Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Mechanistic mathematical models for the design of synthetic biological systems : DNA recombination, recombinase-based temporal logic gates and antibiotic production.

Tools
- Tools
+ Tools

Bowyer, Jack E. (2018) Mechanistic mathematical models for the design of synthetic biological systems : DNA recombination, recombinase-based temporal logic gates and antibiotic production. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Bowyer_2018.pdf - Submitted Version - Requires a PDF viewer.

Download (5Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3110728~S15

Request Changes to record.

Abstract

Synthetic biology is the design and implementation of novel biological devices via the application of engineering principles to biological systems research. Mathematical modelling is an invaluable tool in developing our understanding of biological system dynamics and characterising small parts and circuits for the assembly of higher-level systems.

In this thesis, mathematical modelling approaches are applied to three biological circuits of interest. A novel mechanistic model of the DNA recombination reactions comprising a genetic switch reveals the input criteria and operational specifications required of a digital data storage module. Specific layering of the components comprising recombinase-based genetic switches can provide cellular Boolean logic operations. A novel mechanistic model of a two-input temporal logic gate is able to simulate and predict in vivo dynamical responses captured by a large experimental dataset. Experimental implementation of recombinase-based circuitry is unpredictable and can lead to lengthy development times, providing clear evidence of the advantages of utilising mathematical models in synthetic biology.

Antibiotic resistance has become one of the most prominent challenges facing medicine today, placing immense importance on the characterisation of new natural products. The rst detailed mathematical model of the methylenomycin A producing gene cluster in the bacterium Streptomyces coelicolor is developed through the application of model selection to a large set of candidate system architectures. Mathematical models presented in this thesis can be adapted and expanded to suit many different experimental conditions and system responses, facilitating the design of novel synthetic biological circuitry

Item Type: Thesis (PhD)
Subjects: Q Science > QH Natural history > QH301 Biology
Library of Congress Subject Headings (LCSH): Synthetic biology, Recombinant DNA -- Mathematical models, Streptomyces coelicolor, Drug resistance in microorganisms
Official Date: January 2018
Dates:
DateEvent
January 2018UNSPECIFIED
Institution: University of Warwick
Theses Department: School of Engineering
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Bates, Declan
Sponsors: Engineering and Physical Sciences Research Council
Extent: viii, 180 leaves : illustrations, charts.
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us