) fixation of unstable pertrochanteric hip fractures. Ethical approval was received on 6 November 2012 from the National Research Ethics Service Committee West Midlands – Coventry and Warwickshire (12/WM/0352). The method of Baumgaertner et al. was employed to determine the tip-apex distance which is the sum of two measurements, in millimetres, from the tip of the lag screw to the apex of the femoral head in two orthogonal plain radiographic projections (anteroposterior and lateral). The apex of the femoral head was defined as the point at which a line drawn in the centre of, and parallel to, the femoral neck intersects with the subchondral bone on both the AP and lateral views. To define the boundaries of the nine zones, the femoral head was divided into thirds on both the AP and lateral views. The quality of fracture reduction was judged as good, acceptable, or poor according to the criteria originally described by Baumgaertner et al. We recorded baseline demographic data and the incidence of screw ‘cut-out’ at a median follow-up time of 17 months.

Unpaired t-, Fisher’s exact and chi-squared tests were used for significance testing of the differences between tip-apex distance, lag screw position and quality of reduction in the SHS and X-Bolt groups on a per protocol basis using GraphPad Prism 6.00 for Mac OS X (GraphPad Software Inc., La Jolla, California). Survival analyses were performed to determine the hazard ratio for lag screw cut-out with log rank test of significance between the SHS and X-Bolt groups. A p-value of < 0.05 was considered to be statistically significant.

Results

A total of 93 radiographs (44 X-Bolt and 49 SHS) were available for analysis. The mean age in the X-Bolt group was 83.6 years (range 60 to 96) and 84.8 years (range 63 to 96) in the SHS group. The predominant fracture type was AO 31-A2. In the X-Bolt group there were 40 A2, and 4 A3 type fractures, compared with the SHS group in which there were 41 A2, and 8 A3 fractures.
The majority of the lag screws were implanted in the centre-centre or centre-posterior positions in both the SHS and X-Bolt groups (Fig. 3). There was no significant difference between the proportions in each of the nine zones (Fisher’s exact test p values: Superior anterior/centre/posterior, 1.00/0.34/1.0; Centre anterior/centre/posterior, 0.47/0.84/0.23; inferior anterior/centre/posterior, 0.62/0.06/0.62).

There was no significant difference in the proportion of fractures with good or acceptable reductions between the two groups (SHS 90% versus X-Bolt 91%, p = 0.85, chi-squared test).

The mean tip-apex distance differed significantly between the two groups (Table I). The small number of participants precludes meaningful analysis of the tip-apex distance within each of the nine zones of the femoral head. However, in the centre-centre and centre-posterior positions, where most of the lag screws were positioned, the mean tip-apex distance was 14.6 mm in the SHS group and 17.7 mm in the X-Bolt (p = 0.014) for the centre-posterior position, and 18.3 mm in the SHS group (6%) and 23.1 mm in the X-Bolt group (p = 0.004) for the centre-posterior position.

There were three lag screw cut-outs in the SHS group at seven months, 13 months, and 16 months post-operatively. The tip-apex distances for these failures were 23.3 mm, 16.6 mm, and 16.2 mm, respectively, and all occurred in A2 fracture types. The lag screw positions were centre-posterior, centre-centre, and centre-centre, respectively. The quality of fracture reduction in these failures was acceptable, poor and acceptable, respectively. The survival analyses revealed no significant difference in cut-out (Fig. 4) between the SHS and X-Bolt groups. The hazard ratio for cut-out was 6.87 (95% confidence interval 0.71 to 66.17) at a median follow-up time of 17 months. There were no lag screw cut-outs observed in the X-Bolt group.

Discussion

Our analysis has shown a significantly increased mean tip-apex distance when implanting the X-Bolt compared with the SHS. This difference, although statistically significant, does not appear to be clinically important and has not resulted in an increased incidence of screw cut-out. The increased tip-apex distance seen in the X-Bolt group may be multifactorial. The device is blunt-nosed and cannot advance beyond the reamed tunnel depth, unlike a lag screw, which may be advanced a little further into unreamed bone. Similarly, at the bone compactor step prior to implanting the X-Bolt, if the instrument is not at the tip-apex point when being deployed, this will result in a final X-Bolt position with an increased tip-apex distance. Recently, the manufacturer has updated the design of the bone compactor to help surgeons achieve optimum deep placement.12
The Warwick Hip Trauma Evaluation - an institutional audit to evaluate the management of intertrochanteric hip fractures.

Fig. 4
Kaplan-Meier survival analysis for lag screw cut-out. No significant difference was found between SHS and X-Bolt (log rank test p = 0.09). Hazard ratio = 6.87 (95% CI 0.71, 66.17). The censored observations are shown by the check marks on the solid lines. Dashed lines correspond to the 95% confidence interval.

Baumgaertner et al\(^2\) studied 198 fracture fixations using a variety of angled plates (130°, 135°, 140°, 145°, 150°) where the mean tip-apex distance was 25 mm (9 to 63) and the overall incidence of cut-out at three months (excluding 150° side plates) was 4%. The mean tip-apex distance in those fractures for which cut-out occurred was 38 mm (28 to 48). Most surgeons are guided by Baumgaertner et al\(^2\) seminal paper and now take steps to minimise the tip-apex distance in their intra-operative fixation. Consequently, our cohort of hip fracture patients looks very different from that in Baumgaertner et al’s study, and with a mean overall tip-apex distance of < 20 mm it is likely that the incidence of cut-out will be less than 4%. Indeed, at 12 months’ follow-up we observe 2% cut-out in the SHS group (one out of 49 fixations) versus 0% with the X-Bolt (number needed to treat = 1/absolute risk reduction = 1/0.02 = 50). At this rate, we would require 1228 participants (with 90% power and 5% type I error) to resolve a significant difference between the groups or 608 participants at the 4% level quoted by Baumgaertner et al.\(^2\) The small sample size in this pilot study clearly represents the major limitation of this work. Study clearly represents the major limitation of this work in order to make a comparison or draw conclusions from this observation.

The main findings from this study are that the X-Bolt is a safe device with no increased cut-out when compared with the SHS, despite the observed increase in tip-apex distance with the X-Bolt. Surgeon concerns about minimising the tip-apex distance when implanting the X-Bolt compared with the SHS are justified but do not appear to be clinically important.

References

Funding Statement
This work was supported by a grant from X-Bolt Direct Ltd

© 2017 Fernandez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC), which permits unrestricted use, distribution, and reproduction in any medium, but not for commercial gain, provided the original author and source are credited.