

warwick.ac.uk/lib-publications

Original citation:
Reguly, Istvan Zoltan, Mudalige, Gihan R. and Giles, Mike. (2017) Loop tiling in large-scale
stencil codes at run-time with OPS. IEEE Transactions on Parallel and Distributed Systems .

Permanent WRAP URL:
http://wrap.warwick.ac.uk/95559

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/95559
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 1

Loop Tiling in Large-Scale Stencil Codes at
Run-time with OPS

István Z. Reguly, Member, IEEE, Gihan R. Mudalige and Michael B. Giles

Abstract—The key common bottleneck in most stencil codes is data movement, and prior research has shown that improving data
locality through optimisations that optimise across loops do particularly well. However, in many large PDE applications it is not possible
to apply such optimisations through compilers because there are many options, execution paths and data per grid point, many
dependent on run-time parameters, and the code is distributed across different compilation units. In this paper, we adapt the data
locality improving optimisation called tiling for use in large OPS applications both in shared-memory and distributed-memory systems,
relying on run-time analysis and delayed execution. We evaluate our approach on a number of applications, observing speedups of 2×
on the Cloverleaf 2D/3D proxy applications, which contain 83(2D)/141(3D) loops, 3.5× on the linear solver TeaLeaf, and 1.7× on the
compressible Navier-Stokes solver OpenSBLI. We demonstrate strong and weak scalability on up to 4608 cores of CINECA’s Marconi
supercomputer. We also evaluate our algorithms on Intel’s Knights Landing, demonstrating maintained throughput as the problem size
grows beyond 16GB, and we do scaling studies up to 8704 cores. The approach is generally applicable to any stencil DSL that
provides per loop nest data access information.

Index Terms—DSL, Tiling, Cache Blocking, Memory Locality, OPS, Stencil, Structured Mesh
F

1 INTRODUCTION

MODERN architectures now include ever-larger on-chip
caches to help exploit spatial and temporal locality in

memory accesses: latency and energy benefits of accessing
data from cache can be up to 10x compared to accessing
it with a load from off-chip memory. Unfortunately, most
scientific simulations are structured in a way that limits
locality: the code is structured as a sequence of computa-
tions, each streaming a number of data arrays from memory,
performing a number of operations on each data element,
then streaming the resulting arrays back to memory.

Improving memory locality is an area of intense research,
and stencil codes have long been a target, given their regular
memory access patterns and (mostly) affine loop structures.
In stencil codes, we iterate through a 1/2/3 (or higher)
dimensional grid, and perform computations given data on
the current and adjacent grid points - the adjacency pattern
is called the stencil. In a single loop nest (one sweep over the
domain) there is already potential for data reuse, given the
stencils used (e.g. along the contiguous dimension), which
can be further improved using loop blocking [1] - this is
standard practice in modern compilers.

Loop fusion [2] merges multiple subsequent loop nests
into a single loop nest, making data reuse possible on a
larger scale - across loop nests. Fusion is easy to do when
loop bounds of subsequent loop nests align, and data depen-
dencies are trivial. There are many examples of loop fusion,
demonstrating its importance [3]. Loop fusion in the pres-
ence of non-trivial stencils (loop nest reading data generated
by a previous loop nest with a multi-point stencil) is much
more difficult because loops have to be shifted depending

• I.Z. Reguly is with PPCU ITK, Budapest, Hungary. Email: reg-
uly.istvan@itk.ppke.hu

• G.R. Mudalige is with Department of Computer Science, University of
Warwick, UK. Email: g.mudalige@warwick.ac.uk

• M.B. Giles is with the Maths Institute, University of Oxford, UK. Email:
mike.giles@maths.ox.ac.uk

Manuscript received XXX

on the stencil pattern, leading to wavefront schemes.
There is a large body of research on the combination of

fusion and loop schedule optimisations [4], [5], [6]: tech-
niques that extend loop blocking to work across subsequent
loop nests, generally called tiling. Tiling carries out depen-
dency analysis similar to what is required for loop fusion,
but instead of fusing the bodies of subsequent loops, it
forms small blocks in each loop nest (fitting in the cache).
Tiling achieves memory locality by executing the same
set of blocks in subsequent loops, formed to satisfy data
dependencies, then moves on to another set of blocks, etc.
There is a well-established framework for loop scheduling
transformations: the polyhedral framework.

Research into polyhedral compilers has laid a strong the-
oretical and practical foundation for cache blocking tiling,
yet their use is limited by the fact that they apply compile-
time optimisations. These compilers struggle with dynamic
execution paths, where it is not known in what exact
order loops follow one another, and they cannot manage
analysis across multiple compilation units. Furthermore,
many cannot handle branching that would lead to different
access patterns within a single loop nest. Commonly used
benchmarks such as SPEC OMP [7] and PolyBench [8] do
not include such use cases. In summary, these compilers
have primarily been shown to give excellent performance
when a small number of loops repeat a large number of
times in a predictable manner - which we do not consider
large-scale codes for the purposes of this paper.

The OPS (Oxford Parallel library for Structured
meshes) DSL (Domain Specific Language) [9], [10] is a
C/C++/Fortran domain-specific API that uses source-to-
source translation and various back-end libraries to auto-
matically parallelise applications. Any code written using
its API can utilise MPI, use multi-core CPUs with OpenMP,
as well as GPUs with CUDA, OpenACC, or OpenCL. OPS
is being used in a number of PDE applications [10], [11],
[12], and indeed the common bottleneck in all of these ap-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 2

plications is data movement. The aforementioned challenges
combined with the complexity of these applications prohibit
the use of traditional stencil compilers - therefore we adopt
an iteration space tiling algorithm in OPS, that we apply at
run-time using delayed execution of computations.

We choose the CloverLeaf 2D/3D code (part of the
Mantevo suite) to demonstrate our results in detail, as it is a
larger code that has been intensively studied by various re-
search groups [10], [13], [14]; it is a proxy code for industrial
hydrodynamics codes. It has 30 datasets (30 data values,
or variables, per grid point), it consists of 83(2D)/141(3D)
different loops across 15 source files. During the simula-
tion, a single time iteration consists of the execution of
150/600 loops, where often the same loop nest is executed
on different datasets. Furthermore, some stencils are data-
dependent, and there is considerable logic that determines
the exact sequence of loops. To demonstrate the generality
of our approach, we evaluate performance on two more
applications using OPS: the matrix-free sparse linear solver
proxy code TeaLeaf [15] (also part of the Mantevo suite), and
the compressible Navier-Stokes solver OpenSBLI [16].

In this paper, we present research into how, through a
combination of delayed execution and dependency analysis,
OPS is capable of addressing the aforementioned challenges,
without modifications to the high-level OPS user code. This is
then evaluated through a series of benchmarks and analysed
in detail. Specifically, we make the following contributions:

1) We introduce the delayed execution scheme in OPS
and describe the dependency analysis algorithm
that enables tiled execution on a single block.

2) We extend our algorithms to analyse dependencies
and perform scheduling and communications in a
distributed memory environment

3) We validate and evaluate the proposed algorithm on
a 2D Jacobi iteration example, comparing it to prior
research (Pluto and Pochoir).

4) We deploy the tiling algorithm on a number of
larger-scale applications, such as the CloverLeaf
2D/3D hydrocode, TeaLeaf, and OpenSBLI. We ex-
plore relative and absolute performance metrics,
including speedup, achieved bandwidth and com-
putational throughput on Xeon server processors,
scaling up to 4608 cores on CINECA’s Marconi.

5) We evaluate tiling on the Intel Knights Landing
platform, scaling up to 128 nodes (or 8704 cores).

The rest of the paper is organised as follows: Section 2
discusses related work, Section 3 summarises the design
and implementation of OPS, Section 4 presents the tiling
algorithm integrated into OPS, Section 5 introduces the
applications we evaluate in this work and Section 6 carries
out the in-depth performance analysis. Section 7 evaluates
strong and weak scaling on a CPU cluster, and finally
Section 9 draws conclusions.

2 RELATED WORK

Manipulating loop schedules to improve parallelism or data
locality has long been studied and built into compilers
[1], [17], [18], [19], [20]. The mathematics and techniques
involved in such loop transformations have been described
in the polyhedral framework [21], [22], [23], and since then, a

tremendous amount of research has studied transformations
of affine loop structures in this framework, and extended it
to work on many non-affine cases as well.

Tiling by manually modifying code has been demon-
strated on smaller codes [24], [25] where one or two loops
repeat a large number of times (typically a time iteration); it
is a particularly good example of utilising the large caches
on CPUs, and they have been studied in detail.

There are a number of compilers focused on applying
tiling to stencil computations such as Pochoir [26], image
processing workflows such as Polymage and Halide [27],
[28], and more generally to computations covered by the
polyhedral model: Pluto [29], [30], R-STREAM [31] - these
have shown significant improvements in performance by
exploiting data locality by manipulating loop schedules.
There are examples of tiling in distributed memory systems
as well: R-STREAM [31], Pluto [32], Classen and Griebl
[33], and Distributed Halide [34]. In comparison to our
work, polyhedral frameworks primarily target use cases
where a few loops repeat a large number of times (e.g. in
a time iteration), accessing just a few datasets. PolyMage
and Halide on the other hand do handle long multi-stage
image processing flows, though typically access only a few
datasets - since they target a different application domain,
they are not applicable to the kinds of codes studied here,
but some of the techniques used are shared with our work.

The kinds of transformations applied are also wide-
ranging, starting at the simplest skewed tiling methods
across time iterations [17], [25], wavefront methods [17],
[35], and their combinations with various tile shapes such as
diamond and hexagonal tiling [36], [37]. We use a skewed
tiling scheme in a slightly different way: while skewing
in time means that iteration ranges of the same loop nest
repeated in a time-loop are skewed, in our case the itera-
tion ranges of subsequent (different) loop nests are skewed
relative to each other to account for data dependencies.

The only work that we are aware of that has applied sim-
ilar transformations to large-scale scientific problems is the
Formura DSL [6], which is in full control of the code that is
being generated from high-level mathematical expressions -
therefore it avoids the issue of various execution paths and
multiple compilation units to tile across.

A common point in all of the above research is that
the transformations are applied at compile-time (or before),
and therefore they are inherently limited by what is known
at compile time, and the scope of the analysis. This in
turn makes their application to large-scale codes distributed
across many compilation units, that have configurable, com-
plex execution flows and call stacks, exceedingly difficult.

Identifying the sequence of loops to tile across and to
carry out dependency analysis is a lot easier at run-time,
particularly with the help of delayed evaluation or lazy
execution [38], [39], which is a well-known technique used
particularly in functional languages that allows expressions
to be evaluated only when their results are required. Lazy
execution is also used in other fields, such as Apache Spark
to plan out the sequence of computations and to skip un-
necessary steps. We apply the lazy execution idea to figure
out dependencies and compute loops schedules at runtime
- to our knowledge these two have not been used together
in scientific computing.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 3

void copy(double *a, const double *b) {
a[OPS_ACC0(0,0)] = b[OPS_ACC1(0,0)]; }

void calc(double *b, const double *a) {
b[OPS_ACC0(0,0)] = a[OPS_ACC1(0,0)]
+ a[OPS_ACC1(0,1)] +a[OPS_ACC1(1,0)]; }

...
int range[4] = {12,50,12,50};
ops_par_loop(copy, block, 2, range,

ops_arg_dat(a,S2D_0,”double”,OPS_WRITE),
ops_arg_dat(b,S2D_0,”double”,OPS_READ));

ops_par_loop(calc, block, 2, range,
ops_arg_dat(b,S2D_0,”double”,OPS_WRITE),
ops_arg_dat(a,S2D_1,”double”,OPS_READ));

Fig. 1. An OPS parallel loop

3 THE OPS EMBEDDED DSL
The Oxford Parallel library for Structured meshes (OPS) is a
Domain Specific Language embedded into C/C++/Fortran,
defining an API for expressing computations on multi-block
structured meshes. It can be used to express algorithms
at a higher level, without having to worry about the in-
tricacies of parallel programming and data movement on
various computer architectures. By separating the high-level
code from the low-level implementation, OPS lets domain
scientists write a single high-level source code and the
library developers to automate the generation of low-level
implementations given the knowledge of the domain and
the target architectures.

OPS defines the following abstraction [9]: the compu-
tational domain consists of a number of N dimensional
blocks, with a number of datasets defined on each. Then,
computations are expressed as a sequence of parallel loops
applying given “user-kernels” over given iteration ranges
and a number of datasets defined on the same block, spec-
ifying how each dataset is accessed: whether it is read,
written, or incremented and what exact stencil is used for
the access - this follows the access-execute model [40]. The
abstraction requires the parallel operation to be insensitive
to the order of execution on individual grid points (within
machine precision).

An example of an OPS parallel loop is shown in Fig-
ure 1; the ops_par_loop API call takes as arguments a
function pointer to be applied to each grid point, a block, a
dimensionality, an iteration range and a number of data ar-
guments. A data argument encapsulates the dataset handle,
the stencil, the underlying primitive datatype and the type
of access.

Given this abstraction, OPS is free to parallelise both
over parallel loops over different blocks, as well as over
individual grid points within a single parallel loop: indeed
the library assumes responsibility for correctly parallelis-
ing in distributed-memory as well as shared-memory en-
vironments, and on different architectures, using different
parallel programming models. With a user code written
once using the C/C++ or Fortran API of OPS, a source-
to-source translator generates code for sequential, OpenMP,
OpenACC, OpenCL and CUDA execution, which is then
compiled with a traditional compiler and linked against one
of the OPS back-end libraries that supports MPI paralleli-
sation and data management. Because ownership of data

is handed to the library, and access only happens through
OPS APIs, the library can keep track of what data changed
and when it is necessary to update it: halos for MPI or the
separate address spaces of CPUs and GPUs.

OPS can dramatically improve productivity, particularly
when a code is deployed to different architectures, and
therefore it needs to support multiple parallelisations. There
is a one-off cost of conversion to OPS - with a difficulty
somewhere between applying a pragma-based parallelisa-
tion (OpenMP) and adopting CUDA: loop bodies have to be
outlined and the parallel loop calls written. Once converted,
the wide range of parallelisations and optimisations are
applied automatically, and performance is no worse than
one-off hand-written conversions, as demonstrated in our
previous work [10].

4 SKEWED TILING IN OPS
As described in the previous section, at runtime the
ops_par_loop construct includes all necessary informa-
tion about a computational loop nest that is required to
execute it: the computational kernel, the iteration range, and
a list of datasets, plus how they are accessed - the stencil
and whether read or written. This enables OPS to store
this information for delayed execution, and reason about
multiple loops: an instance of the loop chaining abstraction
[41].

4.1 Delayed execution
With all pertinent information about a loop, we create a C
struct at runtime, which includes a function pointer to a C++
function that, given the loop nest ranges and the argument
list stored in the struct, can execute the computational loop.
When the ops_par_loop is called from user code, this
struct is passed to the back-end, and stored in an array for
later execution. Parallel loops can be queued up until the
point when the user code needs some data to be returned:
such as getting the result of a reduction, based on which a
control decision has to be made. At this point, OPS triggers
the execution of all loops in the queue.

4.2 Dependency analysis and tile construction
Having queued up a number of computational loops, it is
now possible to carry out dependency analysis: this enables
us to reason about loop scheduling not only in individual
loops but across a number of loops as well. The ultimate
goal is to come up with execution schedules that improve
data locality by way of cross-loop blocking. Therefore,
the dependency analysis carried out by OPS takes into
consideration the sequence of loops, the datasets accessed
by each loop, the stencils used and whether the data is
read, written, or both. Given the restrictions of the OPS
abstraction (only trivially parallel loops permitted), the run-
time information about datasets and stencils used to access
them, the dependency analysis is based on the well-known
polyhedral model (though not any specific framework).

The theory of transformations to polyhedral models is
well documented [42], [43]. Here we focus only on the
overall algorithmic description and some practicalities. Un-
like most classical tiling algorithms, we do not assume nor

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 4

Loop 1

Loop 2

Loop 3

Loop 4

Array 1

Array 2

Array 1

Array 2

Array 1

Iterations
0 91 2 3 4 5 6 7 8

Tile 1 Tile 2

Fig. 2. Illustrative example of 1D dependency analysis and tiling

exploit any recurrence, the time dimension can be thought
of as being replaced by a sequence of loops that may all
have different iteration ranges and stencils. In this paper,
we use dependency analysis to implement a skewed tiling
scheme, where subsequent loop nests are skewed (unlike
in case of skewing in time), with a sequential dependency
(and scheduling) between subsequent tiles and intra-tile
parallelism.

To understand our optimisation approach, consider a
simple 1D example with four loops, with access patterns
and dependencies that are illustrated in Figure 2. This is
the conventional way of formulating computational loops;
the issue is that these datasets are too large to fit in the
on-chip cache, they will be streamed to and from the CPU
between loops. This implies that data reuse only happens
within a single loop nest, and not across subsequent loop
nests. Data reuse in this case is 1-3x depending on the stencil
used (to have computations and data movement in balance
on modern CPUs, one would need a factor of ∼ 40×).

In order to improve locality and reuse data across dif-
ferent loop nests, we need to take multiple loop nests and
reason about them together; we would like to apply loop
blocking within and across the four loops (tile across four
loops). To achieve this, we need to block the iteration ranges
of loops and re-organise them so that data accessed by a
given block in the first loop nest stays in cache and gets
accessed by blocks of subsequent loop nests. Then, we
execute the next block on the first loop nest, then on the
second loop nest, etc., keeping data in cache in-between.
Thus, we can achieve cross-loop data reuse. The caveat is
that in constructing these blocks, we need to make sure
all data dependencies are satisfied; only those iterations
can be included in the block for the subsequent loop nest,
for which the block of the previous loops computed the
required inputs. Additionally, we wish to parallelise within
tiles - threads will execute different iterations of a block of
a loop, synchronise, then move on to the block of the next
loop.

One way to partition the index spaces of the loops, is
to split loop 1 into two equal parts: [0 − 4] for Tile 1 and
[5 − 9] for Tile 2. Execution in loop 2 uses a 3-point stencil
- there is a data dependency on adjacent points computed
by loop 1; a Read-after-Write (RAW) dependency. Thus in
Tile 1, the iteration range of loop 2 has to be restricted to
[0−3], and in Tile 2, it is extended to [4−9]. In loop 3, Tile 1
has all the data dependencies satisfied to execute iterations

[0−3], however this would overwrite the value at index 3 in
Array 2, which would lead to incorrect results when Tile 2
is executing iteration 4 or loop 2; a Write-after-Read (WAR)
dependency. Therefore loop 3 in Tile 1 is restricted to [0−2],
and extended to [3−9] in Tile 2. Finally, loop 4 is once again
restricted to [0− 1] due to a RAW dependency in Tile 1, and
extended to [2−9] in Tile 2. We call this method of restricting
and extending iteration ranges of subsequent loop nests
skewing, and the resulting execution scheme skewed tiling.

This method can be generalised to work in arbitrary
dimensions and with a much larger number of loops. The
algorithm is given a set of loops loopl, with iteration ranges
in each dimension loopl.startd, loopl.endd, a number of
arguments and stencils. Our goal is to construct a number
of tiles, each containing iteration ranges for each loop nest
tiletd .loopl.startd, tiletd .loopl.endd, in a way that allows for
the re-organisation of execution in a tiled way, as shown in
Algorithm 1.

The algorithm produces as its output the iteration ranges
for each loop nest in each tile - this is then cached as a
“tiling plan” and reused when the same sequence of loops is
encountered. The structured nature of the problem and the
fixed size of tiles does not necessitate computing and storing
all this information for each and every tile and loop, since it
could be computed on the fly - however in our applications
the number of corner cases (boundary loops, sub-domain
loops) made this approach to analysis and execution overtly
complex, therefore we decided to do it on a per-tile basis.
This means that the complexity of the analysis is higher:
O(#loops*#tiles) - but as we show later, this cost is still
negligible.

4.3 Tiled execution
Given a tiling plan, the execution of the tiled loop and
iteration schedule is described by Algorithm 2: we iterate
through every tile, and subsequent loops, replacing the
original iteration range with the range specific to the cur-
rent tile (loops with empty index sets are skipped), then
start execution through the function pointer. Parallelisation
happens within the tiles, leading to a synchronisation point
after each loop, in each tile.

The construction of the tiles and the logic for their
execution is entirely contained in the backend code of OPS,
and it is independent of the application. The code generated
for the application itself only facilitates the construction
of loop descriptors and the execution of single loop nests
with loop bounds that may have been altered by the tiling
algorithm.

For this work, we chose the skewed tiling algorithm
instead of more advanced algorithms such as diamond tiling
[44] or its combination with wavefront scheduling [36],
because it is both simpler to implement and verify, and
it results in large tiles, helping to diminish the overhead
of launching the execution of computational loops through
function pointers (detailed in section 6.2). OPS however cap-
tures all the information necessary to apply more complex
loop scheduling, which will be the target of future research.

4.4 Tile size selection
Considering we perform intra-tile parallelisation, we need
tiles with a memory footprint that is about the size of the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 5

Algorithm 1 CONSTRUCTION OF TILING PLAN

1: Input: loopl structures l = 1..L
2: Output: tilet structures
3: { compute union of index sets}
4: for all l in loops, d in dimensions do
5: startd = min(startd, loopl.startd)
6: endd = max(endd, loopl.endd)
7: num tilesd = (endd − startd − 1)/tilesized + 1
8: end for
9: for all l in loops backward, d in dimensions do

10: for all t in tiles do
11: { start index for current loop, dimension and tile}
12: if t first in d then
13: tiletd .loopl.startd = loopl.startd
14: else
15: tiletd .loopl.startd = tiletd−1.loopl.endd
16: end if
17: { end index for current loop, dimension and tile}
18: tiletd .loopl.endd = −∞
19: if t last non-empty in d then
20: tiletd .loopl.endd = loopl.endd
21: else
22: { satisfy RAW dependencies }
23: for all a in arguments of loop written do
24: tiletd .loopl.endd = min(loopl.endd,
25: max(tiletd .loopl.endd, read depa.tilet.endd))
26: end for
27: end if
28: end for{ over tiles }
29: for all t in tiles do
30: if t not last then
31: {satisfy WAR and WAW dependencies }
32: for all a in arguments of loo do
33: m = largest negative stencil point in d
34: tiletd .loopl.endd = min(loopl.endd,max(

tiletd .loopl.endd, write depa.tilet.endd −m))
35: end for
36: end if
37: { default to end index at tile size }
38: if tiletd .loopl.endd still −∞ then
39: tiletd .loopl.endd = min(loopl.endd,
40: startd + td ∗ tilesized)
41: end if
42: { update read dependencies }
43: for all a in arguments of loop read do
44: p = largest positive stencil point in d
45: read depa.tilet.endd = max(

read depa.tilet.endd, tiletd .loopl.endd + p)
46: p = largest negative stencil point in d
47: read depa.tilet.startd = min(

read depa.tilet.startd, tiletd .loopl.startd + p)
48: end for
49: { update write dependencies }
50: for all a in arguments of loop written do
51: write depa.tilel.endd =
52: max(write depa.tilet.endd, tiletd .loopl.endd)
53: write depa.tilel.startd =
54: min(write depa.tilet.startd, tiletd .loopl.startd)
55: end for
56: end for
57: end for

Algorithm 2 EXECUTION OF A TILING PLAN

1: for all tiles t=1..T do
2: for all loops l=1..L do
3: for all dimensions d=1..D do
4: bounds startd = tiletd .loopl.startd
5: bounds endd = tiletd .loopl.startd
6: end for
7: call loopl with bounds:
8: bounds startd, bounds endd
9: end for

10: end for

last level cache, which is shared by all the threads. Thus
we designed an algorithm in OPS to automatically choose
a tile size based on the number of datasets accessed and
the size of the last-level cache (LLC): this is described in
Algorithm 3, omitting the handling of corner cases. Based on
experiences with tile sizes found by exhaustive search, the
general principle is that the size in the contiguous direction
(X) should always be large to allow efficient vectorisation,
and that the sizes in the non-contiguous directions should
allow sufficient parallelisation and a good load balance
between threads. Thus in 2D the X size is 3 times the Y
size, and in 3D sizes are so that each thread has at least
10 iterations. An exhaustive search of possible tile sizes
on different applications is deferred to the Supplementary
Material.

Algorithm 3 TILE SIZE SELECTION ALGORITHM

1: owned size = #of grid points owned by process
2: for all d in datasets do
3: if d accessed by any loop in the chain then
4: footprint+ = d.size (bytes)
5: end if
6: end for
7: bytes per point = footprint/owned size
8: points per tile = LLC size/bytes per point
9: if 2 dimensions then

10: M =
√
points per tile/(3 ∗ num threads2)

11: tilesize0 = 3 ∗M ∗ num threads
12: tilesize1 = 1 ∗M ∗ num threads
13: end if
14: if 3 dimensions then
15: tilesize0 =owned size in X direction
16: while points per tile/tilesize0 < 10 ∗num threads

do
17: tilesize0/ = 2
18: end while
19: tilesize1 =

√
points per tile/tilesize0

20: tilesize2 = points per tile/(tilesize0 ∗ tilesize1)
21: end if

4.5 Extension to distributed memory systems

The parallel loop abstraction of OPS lets it deploy different
kinds of parallelisation approaches, including support for
distributed memory systems through the Message Passing
Interface (MPI). Without any additional user code, OPS will
automatically perform a domain decomposition, create halo

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 6

regions for all datasets, and given the stencil access patterns
in ops_par_loop constructs, automatically keep the values
of the halo up-to-date. The performance and scalability of
OPS has been presented and analysed in previous work [10].

In a distributed memory system, the two key issues
in deploying tiling are the construction and scheduling of
tiles, and the communication of data required for executing
the tiles. Our skewed tiling approach in shared memory
systems introduces a sequential dependency across tiles,
which prohibits parallelisation between tiles (there we only
parallelise within tiles) - this is obviously not a viable
approach over MPI. Instead, we apply an overlapped tiling
approach [34], [45], where points in the iteration space
along the boundaries of the domain decomposition that are
required for the execution of tiles on the other side of the
boundary are replicated there. Thus, these iterations will
be computed redundantly on an MPI process that does not
own them, requiring communicating the needed data on
those points. This approach is largely the same as what is
described in Distributed Halide [34], except that it is all done
at run-time.

In terms of the construction of tiles this means that
some will extend beyond the original boundaries of domain
decomposition, but in terms of scheduling it also means that
MPI processes can execute their tiles independently (and in
parallel) of one another. In terms of communications, the
halo regions are extended to accommodate data required for
the computation of these iterations, and before executing the
tiles, MPI processes exchange a wider halo of datasets that
are read before they are written. During the execution of the
tiles however there is no need for further communication,
because for each tile all data required is in local memory.
This is in contrast to the existing MPI communications
scheme in OPS, which is on-demand: halos are updated
immediately before loops where they will be accessed, and
there are no redundant computations.

There are two key changes to the construction of tiles and
the execution schedule, as illustrated on Figure 3. First, the
calculation of tiletd .loopl.startd and tiletd .loopl.endd has to
account for domain decomposition boundaries: to compute
the first tile’s start and the last tile’s end index, we need to
extend beyond the boundaries, but we only have to look at
read dependencies (no need to look at write dependencies in
overlapped tiling). Second, we have to compute the required
halo depth to communicate.

Before either of these, a minor modification to compute
the number of tiles on each process: lines 5-6 of the original
algorithm change to calculate with the bounds given by the
domain decomposition as shown in Algorithm 4.

Algorithm 4 PER-PROCESS GRID SIZE

{line 5-6}
startd = min(startd, loopl.start thisprocessd)
endd = min(endd, loopl.end thisprocessd)

4.5.1 Tile shapes at MPI boundaries
When calculating the starting index for the first tile on the
process, we have two separate cases: (1) when the process
has no “left” neighbour in the current dimension (Figure 3,
tile0 of Process 0) , then the tile’s start index is just the start

Process 0 Process 1

tile0 tile1 tile0 tile1

halo regions
with redundant

compute

lo
op

0
→

 lo
op

N

index=0 index=M

wider halo exchanges

tile2

Fig. 3. A 1D illustrative example of tiling across MPI partitions

index of the original loop bounds as previously (line 13,
Algorithm 1). (2) when the process has a “left” neighbour:
then the iteration range has to be further extended to the left
to account for read dependencies (Figure 3, tile0 of Process
1). This is described by Algorithm 5, which replaces line 13
of the original.

Algorithm 5 TILE START INDEX OVER MPI
{line 13}
if process is first in d then
tiletd .loopl.startd = loopl.startd

else
{ satisfy read-after-write dependencies }
for all a in arguments of loop written do
tiletd .loopl.startd = max(loopl.startd,

min(tiletd .loopl.startd, read depa.tilet.startd))
end for

end if

When calculating the end index of the last tile, we only
account for read-after-write dependencies, which now will
extend beyond the MPI partition boundary, due to the logic
in line 24 (Figure 3, tile1 and tile2 of Process 0). Consider,
that the slope of the two sides of the last tile is asymmetric:
the left edge (which is the right edge of the previous tile) has
to consider both read and write dependencies, but the right
edge only considers read dependencies. In particularly long
but slim tiles this may lead to the left edge reaching the
right edge, and the tile having no iteration space in early
loops, as illustrated by tile2 on Figure 3. In accounting for
this possibility, we have to check for this “overshoot” and if
it does happen, then the previous tile’s end index will have
to be adjusted. In our algorithm, we have to include two
checks, thus lines 30-36 are changed as shown in Algorithm
6.

4.5.2 Halo exchanges
Determining which datasets require a halo exchange and
what depth is very simple given the correctly pop-
ulated read depa.tilet.startd, read depa.tilet.endd arrays;
for each dataset we look for the first loop nest that accesses
it, if it is a write, then no halo exchange is necessary, if
it is a read, then the depth to exchange is the difference
between the domain decomposition boundary and the read
dependency index of the first/last tile, as illustrated on
Figure 3. Since exchange depth may not be symmetrical,
each process keeps track of the read dependencies of its
previous neighbour’s last tile and its next neighbour’s first
tile.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 7

Algorithm 6 TILE END INDEX OVER MPI
{line 30-36}
if t not last and tiletd .loopl.endd > tiletd .loopl.startd
then
{ satisfy write-after-read/write dependencies }
for all a in arguments of loop do
m = largest negative stencil point in d
tiletd .loopl.endd = min(loopl.endd,max(
tiletd .loopl.endd, write depa.tilet.endd −m))

end for
{ if we overshoot the next tile }
if tiletd .loopl.endd > tiletd+1.loopl.endd then
tiletd .loopl.endd = tiletd+1.loopl.endd

end if
end if

This information is saved alongside the tiling plan, and
each time we encounter the same sequence of loops, we
first carry out these halo exchanges, then execute the tiling
plan itself, which then does not need any further MPI
communications until its completion.

5 STENCIL APPLICATIONS

In order to evaluate the efficiency of cache-blocking tiling in
OPS, we first carry out an in-depth study using one of the
most commonly used benchmarks in tiling research: a Jacobi
iteration solving the heat equation. This benchmark problem
is implemented in both Pluto and Pochoir, and comes as part
of the distributed source package, and we use it as a basis
for comparison. For both, a double-buffer approach is used
where the stencil is applied to a first, putting the result in b,
then the other way around, which is then repeated for the
desired number of iterations.

Our main benchmark application is CloverLeaf [13]; to
our knowledge, successful cache-blocking tiling has not
been previously reported on an application of this size.
CloverLeaf is a mini-application that solves the compress-
ible Euler equations on a 2D or 3D Cartesian grid, using an
explicit second-order method. It uses a Lagrangian-Eulerian
scheme to solve Euler’s equations for the conservation of
mass, energy and momentum, supplemented by an ideal
gas equation. CloverLeaf uses an explicit time-marching
scheme, computing energy, density, pressure and velocity
on a staggered grid, using the finite volume discretisation.
One timestep involves two main computational stages: a
Lagrangian step with a predictor-corrector scheme, advanc-
ing time, and an advection step - with separate sweeps in
the horizontal/vertical/depth dimensions. The full source
of the original is available at [46].

CloverLeaf was an ideal candidate for porting to use
the OPS library - indeed it is the first application that was
developed for OPS [10]. The 2D/3D application consists of
25/30 datasets defined on the full computational domain
(200/240 bytes per grid point), and 30/46 different stencils
used to access them. There are a total of 83/141 parallel
loops spread across 15 source files, each using different
datasets, stencils and “user kernels”; many of these include
branching (such as upwind/downwind schemes, depen-
dent on data). The source files that contain ops_par_loop

calls include branching and end up calling different loops,
dependent on e.g. sweep direction, with some code paths
shared and some different for different sweeps, and often
the pointers used refer to different datasets, depending on
the call stack. A single time iteration consists of a chain
of 153/603 subsequent loops. The full size of CloverLeaf
is 4800/6000 lines of code.

These properties of CloverLeaf make it virtually impos-
sible to apply stencil compilers as they are limited by what
is known at compile-time - which is indeed very little for
larger-scale codes. While some portions of the code (blocks
of 4-5 consecutive loops) are amenable to compile-time tiling
approaches, there is little data reuse for tiling to show any
performance benefit (as experiments with Pluto showed).
This motivates our research into tiling with OPS that is
capable of constructing and executing tiles at run-time.

To show that our results generalise to other applications
using OPS, we also briefly evaluate performance on two
more applications. The first is TeaLeaf 2D [15], also part of
the Mantevo suite, which is a matrix-free sparse linear solver
code for hydrodynamics applications. TeaLeaf has 98 nested
loops over the 2D grid, 31 datasets defined on the grid,
and the code is spread across 12 source files. It has a wide
range of configuration parameters that control its execution:
it supports various algorithms including Conjugate Gradi-
ent (CG), Chebyshev, and Preconditioned Polynomial CG
(PPCG). At runtime, depending on the level of convergence
and various problem-specific parameters, it will perform
different numbers of preconditioning iterations, has early
exits and other control structures that make it particularly
unsuitable for polyhedral compilers.

The fourth key OPS application is OpenSBLI [16], a
large-scale academic research code being developed at the
University of Southampton, focusing on the solution of
the compressible Navier-Stokes equations with application
to shock-boundary layer interactions (SBLI). Here we are
evaluating a 3D Taylor-Green vortex testcase, which consists
of 27 nested loops over the computational grid, using 9
different stencils and accessing 29 datasets defined on the
3D grid.

6 BENCHMARKING AND PERFORMANCE ANALYSIS
6.1 Experimental set-up
We evaluate all algorithms and codes on a dual-socket Intel
Xeon E5-2650 v3 (Haswell) machine, that has 10 physical
cores per socket and 20 MB of L3 cache per socket. Hyper-
Threading is enabled. For all tests, we run on a single CPU
socket using numactl in order to avoid any NUMA ef-
fects, and parallelise with OpenMP within tiles (20 threads,
pinned to cores). The latest version of OPS is available at
[47]. We use Pluto 0.11.4 (dated Oct 28, 2015) and a Pochoir
version dated Apr 15, 2015, available from GitHub. All
codes are compiled with the Intel compilers version 17.0.3,
with -fp-model fast and fused multiply-adds enabled.

For a simple roofline model, we benchmark a single
socket of the system. Achieved bandwidth to DDR4 memory
is 49 GB/s using the STREAM benchmark (Triad, 50M
array, repeated 100 times), and 227 GB/s bandwidth to L3
cache (Triad, 900K array, repeated 1000 times). The double
precision general matrix-matrix multiply test, using MKL,
shows an achieved peak computational throughput of 270

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 8

GFLOPS/s. We use these figures for later analysis: with the
balance point between computations and communication
at 44 Flop/DWord - below the performance is bound by
bandwidth, above it is bound by compute throughput.

Bandwidth figures shown in the following are based on
back of the envelope calculations, ignoring data reuse within
a single loop nest due to multi-point stencils; these values
stay in cache. In the case of CloverLeaf we use the auto-
mated reporting system in OPS that estimates bandwidth
based on the iteration range and the type of access (R/W)
to data - for this calculation the data reuse due to multi-
point stencils is ignored. As the Haswell microarchitecture
does not have counters for floating point operations, we use
counters in NVIDIA GPUs - we run OPS CUDA variants
of our applications (the computational kernels are identical
to the CPU implementation) through the nvprof profiler
collecting double-precision flop counters using --metrics
flop_count_dp. These flops counts are then used as they
are to estimate GFLOPS/s throughput figures on the CPU.

6.2 Heat equation
As one of the most studied examples for tiling, we carry
out the analysis on a Jacobi iteration solving the 2D heat
equation. We solve on a 81922 mesh, with one extra layer
for a Dirichlet boundary condition on all sides, for 250
time iterations. All data and computations are in double
precision, and the total memory footprint is 1 GB.

6.2.1 State of the Art
First, we evaluate Pluto, compiling with the recom-
mended flags: ./polycc test/jacobi-2d-imper.c
--tile --parallel --partlbtile --pet, and run-
ning a series of tests at different tile sizes. Without tiling
(with OpenMP), the runtime is 8.42 seconds, achieving 29.69
GB/s and 14.02 GFLOPS/s. Pluto constructs a number of di-
amond tiles in sets that are inter-dependent, and parallelises
over different tiles in the same set. The best performance
is achieved at an X tile size of 160, a Y tile size of 32,
tiled over 32 time iterations. The test completes in 1.98
seconds, achieving 126.23 GB/s. In terms of computational
throughput, this corresponds to 59.64 GFLOPS/s.

Second, we evaluate Pochoir - as previously described,
its implementation avoids straight copies from one array
to another, therefore it is slightly faster. Without tiling, the
reference implementation runs in 9.4 seconds, achieving 26.6
GB/s and 12.56 GFLOPS/s. Pochoir, similar to Pluto, paral-
lelises over different tiles, the heat_2D_NP version runs in
3.26 seconds and achieves 76.7 GB/s and 36 GFLOPS/s, and
the zero-padded version heat_2D_NP_zero runs in 2.92
seconds, and achieves 85.6 GB/s and 40.5 GFLOPS/s.

Third, we implement small experimental codes that
solve the heat equation. In a similar way to Pluto, the tile
sizes are known at compile time, however, (unlike Pluto)
the mesh size and the number of iterations are not. The
key difference between this code and Pluto/Pochoir, is that
it uses the same sort of skewed tiles that OPS does, and
parallelises within the tile. For this benchmark, we only tile
in time and the Y dimension, and not in the X dimension
(which is equivalent to choosing an X tile size of 8192).
The baseline performance without tiling is 8.31 seconds,
or 30.1 GB/s and 14.21 GFLOPS/s. With tiling, the best

TABLE 1
Performance summary of the Jacobi iterations on 10 cores: timing is

seconds (Base and Tiled), computational throughput in GFLOPS/s, and
achieved bandwidth in GB/s

Test Base BW Comp Tiled BW Comp
Pluto 8.42 14 29.69 1.98 126.2 59.6
Pochoir 9.4 12.6 26.6 2.92 76.7 40.5
handcoded 8.31 14.2 30.1 2.43 101 48
OPS 8.58 13.6 29.4 3.69 67.3 32

performance is achieved at a Y tile size of 120, tiling over 50
time iterations 2.43 seconds or 101 GB/s and 48 GFLOPS/s
- memory used is 15MB (vs. 20MB of L3) per tile.

Next, we outline the computational loop in our hand-
coded benchmark into a separate source file (accepting data
pointers and the X,Y iteration ranges as arguments), so as
to simulate the way OPS calls the computational code. We
compile with inter-procedural optimisations turned off to
make sure the function does not get inlined - this reduces
performance by 30-45% across the board, bringing the best
performance from 2.43 to 3.54 seconds, or 70.1 GB/s and
33.35 GFLOPS/s.

We draw two key conclusions from these results: (1)
on this example diamond tiling in Pluto performs best,
hyperspace cuts in Pochoir also do well, and the simple
skewed tiling approach is in-between. (2) this establishes
an upper bound for performance that is achievable through
OPS, where computational subroutines are outlined and are
in separate compilation units, no compile-time tile size or
alignment information is available.

6.2.2 OPS
Finally, we evaluate performance in OPS. Note, that OPS has
the least amount knowledge of compile-time parameters,
and it uses a completely generic dependency analysis at run-
time, as opposed to all previous tests which do the depen-
dency analysis at compile-time. Without tiling, the runtime
is 8.58 seconds, achieving 29.4 GB/s and 13.6 GFLOPS/s.

Time iterations are simply expressed as a for loop
calling ops_par_loops repeatedly. Tile height (that is the
number of time iterations to tile over) is defined through
a runtime parameter; in the time iteration there is a state-
ment that triggers the execution of the queued kernels after
the given number of iterations. After switching on tiling
and tuning the tile size, best performance is achieved at
8192 X size, 100 Y tile size, tiled over 30 time iterations,
with a runtime of 3.69 seconds, achieving 67.3 GB/s and
31.99 GFLOPS/s, 5% slower than the outlined hand-coded
benchmark. The overhead of computing the tiled execution
scheme was 0.0040 seconds - about 0.1% of the total runtime.

It is important to observe that in all of the above bench-
marks, the optimal performance was achieved when the X
tile size was considerably bigger than the Y tile size - this
is due to the higher efficiency of vectorised execution and
prefetching: X loops are peeled by the compiler to get up
to alignment with non-vectorised iterations, then the bulk
of iterations are being vectorised over, and finally there are
scalar remainder iterations.

6.2.3 Comparison of tiling implementations
Overall, as summarised in Table 1, the performance of non-
tiled versions is quite consistent: they all run in about 8-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 9

9 seconds, achieving close to 30 GB/s of bandwidth. This
clearly shows that at this point performance is bound by
how much data is moved. When cache-blocking tiling is
enabled, performance improves dramatically, up to 4.5×,
computations and latency of instructions starts to dominate
performance. They achieve over 100 GB/s, which is a very
good fraction of peak L3 bandwidth, considering misaligned
accesses due to stencils and the cache flushes between
tiles. In contrast to all other versions, OPS constructs tiles
based on run-time information only, and calls computa-
tional kernels through function pointers which adversely af-
fects performance as predicted by the outlined hand-coded
benchmark, nevertheless it still achieves a 2.32× speedup
over the non-tiled version.

6.3 Tiling CloverLeaf
The previous benchmark showed the superiority of sten-
cil/polyhedral compilers, however they cannot be applied
to an application like CloverLeaf at sufficient scope: code
analysis and experiments showed that only a handful of
code blocks with 3-4 consecutive loop nests can be tiled
across, because either the sequence of loop nests cannot be
determined at compile time or subsequent loop nests are in
different compilation units. Tiling them with Pluto did not
result in a measurable performance difference.

In contrast, OPS determines the loops to tile across at
runtime. As it does not require any modifications to user
code, it is possible to automatically deploy this optimisa-
tions to large-scale codes.

Enabling automatic tiling in OPS requires compiling a
different executable, but otherwise no action is necessary on
the part of the user. At runtime, unless specified otherwise,
OPS will tile over all loops up to the point where a global
reduction is reached, to make sure control decisions are ex-
ecuted correctly in the host code. In CloverLeaf, this means
tiling over an entire time iteration, which is a sequence of
153 loops in 2D and 603 loops in 3D - this is also when best
performance is achieved. Breaking the time iteration into
several shorter chains is discussed in the Supplementary
Material.

Aside from the automatic tile size selection algorithm,
it is also possible to manually specify tile sizes in each
dimension. Since OPS is parallelising within each tile, we
size the tiles in the last dimensions to be an integer multiple
of the number of threads - in 2D this is achieved by setting
the Y tile size to be a multiple of 20, and in 3D we collapse
the Y and Z loops (using OpenMP pragmas), and set Y and
Z so that their product is a multiple of 20.

Here, we study the performance of both the 2D and the
3D versions of CloverLeaf. In 2D, we use a 61442 mesh,
and run 10 time iterations, and in 3D, we use a 3303 mesh,
and run 10 time iterations. The total memory footprint in
2D is 7.054 GB and in 3D 8.741 GB. Note that normally
CloverLeaf would run for over 10000 time iterations to fully
resolve the simulation, but since its execution is following a
recurring pattern, here we can restrict it to 10 and still obtain
representative performance figures.

6.3.1 Baseline performance
The baseline performance using pure OpenMP restricted
to a single socket is established at 18.7 seconds in 2D and

32.5 seconds in 3D. All innermost loops are reported as
vectorised by the compiler. We show performance break-
downs in Tables 2 and 3 - note that here parallel loops are
grouped by computational phase and averaged (weighted
with relative execution time). It is clear that bandwidth
is the key bottleneck in both 2D and 3D - especially in
2D where average bandwidth is 30 GB/s, same as on the
Heat equation. There are a number of more computation-
ally intensive kernels, where a considerable fraction of the
peak computational throughput is achieved: for example
Viscosity achieves 58/62 GFLOPS/s - but this is still not
high enough to tip the balance from bandwidth-bound to
compute-bound. Average bandwidth over the entire appli-
cation in 3D is reduced to 25 GB/s, and the average compu-
tational throughput decreases from 20.7 to 18.9 GFLOPS/s.
It is therefore clear that for most of these applications, the
code is bound by bandwidth, which could potentially be
improved with cache-blocking tiling.

6.3.2 Tiling CloverLeaf 2D
After enabling tiling in OPS, the best performance is
achieved at a tile size of 640 × 160 - 8.73 seconds. At
this point the memory footprint of the tile is 20.4 MB,
and the speedup over the non-tiled version is 2.13×. Tiled
performance is very resilient to changes in the exact tile size:
in our experiments, there were 32 tile size combinations out
of 144 within 2% of the optimum performance, with up
to 60% smaller tiles, or up to 20% bigger tiles. For more
details, please see the Supplementary Material. The tile size
automatically chosen by OPS for the main time iteration is
600×200, with a runtime of 8.82 seconds, 1% slower that the
tile size found by searching. The overhead of computing the
tiling plans and loop schedules is 0.016 seconds, or 0.18%
of the total runtime, which would be further diminished on
longer runs.

Performance breakdowns for the 2D version are shown
in Table 2 - in line with the overall reduction in runtime, both
average bandwidth and computational throughput have
more than doubled. It also shows that the least computa-
tionally intensive loops have improved the most; most of
these are straightforward loops with few stencils, such as
Revert and Reset which copy from one dataset to another:
here we see a 3-4.5× improvement in runtime compared
to non-tiled versions. The single most expensive phase is
Momentum advection, with several fairly simple kernels,
it gains a 3.4× speedup. In contrast, loops in Timestep
or PdV gain only 1.1-1.5x due to reductions and higher
computational intensity. Notably, boundary loops in Update
Halo slow down by a factor of up to 3.7 - this is due
to small loops being subdivided even further, worsening
their overheads. Viscosity now achieves 143 GFLOPS/s, a
considerable fraction of the measured peak. The second
most expensive computational phase is cell advection, it
gains only a 1.8× speedup, which is in part due to the large
number of branches within the computational kernels.

6.3.3 Tiling CloverLeaf 3D
For CloverLeaf 3D, the best performance is achieved when
the X dimension is not tiled, and the Y and Z tile sizes
are both 20; runtime is 16.2 seconds, which is 2× faster
than the baseline. Once again, we see the performance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 10

TABLE 2
Peformance of CloverLeaf 2D baseline and tiled

CloverLeaf 2D OpenMP CloverLeaf 2D Tiled
Phase Time(sec) % GB/s GFLOPS/s Time(sec) % GB/s GFLOPS/s Speedup
Timestep 0.71 3.79 39.67 58.57 0.69 7.33 40.90 60.40 1.03
Ideal Gas 0.89 4.78 30.21 30.41 0.65 6.97 41.27 41.54 1.37
Viscosity 0.89 4.75 15.86 58.76 0.36 3.86 38.85 143.92 2.45
PdV 2.36 12.64 30.97 30.37 1.54 16.46 47.36 46.45 1.53
Revert 0.37 1.97 30.63 0.00 0.08 0.83 143.86 0.00 4.70
Acceleration 0.92 4.90 33.80 21.44 0.40 4.28 77.10 48.92 2.28
Fluxes 0.62 3.32 36.24 7.30 0.34 3.67 65.37 13.16 1.80
Cell Advection 4.01 21.46 30.16 18.92 2.23 23.73 54.34 34.09 1.80
Momentum Advection 6.68 35.77 32.84 12.89 1.95 20.77 112.66 44.21 3.43
Reset 0.74 3.95 30.46 0.00 0.25 2.62 91.51 0.00 3.00
Update Halo 0.07 0.39 2.66 0.00 0.26 2.80 0.73 0.00 0.28
Field Summary 0.11 0.57 47.82 37.44 0.05 0.56 96.42 75.50 2.02
The Rest 0.31 1.68 6.26 13.09 0.52 5.53 3.80 7.94 0.61
Total 18.68 100.00 30.89 20.71 8.73 100.0 66.12 44.31 2.14

TABLE 3
Performance of CloverLeaf 3D baseline and tiled

CloverLeaf 3D OpenMP CloverLeaf 3D Tiled
Phase Time(sec) % GB/s GFLOPS/s Time(sec) % GB/s GFLOPS/s Speedup
Timestep 1.77 5.27 18.14 31.64 0.85 5.05 38.02 66.34 2.10
Ideal Gas 0.89 2.64 28.99 29.18 0.64 3.80 40.36 40.63 1.39
Viscosity 1.71 5.10 14.06 62.39 0.63 3.74 38.54 171.01 2.74
PdV 3.88 11.54 21.41 24.84 2.47 14.77 33.56 38.94 1.57
Revert 0.37 1.09 29.22 0.00 0.12 0.72 88.73 0.00 3.04
Acceleration 2.05 6.11 18.42 19.43 1.08 6.47 34.92 36.83 1.90
Fluxes 1.13 3.36 28.58 9.59 0.48 2.84 67.70 22.72 2.37
Cell Advection 6.46 19.22 27.65 17.18 2.97 17.74 60.14 37.36 2.17
Momentum Advection 12.82 38.16 29.40 13.50 4.50 26.91 83.67 38.41 2.85
Reset 0.91 2.71 29.60 0.00 0.68 4.06 39.63 0.00 1.34
Update Halo 0.99 2.94 12.65 0.00 1.55 9.29 8.04 0.00 0.64
Field Summary 0.17 0.50 33.45 45.77 0.07 0.44 75.53 103.34 2.26
The Rest 0.45 1.34 5.56 13.92 0.52 3.12 4.79 11.99 0.86
Total 32.5 100.00 25.27 18.87 16.56 100.00 51.24 38.26 1.96

being resilient to the exact tile size, although the number
of possible tile size combinations is significantly less than
in 2D; out of 80 combinations tested, there were 6 other
tile size combinations within 2% of the best performance,
and 18 within 10%. The tile size automatically chosen by
OPS is 330 × 17 × 17, with a runtime of 17.02 seconds, or
5% slower that the tile size found by search. The overhead
of computing the tiling plans and loop schedules is 0.01
seconds.

Performance breakdowns for 3D (Table 3) show a more
consistent speedup over the baseline version compared to
the 2D version: in 2D the standard deviation of speedups is
1.2, whereas in 3D it is only 0.75. The slowdown on Update
halo is only 1.5×, and the best speedup (Revert) is only
3×. Both overall bandwidth and computational throughput
have increased by a factor of two - Viscosity now achieves
171 GFLOPS/s, or 63% of peak, and the highest achieved
bandwidth is 88 GB/s on Revert.

Enabling reporting from the dependency analysis in OPS
shows the amount of skewing between the “bottom” and
the “top” of the tiles; due to the large number of temporary
datasets and the way loops are organised in directional
sweeps, the total skewing is only 12 grid points in each
direction in 2D and 14 grid points in the Y and Z directions

in 3D (note that in this benchmark we do not tile in the
X direction). In 2D, the additional data needed due to this
skew is only a small fraction of the total tile size of 640×160
(0.2%). However, in 3D where the Y and Z tile sizes are 20,
a skew of 14 points is 49%, meaning that much of the data
is replaced between the execution of loops at the “bottom”
of the tile and the “top” of the tile, nevertheless data reuse
is still very high, the replacement happens gradually and it
can be served fast enough from off-chip memory.

6.4 Tiling TeaLeaf and OpenSBLI
To demonstrate and underline the applicability of tiling
in OPS to different applications as well, we deploy and
evaluate this optimisations to two more applications, the
TeaLeaf iterative solver code and the OpenSBLI compress-
ible fluids solver. For TeaLeaf, we choose a 20002 mesh, and
the PPCG solver, configured so that most time is spent in the
preconditioning phase which does not require reductions
(which limits tiling and is generally a bottleneck over MPI
particularly), for the full list of configuration parameters,
see [47] and tea_tiling.in. Keeping the benchmark still
representative, we restrict the execution to 4 time iterations.
The total memory footprint is 628 MB, however, the bulk
of the runtime is spent executing the preconditioner, which

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 11

accesses only 5 datasets - a total of 160 MB. For OpenSBLI,
we use a 2573 grid and the RS variant [16], solving the
Taylor-Green vortex testcase, and limiting the number of
time iterations to 10; running to completion - 500 iterations
- follows the same execution patterns, thus our 10 iterations
are representative. The total memory footprint is 3.84 GB.

The results are presented in Table 4: runtime without
tiling, with tiling and the automatic tile size selection algo-
rithm and with using the best tile size found by exhaustive
search (1010 × 400). The performance gain on TeaLeaf by
enabling tiling is up to 3.5×, with a 5% difference between
the automatic and manual tile size selection. The large
speedup on TeaLeaf is largely due to the bulk of the runtime
being spent in just two key loops doing preconditioning,
without the need for reductions in-between. There are just
5 datasets being accessed in that part of the algorithm,
and the computations themselves are fairly simple - only
multiplications and additions. The achieved bandwidth for
the baseline version is 46.27 GB/s (95% of peak), and the
computational throughput is 13.3 GFLOPS/s. With tiling
enabled, achieved bandwidth increases to 164.7 GB/s and
computational throughput to 47.35 GFLOPS/s.

TeaLeaf accesses just a small number of all datasets
during the bulk of its execution, thus tiling performance
is very sensitive to the problem size: if we reduce it to
7002 (20MB memory footprint), the speedup is reduced to
just 1.07×. Performance is also very sensitive to the solver
selection - if we use the Conjugate Gradient solver, without
preconditioning, there is very little speedup at any problem
size (1.05× at 40002), due to the frequent reductions, which
prohibit tiling across more than 2 loops.

TeaLeaf, for most of its execution, repeats two key loops
for a large number of times for this testcase (PPCG). There-
fore, we manually modified the relevant code section in
the non-tiled OPS version to enable tiling with Pluto - this
involved multiversioning at a fairly high level in the call
stack (something that we argue also makes the code more
difficult to read and maintain). We then compiled and ran
this modified version: with the default tile size selection
algorithm in Pluto, performance actually decreased by 1.9×
to 25.66 seconds. After an exhaustive search over potential
tiles sizes we have only been able to improve upon the
non-tiled performance by 2.44× to 5.49 seconds (tile size
of 192× 20 and 5 tile height).

Performance results from OpenSBLI are also presented
in Table 4: here speedup from tiling is lower than on other
applications: 1.7×. The performance difference between
automatic and manual tile selection here is 9%. In this
application, 60% of the runtime is spent in an extremely
complicated computational loop nest containing arithmetic
expressions that are tens of lines long (5 expressions in 151
lines), uses a large number of sqrt operations, and accesses
167 double precision values per grid point. As such it is not
limited by either bandwidth (7.16 GB/s) or computational
throughput (27.7 GFLOPS/s), rather by latency, register
pressure, and other factors. Nevertheless, it still gains a
1.57× speedup from tiling, achieving 11.24 GB/s and 43.49
GFLOPS/s. Overall, the entire application gains a 1.71×
improvement from tiling.

TABLE 4
Performance summary of TeaLeaf and OpenSBLI

Test Baseline Tiled Tiled Best Speedup
TeaLeaf 13.438s 3.9339s 3.7666s 3.56×
OpenSBLI 20.807s 13.221s 12.1385s 1.71×

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128

CloverLeaf 3D Weak Scaling

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00

1 2 4 8 16 32 64 128

R
un

tim
e

(s
ec

on
ds

)

CloverLeaf 3D Strong Scaling

Base
Tiled
Base Comms
Tiled Comms

Fig. 4. Scaling CloverLeaf 3D to multiple nodes on Marconi

7 TILING IN DISTRIBUTED-MEMORY SYSTEMS

To evaluate the efficiency of our tiling approach, we deploy
the codebase on CINECA’s Marconi supercomputer, and
benchmark both strong scaling and weak scaling of the
four large-scale codes. Marconi’s A1 phase consists of 1512
nodes, each with dual-socket 18-core Broadwell Xeon E5-
2697 v4 CPUs, running at 2.3 GHz (Hyper-Threading is
off). The nodes are interconnected with Intel’s 100Gb/s
OmniPath fabric. The scheduling system currently limits job
sizes to 160 nodes, therefore in our power-of-two scaling
studies, we evaluate performance on up to 128 nodes, or
4608 cores.

For strong scaling CloverLeaf, we use the same mesh
sizes as on the single socket tests. For strong scaling TeaLeaf
and OpenSBLI we take the same problem sizes as described
previously, and double their size in the x direction (due to
the particularly small problem sizes in TeaLeaf). To evaluate
scalability, we then keep this problem size and run it on
an increasing number of nodes. Thus for CloverLeaf 2D,
we strong scale a 61442 problem for 10 time iterations,
for CloverLeaf 3D, a 3303 problem for 10 time iterations,
for TeaLeaf, a 4000 × 2000 problem for 2 solver iterations,
and for OpenSBLI, a 514 × 257 × 257 problem, for 10 time
iterations.

For weak scaling, we take the problem sizes described
for strong scaling, then scale it with the number of nodes,
keeping the per-node size constant. For TeaLeaf, due to
its convergence-dependent control flow that changes as
we increase the problem size, we also alter convergence
criteria to keep the number of solver iterations and the
preconditioning iterations approximately the same - as it
is not feasible to control this so that the number of iterations
matches exactly, we report performance as time per 100
preconditioning iterations.

Figures 4-5 show the results of these scaling tests for
CloverLeaf 3D and TeaLeaf - CloverLeaf 2D and OpenSBLI
look very similar to CloverLeaf 3D, they are deferred to
the Supplementary Material. For CloverLeaf 3D, we show
total runtime as well as the time spent in MPI communi-
cations. For TeaLeaf, we show the time spent computing
and the time spent in MPI communications separately (total
time not shown), due to the much larger relative cost of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 12

0.004
0.008
0.016
0.031
0.063
0.125
0.250
0.500
1.000
2.000
4.000

1 2 4 8 16 32 64 128

R
un

tim
e

(s
ec

on
ds

)

TeaLeaf Strong Scaling

Base Compute
Tiled Compute
Base Comms
Tiled Comms

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128R
un

tim
e/

10
0

PP
C

G
 It

s
(s

ec
on

ds
)

TeaLeaf Weak Scaling

Fig. 5. Scaling TeaLeaf to multiple nodes on Marconi

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

3.5E-07

6 16 26 36 46

Ru
nt
im

e/
gr
id
po
in
t

Problem	size	(GB)

Clover	2D Clover	2D	Tiled
Clover	3D Clover	3D	Tiled
OpenSBLI OpenSBLI	Tiled

Fig. 6. Problem size scaling on KNL

communications. Tiling over MPI scales well, keeping the
speedup ratio between tiled and non-tiled versions at higher
node counts as well, except for the strong scaled TeaLeaf
test, where after 4 nodes the two computational times are
nearly identical: a quick calculation shows that at 4 nodes
(8 sockets) the preconditioner’s memory footprint is 40MB
(versus the 35 MB L3 cache size), therefore even without
tiling, the datasets stay in cache. Time spent in MPI com-
munications, particularly when strong scaling, shows the
advantage of the communications scheme used when tiling,
which effectively results in fewer but larger messages.

8 TILING ON INTEL KNIGHTS LANDING

The second-generation Intel Xeon Phi platform, also called
Knights Landing (KNL) has a 16GB on-chip stacked mem-
ory, with a 4 − 5× higher bandwidth than that of DDR4.
This memory can serve either as a cache to off-chip DDR4
memory, or as a separately managed memory space, or a
combination of the two with a pre-defined split. This high
bandwidth stacked memory is a great benefit to applications
bound by memory bandwidth, such as our stencil codes.
However, if the problem size has a larger memory footprint
than 16GB, the user either has to manually allocate different
datasets to different memory spaces, or has to rely on good
enough caching behaviour. Here, we study the latter case
and demonstrate how our tiling approach can maintain high
performance and cache efficiency even when the full prob-
lem size is much larger than 16GB. We did not experience
any benefit from trying to size tiles so they stay in L2 cache,
therefore we do not report on those experiments.

Figure 6 shows the performance of the tiled and non-
tiled implementations of CloverLeaf 2D/3D and OpenS-
BLI when the problem size increases; here we normalised

0.5
1
2
4
8

16
32
64

1 2 4 8 16 32 64 128
Number of nodes

CloverLeaf 3D Weak Scaling

360^3 Baseline

360^3 Comms

360^3 Tiled

360^3 Tiled Comms

540^3 Baseline

540^3 Comms

540^3 Tiled

540^3 Tiled Comms

0.25

1

4

16

64

1 2 4 8 16 32 64 128

R
un

tim
e

(s
ec

on
ds

)

Number of nodes

CloverLeaf 3D Strong Scaling
540^3

540^3 Baseline
540^3 Tiled
Baseline Comms
Tiled Comms

Fig. 7. Scaling CloverLeaf 3D on Marconi-A2 (KNL)

runtimes by dividing them with the number of gridpoints.
On our x200 7210 chip (64 cores), we run with 4 MPI pro-
cesses and 64 OpenMP threads each, and a cache/quadrant
memory configuration. As the figure shows, up to a size of
16GB, all data fits in cache, and there is no or very little
benefit (due to improved communications) from tiling, and
the runtime per gridpoint remains constant. Beyond 16GB
however, the non-tiled versions gradually slow down as
less and less of the data being worked on stays resident
in cache. Tiled versions on the other hand maintain their
runtime per gridpoint, demonstrating the utility of our tiling
approach even on a machine with orders of magnitude
larger cache. At the larger problem sizes where the memory
footprint is approximately 50GB, there is a 2.17× speedup
on CloverLeaf 2D, a 1.95× speedup on CloverLeaf 3D, and
a 1.67× speedup on OpenSBLI. TeaLeaf was omitted due to
its small memory footprint at reasonable problem sizes.

We also evaluate scaling up to 128 nodes on Marconi-
A2, which has Intel Xeon Phi x200 7250 nodes (68 cores
each). We weak scale two cases; one where all data fits in
the 16GB cache and one where it does not. Here we report
on CloverLeaf 3D, where we scaled a 3603 (11.1 GB) and
a 5403 (37.8 GB) mesh - results are shown in Figure 7. For
both strong scaling and weak scaling the smaller mesh, the
baseline and the tiled versions perform very similar since all
data can stay resident in cache. The tiled version performs
slightly better due to its improved communications scheme;
the cost of MPI communications is on average 2× less. When
weak scaling the larger mesh though, we can consistently
see a 25% improvement over the baseline version. Scaling
on CloverLeaf 2D and OpenSBLI show the same behaviour,
their performance figures can be found in the Supplemen-
tary Material.

9 CONCLUSIONS

In this paper, we explored the challenges in achieving cache-
blocking tiled execution on large PDE codes implemented
using the OPS library; codes that are significantly larger than
the traditional benchmarks studied in the literature: execu-
tion spans several compilation units, and the order of loops
cannot be determined at compilation time. The key issues
included how to handle dynamic execution paths within
and across loop nests, and across a number of source files -
something state-of-the-art polyhedral and stencil compilers
(Pluto, Pochoir) cannot do. To tackle this, we adopt the
locality improving optimisations called tiling, and instead
of trying to tile at compile-time, we develop a run-time
capability that relies on building a chain of loops through
a delayed execution scheme.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 13

To study the proposed approach, we established a base-
line with a comparative study of the finite-difference heat
equation Jacobi solver, comparing against Pluto and Pochoir.
These libraries use different tiling and parallelisation strate-
gies, and rely on compile-time analysis of the stencil code,
but performance is closer than expected - most of the over-
head is due to going through function pointers at run-time.
Overall, the OPS version achieves a 3.1× speedup over the
non-tiled version and a bandwidth of 97.8 GB/s.

Thanks to the run-time analysis, the proposed approach
can be trivially applied to larger-scale applications as well;
we study the 2D and 3D versions of the CloverLeaf appli-
cation in detail. Establishing a baseline shows that both ver-
sions are bound by bandwidth to off-chip memory. Enabling
tiling shows a speedup of up to 2.1× in 2D and 2× in 3D.
Detailed performance analysis shows that the simplest loops
gain the most performance improvement, some computa-
tionally intensive loops become limited by compute instead
of bandwidth, and that thin boundary loops slow down. We
demonstrate that our results are immediately applicable to
applications that use OPS, including TeaLeaf (achieving up
to 3.56×) and OpenSBLI (achieving up to 1.71×).

Our algorithms and testing are also extended to dis-
tributed memory systems, demonstrating excellent scalabil-
ity, maintaining speedup over the non-tiled versions as long
as the problem size per socket is reasonably larger than the
cache size. Performance is further improved by the commu-
nications scheme, particularly when strong scaling, due to
using fewer but larger messages. Our work is also evaluated
on Intel’s Knights Landing platform, showing that even
on an architecture with a much larger cache (16GB) our
algorithms provide significant performance improvements
when the full problem size grows beyond the capacity of
the cache, and this improvement is maintained when weak
scaled up to 128 nodes.

The fact that cache-blocking tiling can be applied with
such ease to larger, non-trivial applications once again
underlines the utility of domain specific languages, and
their main premise: once an application is implemented
using a high-level abstraction, it is possible to transform
the code to near-optimal implementations for a variety of
target architectures and programming models, without any
modifications to the original source code. The algorithms
presented in this paper are generally applicable to any
stencil DSL that provides per-loop data access information.

ACKNOWLEDGMENTS

The authors would like to thank Michelle Strout at the
University of Arizona for her invaluable suggestions and
insight, as well as Fabio Luporini at Imperial College Lon-
don. This paper was supported by the János Bólyai Research
Scholarship of the Hungarian Academy of Sciences.

The OPS project is funded by the UK Engineering and
Physical Sciences Research Council projects EP/K038494/1,
EP/K038486/1, EP/K038451/1 and EP/K038567/1 on
“Future-proof massively-parallel execution of multi-block
applications” project. This research was also funded by
the Hungarian Human Resources Development Operational
Programme (EFOP-3.6.2-16-2017-00013). We acknowledge
PRACE for awarding us access to resource Marconi based
in Italy at Cineca.

REFERENCES

[1] M. Wolfe, “More iteration space tiling,” in Proceedings of the 1989
ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’89.
New York, NY, USA: ACM, 1989, pp. 655–664.

[2] A. Darte, “On the complexity of loop fusion,” in Proceedings of
the 1999 International Conference on Parallel Architectures and Com-
pilation Techniques, ser. PACT ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 149–.

[3] J. M. Levesque, R. Sankaran, and R. Grout, “Hybridizing s3d into
an exascale application using openacc: An approach for moving
to multi-petaflops and beyond,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2012 International Conference
for, Nov 2012, pp. 1–11.

[4] W. Pugh and E. Rosser, Iteration Space Slicing for Locality. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 164–184.

[5] I. J. Bertolacci, M. M. Strout, S. Guzik, J. Riley, and
C. Olschanowsky, “Identifying and scheduling loop chains using
directives,” in Proceedings of the Third International Workshop on
Accelerator Programming Using Directives, ser. WACCPD ’16. Pis-
cataway, NJ, USA: IEEE Press, 2016, pp. 57–67.

[6] T. Muranushi, H. Hotta, J. Makino, S. Nishizawa, H. Tomita,
K. Nitadori, M. Iwasawa, N. Hosono, Y. Maruyama, H. Inoue,
H. Yashiro, and Y. Nakamura, “Simulations of below-ground
dynamics of fungi: 1.184 pflops attained by automated generation
and autotuning of temporal blocking codes,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’16. Piscataway, NJ, USA: IEEE Press,
2016, pp. 3:1–3:11.

[7] B. Mohr, A. Malony, and R. Eigenmann, “On the integration
and use of OpenMP performance tools in the SPEC OMP 2001
benchmarks,” in Proceedings of 2002 Workshop on OpenMP Applica-
tions and Tools (WOMPAT’02), Fairbanks, Alaska, August 2002, 2002,
record converted from VDB: 12.11.2012.

[8] L. N. Pouchet, “PolyBench: The Polyhedral Benchmark suite.”
[Online]. Available: http://web.cs.ucla.edu/∼pouchet/software/
polybench/

[9] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and
S. McIntosh-Smith, “The OPS Domain Specific Abstraction for
Multi-block Structured Grid Computations,” in Proceedings of
the Fourth International Workshop on Domain-Specific Languages
and High-Level Frameworks for High Performance Computing, ser.
WOLFHPC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 58–67.

[10] G. R. Mudalige, I. Z. Reguly, M. B. Giles, A. C. Mallinson, W. P.
Gaudin, and J. A. Herdman, Performance Analysis of a High-Level
Abstractions-Based Hydrocode on Future Computing Systems. Cham:
Springer International Publishing, 2015, pp. 85–104.

[11] S. P. Jammy, G. R. Mudalige, I. Z. Reguly, N. D. Sandham, and
M. Giles, “Block-structured compressible navierstokes solution
using the ops high-level abstraction,” International Journal of Com-
putational Fluid Dynamics, vol. 30, no. 6, pp. 450–454, 2016.

[12] J. Meng, X.-J. Gu, D. R. Emerson, G. R. Mudalige, I. Z. Reguly,
and M. B. Giles, “High-level abstraction for block structured
application: A lattice boltzmann exploration,” in Proceedings of the
EMerging Technology (EMiT) Conference, 2016.

[13] A. Mallinson, D. A. Beckingsale, W. Gaudin, J. Herdman,
J. Levesque, and S. A. Jarvis, “Cloverleaf: Preparing hydrodynam-
ics codes for exascale,” in The Cray User Group 2013, 2013.

[14] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A.
Beckingsale, A. C. Mallinson, and S. A. Jarvis, “Accelerating hy-
drocodes with openacc, opencl and cuda,” in 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, Nov
2012, pp. 465–471.

[15] “TeaLeaf: Uk mini-app consortium,” 2015, https://github.com/
UK-MAC/TeaLeaf.

[16] C. T. Jacobs, S. P. Jammy, and N. D. Sandham, “Opensbli:
A framework for the automated derivation and parallel
execution of finite difference solvers on a range of computer
architectures,” Journal of Computational Science, vol. 18, pp. 12
– 23, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S187775031630299X

[17] M. Wolfe, “Loops skewing: The wavefront method revisited,”
International Journal of Parallel Programming, vol. 15, no. 4, pp.
279–293, 1986. [Online]. Available: http://dx.doi.org/10.1007/
BF01407876

[18] M. J. Wolfe, “Iteration space tiling for memory hierarchies,” in
Proceedings of the Third SIAM Conference on Parallel Processing
for Scientific Computing. Philadelphia, PA, USA: Society for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 14

Industrial and Applied Mathematics, 1989, pp. 357–361. [Online].
Available: http://dl.acm.org/citation.cfm?id=645818.669220

[19] M. J. Wolfe, “Optimizing supercompilers for supercomputers,”
Ph.D. dissertation, Champaign, IL, USA, 1982, aAI8303027.

[20] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly performing
polyhedral optimizations on a low-level intermediate representa-
tion,” Parallel Processing Letters, vol. 22, no. 04, p. 1250010, 2012.

[21] C. Ancourt and F. Irigoin, “Scanning polyhedra with do loops,”
in Proceedings of the Third ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPOPP ’91. New
York, NY, USA: ACM, 1991, pp. 39–50. [Online]. Available:
http://doi.acm.org/10.1145/109625.109631

[22] D. K. Wilde, “A library for doing polyhedral operations,” IRISA,
Tech. Rep. 785, December 1993.

[23] M. Geigl, “Parallelization of loop nests with general bounds in the
polyhedron model,” Master’s thesis, Universit at Passau, 1997.

[24] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam,
and P. Sadayappan, “A stencil compiler for short-vector simd ar-
chitectures,” in Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ser. ICS ’13. New
York, NY, USA: ACM, 2013, pp. 13–24.

[25] R. Strzodka, M. Shaheen, and D. Pajak, “Time skewing made
simple,” SIGPLAN Not., vol. 46, no. 8, pp. 295–296, Feb. 2011.

[26] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson, “The pochoir stencil compiler,” in Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’11. New York, NY, USA: ACM, 2011,
pp. 117–128.

[27] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Au-
tomatic optimization for image processing pipelines,” SIGARCH
Comput. Archit. News, vol. 43, no. 1, pp. 429–443, Mar. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2786763.2694364

[28] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’13. New York, NY, USA: ACM, 2013, pp. 519–530.
[Online]. Available: http://doi.acm.org/10.1145/2491956.2462176

[29] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic transformations for
communication-minimized parallelization and locality optimiza-
tion in the polyhedral model,” in International Conference on Com-
piler Construction (ETAPS CC), Apr. 2008.

[30] M. M. Baskaran, N. Vydyanathan, U. K. R. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan, “Compiler-
assisted dynamic scheduling for effective parallelization of loop
nests on multicore processors,” SIGPLAN Notices, vol. 44,
no. 4, pp. 219–228, February 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594835.1504209

[31] E. Schweitz, R. Lethin, A. Leung, and B. Meister, “R-stream:
A parametric high level compiler,” Proceedings of HPEC, 2006.
[Online]. Available: http://llwww.ll.mit.edu/HPEC/agendas/
proc06/Day2/21 Schweitz Pres.pdf

[32] U. Bondhugula, “Compiling affine loop nests for distributed-
memory parallel architectures,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013,
pp. 33:1–33:12. [Online]. Available: http://doi.acm.org/10.1145/
2503210.2503289

[33] M. Classen and M. Griebl, “Automatic code generation for dis-
tributed memory architectures in the polytope model,” in Proceed-
ings 20th IEEE International Parallel Distributed Processing Sympo-
sium, April 2006, pp. 1–7.

[34] T. Denniston, S. Kamil, and S. Amarasinghe, “Distributed halide,”
in Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’16. New
York, NY, USA: ACM, 2016, pp. 5:1–5:12. [Online]. Available:
http://doi.acm.org/10.1145/2851141.2851157

[35] “Using time skewing to eliminate idle time due to memory
bandwidth and network limitations,” in Proceedings of the 14th
International Symposium on Parallel and Distributed Processing, ser.
IPDPS ’00. Washington, DC, USA: IEEE Computer Society, 2000,
pp. 171–182. [Online]. Available: http://dl.acm.org/citation.cfm?
id=846234.849346

[36] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. Keyes,
“Multicore-optimized wavefront diamond blocking for optimizing

stencil updates,” SIAM Journal on Scientific Computing, vol. 37,
no. 4, pp. C439–C464, 2015.

[37] T. Grosser, S. Verdoolaege, A. Cohen, and P. Sadayappan,
“The relation between diamond tiling and hexagonal tiling,”
Parallel Processing Letters, vol. 24, no. 03, pp. 1–20, 2014.
[Online]. Available: http://www.worldscientific.com/doi/abs/
10.1142/S0129626414410023

[38] P. Henderson and J. H. Morris, Jr., “A lazy evaluator,” in
Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on
Principles on Programming Languages, ser. POPL ’76. New
York, NY, USA: ACM, 1976, pp. 95–103. [Online]. Available:
http://doi.acm.org/10.1145/800168.811543

[39] A. Bloss, P. Hudak, and J. Young, “Code optimizations for lazy
evaluation,” Lisp and Symbolic Computation, vol. 1, no. 2, pp. 147–
164, 1988.

[40] L. W. Howes, A. Lokhmotov, A. F. Donaldson, and P. H. J. Kelly,
“Deriving efficient data movement from decoupled access/exe-
cute specifications,” in Proceedings of the 4th International Confer-
ence on High Performance Embedded Architectures and Compilers, ser.
HiPEAC ’09. Springer-Verlag, 2009, pp. 168–182.

[41] M. M. Strout, F. Luporini, C. D. Krieger, C. Bertolli, G. T. Bercea,
C. Olschanowsky, J. Ramanujam, and P. H. J. Kelly, “Generalizing
run-time tiling with the loop chain abstraction,” in Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, May
2014, pp. 1136–1145.

[42] J. Xue, Loop tiling for parallelism. Springer Science & Business
Media, 2012, vol. 575.

[43] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
“A practical automatic polyhedral parallelizer and locality opti-
mizer,” SIGPLAN Not., vol. 43, no. 6, pp. 101–113, Jun. 2008.

[44] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil
computations to maximize parallelism,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 40:1–40:11.

[45] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic
parallelization of stencil computations,” SIGPLAN Not.,
vol. 42, no. 6, pp. 235–244, Jun. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1273442.1250761

[46] “CloverLeaf Reference github repository,” 2013, https://github.
com/UK-MAC/CloverLeaf ref.

[47] “OPS github repository,” 2013, https://github.com/
gihanmudalige/OPS.

István Z. Reguly is a lecturer at PPCU ITK,
Hungary. He holds an MSc and a PhD in com-
puter science from the PPCU, Hungary. His re-
search interests include high performance scien-
tific computing on many-core hardware and do-
main specific active libraries for structured and
unstructured meshes.

Gihan R. Mudalige is an assistant professor at
the Department of Computer Science, Univer-
sity of Warwick, UK. His research interests are
in performance analysis/optimization of scientific
applications on high-performance systems. Pre-
viously he has worked as a research fellow at
the High Performance Systems Group at War-
wick and a research intern at the University of
Wisconsin–Madison, US. Dr. Mudalige holds a
PhD. in Computer Science from the University of
Warwick and is a member of the ACM.

Michael B. Giles is Professor of Scientific Com-
puting in Oxford University’s Mathematical Insti-
tute where he carries out research into the de-
velopment and analysis of more efficient Monte
Carlo methods for computational finance and
engineering uncertainty quantification. He leads
research into the use of GPUs for a variety of
applications.

