Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Responses of alternating current field measurement (ACFM) to rolling contact fatigue (RCF) cracks in railway rails

Tools
- Tools
+ Tools

Shen, Jialong (2017) Responses of alternating current field measurement (ACFM) to rolling contact fatigue (RCF) cracks in railway rails. PhD thesis, University of Warwick.

[img] PDF
WRAP_Theses_Shen_2017.pdf - Submitted Version - Requires a PDF viewer.

Download (6Mb)
Official URL: http://webcat.warwick.ac.uk/record=b3104498~S15

Request Changes to record.

Abstract

Rolling contact fatigue (RCF) cracks are a widespread problem that impairs the service life of railway rails and wheels, with an associated high cost of labour and capital expenditure for remediation. Severe RCF cracks cause serious safety issues as they can turn down at a larger propagation angle into the rail potentially leading to a rail break. Rail grinding can effectively eliminate RCF cracks if they are detected when they are small enough to be removed. Alternating current field measurement (ACFM) is one of the electromagnetic (EM) techniques that can be used for defect detection and sizing in the rail industry. ACFM has been reported to be more accurate in providing length and depth information than conventional UT for small RCF cracks and is less sensitive to lift-off than eddy current methods.

The aim of the present research is to analyse the response of ACFM signals to single and multiple RCF cracks in railway rails using experimental measurements and FE based modelling tools, focusing on the influences of crack vertical angle and multiple cracks (number, spacing, size, uniformity) on the ACFM signal to improve the accuracy of dimension predictions.

A novel method (using the Bz signal) is proposed to determine the vertical angle of the RCF cracks, which then allows the crack vertical depth to be determined from the pocket length (standard output from ACFM measurements) and therefore the appropriate amount of rail grinding to remove the RCF cracks. It was found that the vertical angle influences the pocket length determined from the measured ΔBxmax/Bx value when the cracks are shallow (vertical angles < 30°), therefore greater accuracy can be obtained when compensating the ΔBxmax/Bx value using the determined vertical angle. It is shown that the variations of crack surface length, crack inner spacing and crack number for multiple cracks also influence the ΔBxmax/Bx values determined for multiple cracks. The influences of asymmetrical crack shapes on crack sizing are discussed, in general it has been found that for accurate sizing of RCF cracks using a single ACFM scan the cracks should be regular, where the assumption of semi ellipse shapes is appropriate.

The methods developed in the project were assessed using calibration samples (machined cracks with different sizes and vertical angles) and rails removed from service containing single and multiple RCF cracks. It was found that the new approach proposed in this work allowed the vertical angle to be predicted well for single and multiple RCF cracks (difference to measurements < 14.3 %). In addition the error in pocket length prediction is greatly decreased when using the sizing method including compensation determined from the crack vertical angle.

Item Type: Thesis (PhD)
Subjects: T Technology > TF Railroad engineering and operation
Library of Congress Subject Headings (LCSH): Railroad rails -- Defects, Materials -- Fatigue, Rolling contact, Electromagnetic testing
Official Date: January 2017
Dates:
DateEvent
January 2017Submitted
Institution: University of Warwick
Theses Department: Warwick Manufacturing Group
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Davis, Claire ; Zhou, Lei (Researcher in engineering)
Sponsors: China Scholarship Council (CSC)
Format of File: pdf
Extent: xviii, 151 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us